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A deep learning framework for 18F-FDG PET imaging diagnosis
in pediatric patients with temporal lobe epilepsy
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Abstract
Purpose Epilepsy is one of the most disabling neurological disorders, which affects all age groups and often results in severe
consequences. Since misdiagnoses are common, many pediatric patients fail to receive the correct treatment. Recently, 18F-
fluorodeoxyglucose positron emission tomography (18F-FDG PET) imaging has been used for the evaluation of pediatric epilepsy.
However, the epileptic focus is very difficult to be identified by visual assessment since it may present either hypo- or hyper-metabolic
abnormality with unclear boundary. This study aimed to develop a novel symmetricity-driven deep learning framework of PET
imaging for the identification of epileptic foci in pediatric patients with temporal lobe epilepsy (TLE).
Methods We retrospectively included 201 pediatric patients with TLE and 24 age-matched controls who underwent 18F-FDG PET-
CT studies. 18F-FDG PET images were quantitatively investigated using 386 symmetricity features, and a pair-of-cube (PoC)-based
Siamese convolutional neural network (CNN) was proposed for precise localization of epileptic focus, and then metabolic abnormality
level of the predicted focus was calculated automatically by asymmetric index (AI). Performances of the proposed framework were
compared with visual assessment, statistical parametric mapping (SPM) software, and Jensen-Shannon divergence-based logistic
regression (JS-LR) analysis.
Results The proposed deep learning framework could detect the epileptic foci accurately with the dice coefficient of 0.51, which was
significantly higher than that of SPM (0.24,P < 0.01) and significantly (ormarginally) higher than that of visual assessment (0.31–0.44,
P = 0.005–0.27). The area under the curve (AUC) of the PoC classification was higher than that of the JS-LR (0.93 vs. 0.72). The
metabolic level detection accuracy of the proposedmethodwas significantly higher than that of visual assessment blinded or unblinded
to clinical information (90% vs. 56% or 68%, P < 0.01).
Conclusion The proposed deep learning framework for 18F-FDG PET imaging could identify epileptic foci accurately and
efficiently, which might be applied as a computer-assisted approach for the future diagnosis of epilepsy patients.
Trial registration NCT04169581. Registered November 13, 2019

Public site: https://clinicaltrials.gov/ct2/show/NCT04169581
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Introduction

Epilepsy is one of the most common serious pediatric neuro-
logical disorders with a prevalence of 0.5–1% [1, 2]. The tem-
poral lobe epilepsy (TLE) is the most frequent subtype of focal
epilepsy, and 80–90% TLE patients show hypometabolism on
18F-fluorodeoxyglucose positron emission tomography (18F-
FDG PET) imaging at the interictal state [3, 4]. 18F-FDG PET
has played an important role in epileptic patient management,
since it has higher detection sensitivity (86% vs. 73–80%) than
those of electroencephalogram (EEG), single-photon emission
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computed tomography (SPECT), or magnetic resonance imag-
ing (MRI) [5–9]. In the clinical setting, PET image analysis
should be done by drawing region-of-interest (ROI) or
volume-of-interest (VOI) and then calculating the standard up-
take value (SUV), SUV ratio (SUVR), or asymmetric index
(AI) [10–12]. However, this analysis method might lead to
significant diagnostic bias, since it is highly depended on the
physician`s own experience [13]; therefore, computer-aided di-
agnosis approach is warranted.

Statistical parametric mapping (SPM) is so far the most
widely used computer-aided approach for PET imaging anal-
ysis [11, 12], in which all subjects need to be normalized into
the same standard space, followed by performing voxel-wise
statistical comparison between patients and normal controls.
Previous 18F-FDG PET studies have demonstrated that SPM
analysis could improve the localization of epileptic focus [14,
15]. However, it only makes use of a small portion of image
information, and its voxel-based morphometry (VBM) meth-
od tend to yield false positives [16] especially when compar-
ing pediatric data with adult healthy controls due to imperfect
registration [13]. Recently, radiomics analysis attracted wide-
spread attentions, since it can unravel the hidden information
in digital images and potentially improve diagnostic, prognos-
tic, predictive, and classification accuracy [17]. Nonetheless,
radiomics analyses are commonly limited to segmentation and
localization. Thus, it is crucial to develop an accurate and
efficient method for epileptic focus identification in pediatric
patients.

Although many studies demonstrated that deep learning
method could achieve comparable or even better results
than visual assessment by experienced physicians in diag-
nosis of var ious diseases including lung cancer ,
Alzheimer’s disease, and Schizophrenia [18–20], to the best
of our knowledge, no publication has been found on deep
learning-assisted identification of epileptic focus using 18F-
FDG PET imaging. We consider that there are three major
challenges for developing a deep learning-based 18F-FDG
PET diagnosis approach for pediatric epilepsy: (1) it is very
difficult to localize the epileptic focus which might present
as either hypo- or hypermetabolism; (2) it is pretty difficult
to get the accurate label for training of deep learning since
the boundary of epileptic focus is too intricate to be delin-
eated explicitly; (3) it is difficult to include normal pediatric
controls who have done 18F-FDG PET scans due to the
ethical concern. To overcome the above-mentioned chal-
lenges, we hypothesize that the epilepsy is strongly corre-
l a ted to the h igh-d imens iona l in te rhemispher i c
symmetricity changes in PET images. We used radiomics
features with symmetric information to diagnose TLE and
confirm this hypothesis. Then we proposed a novel deep
learning method based on a Siamese convolutional neural
network (CNN) to track the metabolic symmetricity of 18F-
FDG PET images for the detection of epileptic focus.

Materials and methods

Subjects

We retrospectively reviewed a dataset of 201 pediatric pa-
tients with TLE (92 girls and 109 boys, age 11.19 ± 3.43
years) who underwent 18F-FDG PET-CT, EEG, and MRI
from November 2013 to April 2019. Exclusion criteria were
the following: (1) poor image quality, e.g., severe image arti-
facts due to head movement, and (2) negative finding on 18F-
FDG PET scan, (3) incomplete clinical data, and (4) missing
EEG or MRI data. To determine a negative finding (no sig-
nificant abnormal finding) on 18F-FDG PET scan, all images
were reviewed by the team of experts to reach a consensus. A
total of 136 cases were included for the following analysis
(including 57 girls and 79 boys with ages of 10.84 ± 3.35
years).

An age-matched control group dataset (6 girls and 18 boys,
age 11.58 ± 2.83 years) was built by retrospectively reviewing
patients with extracranial lymphoma who had no history of
neurologic disorders, psychiatric illnesses, chemotherapy, or
radiotherapy. This retrospective study was approved by the
Human Subject Research Ethics Committee of The Second
Hospital of Zhejiang University School of Medicine, and the
requirement of informed consents was waived (Approval
Number: 2019162).

18F-FDG PET imaging acquisition and visual
assessment

All subjects were injected with 3.7 MBq/Kg 18F-FDG after
fasting at least 6 h and then rested with eyes closed in dark and
quiet environment for a 40-min uptake period. PET-CT brain
images were acquired on a PET-CT scanner (Biograph mCT;
Siemens Medical Solutions), using a 5-min bed position and
3D whole-head acquisition. Data were reconstructed by a
vendor-provided software using Fourier recombination
(FORE) and attenuation-weighted ordered-subsets expecta-
tion maximization (AW-OSEM). The reconstructed resolu-
tion of PET images was almost isotropic with a full width at
half maximum (FWHM) of 4.4 mm in the center and a
FWHM of 4.8 mm at 10 cm off-axis. Images were then
resliced into 2-mm-thick slices and reoriented to the coronal-
transaxial-sagittal orientation on Siemens medical
workstation.

18F-FDG PET images were visually assessed by two phy-
sicians specialized in epilepsy diagnosis (YL, XW) who were
unblinded to the seizure semiology, EEG, and MRI findings.
All epileptic foci were manually delineated using ITK-SNAP
software (version 3.6.0; https://www.itksnap.org). For
inconsistent cases, the final decision was made by the team
of experts to reach a consensus through cross-review.
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18F-FDG PET image preprocessing and dataset
separation

The 18F-FDG PET images were spatially normalized to an in-
house symmetric template by the symmetric diffeomorphic
registration using Advanced Normalization Tools (version
2.1; https://stnava.github.io/ANTs) [21]. All warped images
were then transformed to Z-maps using Fisher’s Z-transfor-
mation. After that, PET images were randomly divided into
two sets: training (106 patients and 9 controls) or testing (30
patients and 15 controls) set. The training set was involved in
the model training for both radiomics analysis and deep learn-
ing, while the testing set was used to evaluate the performance
of well-trained models.

Radiomics-based 18F-FDG PET image analysis

The radiomics-based 18F-FDG PET analysis consisted of
feature extraction, feature selection, and model training. In
the feature extraction, the symmetricity features of the bi-
lateral temporal lobes were quantitatively investigated to
imitate the visual assessment that bilateral glucose uptake
was compared simultaneously. The radiomics features (to-
tally 386 dimensions, described in Supplementary
Materials), including 344 multiscale wavelet features, 36
texture features, and 6 intensity features, were extracted
from the bilateral temporal lobes. The multiscale wavelet
features included intensities and textures from Coiflet 1
wavelet (coif1) transformed images. The texture features
were calculated based on histogram, gray-level co-occur-
rence matrix (GLCM), neighborhood gray-tone difference
matrix (NGTDM), and gray-level zone size matrix
(GLZSM). The intensity features included mean, variance,
skewness, kurtosis, energy, and entropy. The symmetricity
feature was obtained by calculating the absolute distance
between the radiomics features of the left and right lobes
according to the following equation:

di ¼ f lefti − f righti

�
�
�

�
�
� ∀i ¼ 1; 2;⋯; 386

where f lefti and f righti represent the number i feature of ei-
ther the left or right lobe. The symmetricity vector d = (d1,
d2,⋯, d386) was then built to represent the individual inter-
hemispheric temporal lobe symmetricity and formed a
symmetricity distance matrix. Column-wise Z-transforma-
tion was applied to the symmetricity distance matrix to
obtain the normalized symmetricity matrix.

For feature selection, the hierarchical clustering (HC)—a
widely used clustering method—was applied to the normal-
ized symmetricity matrix to obtain k clusters (krepresents the
number of clusters). In each cluster, the most significant
symmetricity feature was selected by maximum absolute

Fisher inter-intra class variance ratio (FICVR) [22], which
can be defined in the following equation:

FICVR ¼ μp−μcð Þ.
ffiffiffiffiffiffiffiffiffiffi
σ2pþσ2c

p
�
�
�
�

�
�
�
�

where μp stands for the mean symmetricity features of the
patient and μc represents that of the control, while σp and σc
denote the standard deviations of the patient and the control,
respectively. The FICVR of a feature represents its capability
of distinguishing the patient from the control.

To verify the advantages of our selected features, this study
evaluated the classification performances of our selected features,
low-order features (intensity features), mono-features (features
with favorable classification metrics), and multi-features (all fea-
tures and principal component analysis (PCA) selected features)
based on logistic regression models. The classification metrics
such as accuracy, sensitivity, specificity, and receiver operating
characteristic (ROC) were displayed. To improve the robustness
of the logistic regressionmodels, the training set was divided into
10 groups through a 10-fold cross-validation procedure, which
was consisted of 10 iterations: in each iteration, one group was
used as the validation set, while the rest of the training sets were
used for model training [23]. This procedure was repeated for 10
times to obtain the average performance.

Deep learning-based epileptic focus localization

A deep learning approach, symmetricity-driven Siamese CNN,
was proposed to localize the epileptic focus. This proposed
framework, which consisted of two identical 18-layer residual
convolution neural networks (ResNet) [24], was firstly used to
extract deep features of bilateral image cubes automatically and
then to localize the focus by calculating the feature differences
(Fig. 1). The procedures of training and inference were demon-
strated in the red and black dashed-dotted boxes, respectively. In
the procedure of training, the input x belong to the sample image
setX; while the corresponding outpu y belong to the label set Y. It
is noted that y= 0.0 and y = 1.0 represent the normal and abnor-
mal image cubes, respectively. Therefore, the epileptic focus
detection could be considered as a symmetricity-driven binary
classification. In the procedure of inference, the output probabil-
ity p of the framework was obtained on testing set. The above-
mentioned procedureswere implemented by using PyTorch (ver-
sion 1.0; https://pytorch.org).

To obtain the inputs of Siamese CNN, the right and left parts
of PET images were partitioned to pairs-of-cubes (PoCs), and
each PoC was consisted of n × n × n pixels (here we set n= 48).
Then the positive (with focus) and negative (without focus) PoCs
were obtained from the patients and controls. To balance the
sample sizes of positive and negative PoCs, data augmentation
was conducted on the training set, such as flipping, radial distor-
tion, and intensity modification. In addition, sample weighting

2478 Eur J Nucl Med Mol Imaging  (2021) 48:2476–2485

https://stnava.github.io/ANTs
https://pytorch.org


was used by setting relatively largerweights forminority samples
in each training batch. The PoC-based training strategy could
overcome the challenge of small training sample size in PET
imaging and improve the framework robustness.

In the process of Siamese CNN training, PoCs were respec-
tively fed to the two sub-networks to obtain two 1024-entry
feature vectors. The absolute difference between the two fea-
ture vectors was then processed by a fully connected layer to
get the prediction score. For parameters setting, we applied the
standard stochastic gradient descent with learning rate of 0.01
and set weight decay as 0.005, batch size as 128, and training
epoch as 16. In each training epoch, the trained model obtain-
ed the validation results on the validation set. The model with
the best validation result was selected as the final model for
the inference on the testing set.

In the procedure of inference for focus detection, the input
PET images were partitioned into cubes to generate PoCs. The
aforementioned procedure was executed on each PoC to ob-
tain the output p. Eventually, a probability heat map for
predicting the abnormal focus was achieved in one PET im-
age, as illustrated in the last stage of Fig. 1. To evaluate the
performance of our proposed method on PoC classification,
this study calculated the Jensen-Shannon (JS) divergence of
PoCs and applied a logistic regression (LR) classifier to dis-
criminate normality and abnormality for comparison.

After detecting abnormal focus, the framework further cal-
culated the SUVR and determined hyper- or hypometabolism
by computing asymmetric index (AI):

AI ¼ 2� SUVR ipsilateralð Þ‐SUVR contralateralð Þð Þ
SUVR ipsilateralð Þ þ SUVR contralateralð Þ

If absolute AI was larger than the threshold (e.g., 0.15) for
three consecutive slices, the focus was determined as severe
metabolic abnormality, otherwise mild. The hypo- or hyper-
metabolism was determined by the sign of AI, i.e., negative
for hypo- and positive for hyper.

Statistical analysis

To evaluate the accuracy and consistency of the proposed meth-
od, results were compared with those of SPM (version 8; http://
www.fil.ion.ucl.ac.uk/spm/) and physicians with different
experience levels, i.e., physicians specialized in epilepsy
diagnosis (specialist), junior nuclear medicine physicians
(junior), senior nuclear medicine physicians (senior), and a
senior neurologist (neurologist). In SPM analysis, all PET
images were spatially normalized to standard stereotactic space
by an in-house symmetric 18F-FDG PET template, followed by
smoothing with 8-mm FWHM Gaussian kernel. Two-tailed in-
ference and cluster size level of 100 were used as prior study
[25]. SPM results were classified into four levels according to the
uncorrectedP values, i.e., normal (P > 0.05), probably normal (0.
01 < P ≤ 0.05), probably abnormal (0.001 ≤ P < 0.01), and
abnormal (P < 0.001).

Fig. 1 The proposed framework for epileptic focus detection

2479Eur J Nucl Med Mol Imaging  (2021) 48:2476–2485

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/


The diagnosis and localization results of proposed method
were compared with those of SPM analysis and physicians
with different levels. The physicians decided each case as
normal, probably normal, probably abnormal, or abnormal
and then manually delineated the epileptic foci for all
suspected “abnormal” cases. Dice coefficient [26] was used
to quantify the similarity of proposed method, physicians, and
SPM results to the reference standard. Wilcoxon signed-rank
test was employed to compare the dice coefficients of different
methods. The percentage of correct diagnosis, ROC curves,
sensitivity, and specificity were reported.

The glucose metabolic levels were classified into four cat-
egories: severe hypometabolism, mild hypometabolism, mild
hypermetabolism, or severe hypermetabolism. The metabolic
abnormality level determination results were compared be-
tween proposedmethod and physicians. Physicians first found
the epileptic foci and estimated the metabolic abnormality
levels of the foci blinded to clinical information including
seizure semiology, EEG, and MRI findings. After that, physi-
cians utilized the clinical information to re-evaluate foci and
metabolic levels. At last, we compared the physician diagnosis
results blinded or unblinded to the clinical information and
those of the proposed framework. Wilcoxon signed-rank test
was employed to evaluate physician determination of hypo-
and hypermetabolism blinded or unblinded to clinical infor-
mation. McNemar’s test was employed to compare physician
visual assessments and proposed method. P value less than
0.05 (P < 0.05) was considered statistically significant.

Results

Radiomics-based epilepsy diagnosis

The heat map of symmetricity features was demonstrated in Fig.
2a. The rows represented images of the control and the patient,

and columns represented symmetricity features. The colors of the
heat map varied from orange to purple, which represented the
values of symmetricity features changed from small to large. All
symmetricity features were grouped into 10 clusters byHC, from
which the featurewithmaximumFICVRwas selected (totally 10
features were selected, see Table S1 in Supplementary
Materials). As shown in Fig. 2b, the ROC curve of our proposed
method based on 10 selected features outperformed those classi-
ficationmethods using 4 single features inmono-feature category
with largest area under curves (AUCs). Table 1 illustrated all
classificationmetrics of low-order, mono-, multi-, and our select-
ed features. The “high gray-level zone emphasis” feature had the
highest sensitivity (0.82); the proposed classification method had
the highest AUC (0.92), accuracy (0.81), and specificity (0.89),
which suggested the proposed cluster-based feature selection
method could purposely select the most TLE-correlated
symmetricity features.

The diagnosis results of the proposed method, the SPM anal-
ysis, and visual assessments were shown in Table 2 and Fig. 2c.
The experienced physicians had relative higher AUC and accu-
racy than the oneswith less experience in epilepsy diagnosis. The
SPM analysis had similar AUC and accuracy to the specialists
(AUC 0.76 vs. 0.80; Accuracy 0.73 vs. 0.75). The proposed
radiomics-based analysis had the highest AUC (0.89), accuracy
(0.82), sensitivity (0.84), and specificity (0.80) than the SPM
analysis and visual assessments, suggesting a strong correlation
between high-dimensional symmetricity features and epilepsy.
This finding supported our hypothesis that epilepsy had intrinsic
high-dimensionalmetabolic asymmetricities that cannot be easily
recognized by visual assessment.

Deep learning-based epileptic focus localization

A total of 51,689 PoCs were extracted from 106 patients and 9
controls, in which 60% of PoCs were used for training, 20% of
PoCs for validation, and 20% for testing. The proposed

Fig. 2 a Symmetricity feature heat map; b ROC curves of mono- and our selected features; and c ROC curves of visual assessment, SPM analysis, and
the proposed method
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method could accurately detect abnormal PoCs (AUC= 0.93),
which is better than the JS-LR (AUC = 0.72) (Fig. 3a). As
shown in Fig. 3b, the results demonstrated that the proposed
approach had the highest average dice coefficient (0.51) com-
pared with the physicians (0.31–0.44) and SPM analysis
(0.24). Wilcoxon signed-rank test showed that proposed
method significantly outperformed SPM analysis (P < 0.01),
junior physicians (P = 0.005–0.017), and neurologist (P =
0.038). The proposed method had a marginally significantly
higher dice coefficient than senior physician (P = 0.068) and
specialists (P = 0.09–0.17). Two examples of hypo- and hy-
permetabolism were presented in Fig. 4. Both hypo- and hy-
permetabolism regions predicted by the proposed deep learn-
ing method were consistent with the reference label.
Moreover, the proposed method tended to be more aggressive
by including slightly larger regions than the reference label to
avoid false negatives (i.e., missed diagnosis). Such aggres-
siveness can be fine-tuned by a threshold parameter used in
the framework.

Determination of metabolic abnormality level

The determination ability of metabolic abnormality level was
compared between the proposed method and the physicians

(see Fig. 5). All physicians failed to recognize mild hyperme-
tabolismwith or without access to the clinical information. All
physicians (except for one junior nuclear medicine physician)
had higher determination accuracy in terms of severe
hypometabolism than in the mild ones (71% vs. 55%; P =
0.032). Consulting clinical information can significantly in-
crease the determination accuracy of physicians for mild
hypometabolism from 46 to 64% (P < 0.01). However, the
impact of clinical information for severe hypermetabolism
determination is very limited (Accuracy = 78% for both
blinded and unblinded).

The proposed method had higher determination accuracy
for both severe and mild abnormalities (94% and 85%, respec-
tively) than physicians blinded (68% and 42%) to the clinical
information or unblinded (75% and 59%), as presented in
Table 3. The McNemar’s test showed that the proposed meth-
od significantly outperformed the physicians blinded
or unblinded to clinical information (90% vs. 56% and 68%;
P < 0.01). In particular, the proposed method successfully
determined all the hypermetabolism (100%), which was supe-
rior to all the physicians.

Discussion

This study proposed a deep learning method using a
symmetricity-driven Siamese CNN for epilepsy diagnosis.
The proposed method extracted high-dimensional
symmetricity features of metabolism in epilepsy to detect both
hypo- and hypermetabolism. Pair-of-cube training strategy
was employed to learn metabolic symmetricity with limited
imbalanced dataset. To the best of our knowledge, this is the
first deep learning study to investigate epilepsy using 18F-
FDG PET imaging.

The proposed deep learning framework can efficiently
localize epileptic foci beyond visual assessment and con-
ventional SPM analysis. Visual assessment is largely
depended on the clinical experience of physicians [13].

Table 1 AUC, accuracy,
sensitivity, and specificity of low-
order, mono-, multi-, and our
selected features

Feature category AUC Accuracy Sensitivity Specificity

Low-order features Mean 0.65 0.50 0.47 0.67

Variance 0.59 0.53 0.53 0.56

Mono-feature LZHGE 0.72 0.53 0.51 0.67

HGLZE 0.60 0.73 0.82 0.42

Contrast dec6 0.67 0.69 0.69 0.67

Variance dec2 0.82 0.77 0.76 0.78

Multi-feature All features 0.76 0.59 0.58 0.67

PCA selected features 0.67 0.64 0.69 0.33

Our proposed 10 selected features 0.92 0.81 0.80 0.89

AUC area under the curve, LZHGE large zone high gray emphasis, HGLZE high gray-level zone emphasis, PCA
principal component analysis

Table 2 AUC, accuracy, sensitivity, and specificity of epilepsy
diagnosis among the physicians with different experiences, SPM
analysis, and the proposed method

Group AUC Accuracy Sensitivity Specificity

Specialized level 0.80 0.75 0.64 0.93

Senior level 0.73 0.65 0.48 0.93

Junior level 0.67 0.64 0.60 0.70

Neurologist 0.57 0.58 0.53 0.67

SPM analysis 0.76 0.73 0.56 1.00

Proposed method 0.89 0.82 0.84 0.80

AUC area under the curve, SPM statistical parametric mapping

2481Eur J Nucl Med Mol Imaging  (2021) 48:2476–2485



Therefore, visual assessment varied between physicians
and had low diagnosis accuracy of mild metabolic abnor-
mality [25]. Conventional VBM-based SPM analysis could
improve diagnostic accuracy, but it might be susceptible to
high false positive rates [16] and only made use of a small
portion of image information. In contrast, the proposed

method can learn high-dimensional symmetricity features
of epilepsy though Siamese CNN and achieve high diag-
nosis accuracies of both severe (94%) and mild metabolic
abnormality (85%), confirming the hypothesis that epilep-
sy is closely related to high-dimensional metabolic
symmetricity features.

Fig. 3 a ROC curves of JS-LR and PoC-Siamese network; b dice coefficients obtained by the physicians with different levels, SPM analysis, and the
proposed method

Fig. 4 Two examples of the proposed epileptic focus localization of a hypometabolism and b hypermetabolism
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Our method employed PoC training strategy to analyze
metabolic symmetricity of epilepsy with limited and imbal-
anced pediatric 18F-FDG PET dataset. This strategy imitated
the visual assessment that bilateral glucose uptake was com-
pared simultaneously [27]. On the other hand, the pediatric
PET dataset was usually very limited and imbalanced with
much less controls [28]; conventional training method could
thus fail to reach convergence or result in overfitting. The PoC
training strategy used pairs of image cubes rather than whole
images for data augmentation. Then, the PoCs were classified
as positive or negative samples; such binary classification
strategy can have better tolerance of the human-induced inac-
curacies and bias when delineating epileptic boundaries. The
regions localized by the proposed approach matched the best
with the reference standard compared with all physicians and
SPM analysis, which demonstrated the proposed PoC ap-
proach is helpful for boosting the performance.

The proposed symmetricity radiomics analysis model
outperformed both visual evaluation and SPM analysis in di-
agnosis. This indicated there may exist complex metabolic
alternations in both ipsilateral and contralateral temporal
lobes. This finding was consistent with the most recent works
that treated epilepsy as a whole-brain network-level disease

[29, 30]. Moreover, previous studies also found that unilateral
TLE may cause contralateral compensation mechanism, in-
cluding contralateral structural alternations [31], increased
functional connectivity [32], and hypermetabolism [33]. The
contralateral compensation mechanism may further highlight
symmetricity features to improve localization accuracy in
turn. Notably, “high gray-level zone emphasis” (HGZE),
one of the critical features found by the proposed method to
describe the distribution of high gray-level zones, had the
highest sensitivity. The results suggested more attention
should be placed on temporal subregions that had relatively
higher glucose uptake levels.

Machine learning approaches have been proposed to inves-
tigate epilepsy using other image modalities. T1-MRI
radiomics analyses found abnormal texture features in hippo-
campus of mesial TLE, the right thalamus in juvenile myo-
clonic epilepsy [34], and the altered wavelet features in epi-
leptic foci [35]. Support vector machine (SVM) combined
with voxel-based morphometry (VBM) was proposed to dis-
tinguish presurgical mesial TLE from healthy controls using
T1-MRI, fluid-attenuated inversion recovery (FLAIR), and/or
diffusion tensor imaging (DTI) features [36–38]. These stud-
ies were limited to presurgical patients with hippocampal

Fig. 5 Comparison of metabolic abnormality level determination accuracy between proposed method and physicians blinded to clinical information (a)
and unblinded (b)

Table 3 Accuracy of metabolic abnormality level determination between the physicians and the proposed method

Group Severe
hypometabolism
(n = 13)

Severe
hypermetabolism
(n = 4)

Severe
abnormality
(n = 17)

Mild
hypometabolism
(n = 12)

Mild
hypermetabolism
(n = 1)

Mild
abnormality
(n = 13)

Physicians (blinded) 0.65 0.78 0.68 0.46 0.00 0.42

Physicians
(unblinded)

0.74 0.78 0.75 0.64 0.00 0.59

Proposed method 0.92 1.00 0.94 0.83 1.00 0.85
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sclerosis (HS) mesial TLE, while the causes of TLE are more
complex including focal cortical dysplasia (FCD), nonspecific
gliosis, and dysembryoplastic neuroepithelial tumors (DNET)
[39]. Moreover, the presurgical patients usually have intense
structural and functional abnormalities, limiting the clinical
applications of these methods. To ensure more general appli-
cations, the adopted TLE were not pre-selected in this study.
Nevertheless, the accuracies of the proposed framework were
similar to those of SVM-VBM approaches. Consequently, it
can be assumed that our method may work well in TLEs with
different etiological factors.

In conclusion, the proposed deep learning framework for
18F-FDG PET can accurately and efficiently localize epileptic
foci and determine metabolic abnormality, which might be
applied as a future computer-assisted diagnosis tool for epi-
lepsy patients.
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