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Abstract

Cells of the myeloid lineage are significant targets for human immunodeficiency virus (HIV) in humans and simian
immunodeficiency virus (SIV) in monkeys. Monocytes play critical roles in innate and adaptive immunity during
inflammation. We hypothesize that specific subsets of monocytes expand with AIDS and drive central nervous system (CNS)
disease. Additionally, there may be expansion of cells from the bone marrow through blood with subsequent macrophage
accumulation in tissues driving pathogenesis. To identify monocytes that recently emigrated from bone marrow, we used 5-
bromo-29-deoxyuridine (BrdU) labeling in a longitudinal study of SIV-infected CD8+ T lymphocyte depleted macaques.
Monocyte expansion and kinetics in blood was assessed and newly migrated monocyte/macrophages were identified
within the CNS. Five animals developed rapid AIDS with differing severity of SIVE. The percentages of BrdU+ monocytes in
these animals increased dramatically, early after infection, peaking at necropsy where the percentage of BrdU+ monocytes
correlated with the severity of SIVE. Early analysis revealed changes in the percentages of BrdU+ monocytes between slow
and rapid progressors as early as 8 days and consistently by 27 days post infection. Soluble CD163 (sCD163) in plasma
correlated with the percentage of BrdU+ monocytes in blood, demonstrating a relationship between monocyte activation
and expansion with disease. BrdU+ monocytes/macrophages were found within perivascular spaces and SIVE lesions. The
majority (80–90%) of the BrdU+ cells were Mac387+ that were not productively infected. There was a minor population of
CD68+BrdU+ cells (,10%), very few of which were infected (,1% of total BrdU+ cells). Our results suggest that an increased
rate of monocyte recruitment from bone marrow into the blood correlates with rapid progression to AIDS, and the
magnitude of BrdU+ monocytes correlates with the severity of SIVE.
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Introduction

Monocytes of bone marrow origin are circulating precursors that

give rise to and replenish macrophage populations in tissues,

including the brain [1]. Monocytes that originate from hematopoi-

etic stem cells in bone marrow undergo three stages of

differentiation from monoblasts to promonocytes and then

monocytes where they are released into the circulation [2–4].

Current dogma defines that human and non-human primate

monocytes do not divide out of the bone marrow [5]. Blood

monocytes are thought to circulate in the vasculature for

approximately 24–72 hours before differentiation into macrophag-

es in tissues [2,6]. Continuous extravasation and differentiation of

circulating monocytic precursors has long been considered the sole

source of tissue macrophages [7]. Other mechanisms to maintain

tissue macrophage homeostasis have been identified and described

in rodents including: 1) self-renewal of differentiated resident cells

and 2) homing and limited proliferation of bone marrow derived

precursors in tissues [5,8–11]. Such mechanisms are not thought to

function in humans. Nevertheless, in both rodents and primates in

acute inflammation, monocytes are recruited to tissue compart-

ments [2,12–14]. With acute inflammation, the half-life of

circulating monocytes is decreased coincident with an accumulation

of macrophages at the inflamed site [15,16]. The half-life of

circulating monocytes in chronic inflammation is undefined. Prior

studies of monocyte kinetics used autoradiographic analysis and

radiolabeled thymidine or indium chloride incorporation, which

was powerful but of limited utility due to the toxicity of radiolabel

[6,15–18]. More recently, we and others used the thymidine analog

59-bromo-29-deoxyuridine (BrdU) to quantify the turnover and

release of monocytes from bone marrow [19–24]. BrdU is

incorporated into cellular DNA during replication, at the S-phase

of the cell cycle. Monocytes are released from the bone marrow into

the circulation shortly after the completion of S phase, thus BrdU is

a reliable marker for monocytes newly released into blood [20,21].

We have shown that increased BrdU incorporation in monocytes
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with SIV infection is associated with macrophage cell death in

lymph nodes [20]. Increased percentage of BrdU+ monocytes

correlated with AIDS more so than CD4+ T lymphocyte loss or

viral load [20]. In this report, we confirm and extend these

observations in a serial pathogenesis study of monocyte expansion

with emphasis on the severity of SIVE and identification of a plasma

marker of monocyte expansion.

Monocytes have been shown to play a critical role in HIV and

SIV disease pathogenesis [25–29]. The expansion of the number

and/or relative percentage of CD14+CD16+ monocytes correlates

with the incidence of HIV encephalitis (HIVE) and accumulation

of monocyte/macrophages in HIVE lesions correlates with

dementia [25,30,31]. Similarly, our laboratory has shown that

SIV-infected CD8+ T lymphocyte depleted rhesus macaques have

a biphasic increase in the percentage and absolute numbers of

CD14+CD16+ monocytes with viremia and later with the

development of AIDS [32–35]. Whether this is from increased

recruitment of monocytes from bone marrow or recirculation from

tissue sources is not defined.

We hypothesized that increased monocyte production from

bone marrow and traffic into the brain during SIV infection

correlates with rapid development of AIDS and severity of SIVE.

To test this, we examined BrdU+ incorporation of monocytes in a

longitudinal serial-sample pathogenesis study using SIV-infected

CD8+ T lymphocyte depleted rhesus monkeys [36–38]. We show

BrdU+ monocytes are negative for the proliferation marker Ki-67,

consistent with monocytes labeled with BrdU in the marrow that

do not proliferate in the blood. We demonstrate a significant

correlation between the increased percentage of BrdU+ monocytes

in blood at necropsy and the severity of SIV disease. Moreover, we

find within CD8+ T lymphocyte depleted animals the magnitude

of BrdU+ monocytes is equal with the rate of disease progression.

We have identified BrdU+ monocyte/macrophages accumulating

in the CNS perivascular space and SIVE lesions. About 80–90%

of BrdU+ cells are Mac387+ that are not productively infected and

likely representative of recently recruited monocyte/macrophages.

A rare population of CD68+ macrophages are BrdU+ and also

productively infected. These results suggest that an increased

number of monocytes emigrating from the bone marrow occurs

with rapid progression to AIDS and correlates with the severity of

SIVE at necropsy. These data further point to the traffic of BrdU+
cells into the CNS. We did not find a correlation between BrdU+
monocytes in blood and plasma LPS levels, but found a correlation

with soluble CD163 (sCD163) levels in plasma, consistent with

monocyte activation and stimulation of innate immunity [39–45].

Overall these data suggest that increased monocyte production

from bone marrow, traffic to the brain, and overall monocyte

activation play major roles in HIV and SIV neuropathogenesis.

Results

In this pathogenesis study, we utilized seven SIVmac251-

infected rhesus macaques that were depleted of CD8+ T

lymphocytes by three injections of a CD8-specific mouse-human

chimeric antibody (cM-T807) at 6, 8 and 12 days post infection.

Of these, one animal was CD8+ T lymphocyte depleted for 21

days (‘‘transiently’’ depleted) and six for greater than 28 days

(‘‘persistently’’ depleted) (Table 1). Animals were sacrificed upon

the development of AIDS (criteria described in Materials and

Methods). This cohort could be subdivided into slow and rapid

progressors. Of the rapid progressors, five animals were sacrificed

with AIDS (56, 75, 77, 89 and 92 days post infection) and four had

SIV encephalitis (SIVE) (criteria described in Materials and

Methods). Of the two slow progressors, one was sacrificed at 131

Author Summary

Human immunodeficiency virus (HIV) and the closely
related simian immunodeficiency virus (SIV) can infect
monocyte/macrophages, which enter and accumulate in
the brain leading to neuronal dysfunction. Monocyte/
macrophages exit the bone marrow, transit through the
blood and enter the central nervous system (CNS). What
triggers these cells to traffic is undefined, but it occurs in
normal non-infected conditions at a rate that is accelerated
with viral infection. Here, we used 5-bromo-29-deoxyur-
idine (BrdU) injection and incorporation into the DNA of
monocytes prior to their departure from the bone marrow.
We found that the percentage of BrdU+ monocytes
leaving the bone marrow 24 hours after injection in-
creased in animals that rapidly succumbed to AIDS and
correlated with the severity of SIV encephalitis (SIVE).
Differences in BrdU labeled monocytes in slow and rapid
progressors were revealed as early as 8 days and were
consistent by 27 days post infection. Soluble CD163, shed
by activated monocyte/macrophages, directly correlated
with BrdU+ monocyte expansion. Our study provides new
insights into the development of HIV-related CNS disease
and underscores the importance of monocyte/macro-
phage recruitment from the bone marrow as an AIDS
defining event.

Table 1. SIV CD8+ T lymphocyte depleted animals used in the study.

ANIMALS CD8+ T LYMPHOCYTE DEPLETION STATUS SURVIVAL (DPI)/GROUP AVG. PLASMA VIRAL LOAD (LOG 10) (SEM) PATHOLOGY

55-05 Persistently depleted 56/Rapid 7.95 (6.94) Mild SIVE

244-96 Persistently depleted 77/Rapid 8.05 (7.63) Severe SIVE

DB79 Persistently depleted 92/Rapid 7.49 (6.83) Severe SIVE

CM07 Persistently depleted 75/Rapid 7.26 (6.75) Mild SIVE

168-05 Persistently depleted 89/Rapid 8.15 (7.08) AIDS noE

288-07 Persistently depleted 131/Slow 8.06 (7.49) AIDS/CMV

186-05 Transiently depleted Alive/Slow 7.69 (7.01) N/A

Animal numbers, CD8 depletion status, length of survival, grouping, average viral load over the course of infection and pathology at time of death are shown in this
table. Persistently depleted is defined by a CD8 T lymphocyte depletion greater than 28 days. Transiently depleted is defined by a length of CD8 T lymphocyte depletion
less than 21 days. DPI = days post infection, SEM = standard error of the mean, Rapid = rapid progressors, Slow = slow progressors, SIVE = SIV encephalitis, AIDS
noE = animal was sacrificed with AIDS, but did not have SIVE, CMV = cytomegalovirus, N/A = not applicable.
doi:10.1371/journal.ppat.1000842.t001

Monocyte Turnover in SIVE
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days post infection and the other did not develop AIDS and is still

alive (Table 1).

To examine if the rate of monocyte turnover and traffic into the

brain during SIV infection correlates with disease progression, we

performed serial sample of monocytes 24hrs after BrdU injection

at multiple time points. Flow cytometry on whole blood was used

to identify BrdU+ monocytes with the gating strategy defined in

Figure 1. Monocytes were first identified by FSC versus SSC

profiles, and selection of HLA2DR+ cells with exclusion of CD3+,

CD8+, and CD20+ cells. The percentage of BrdU+ monocytes

was calculated from total monocytes: CD14+CD162,

CD14+CD16+ and CD142CD16+ (excluding CD142CD162

cells) (Figure 1). We have previously shown that monocytes in the

bone marrow were BrdU+Ki-67+ [20]. However, in blood we

found that CD14+ monocytes are BrdU+Ki-672 (Figure 1). These

results are consistent with non-proliferating blood monocytes

labeled with BrdU in bone marrow that lose Ki-67 post-

proliferation (within 24–48 hours), when cells are in the blood

[3,46–49]. The CD142CD162 cells, likely comprised of CD34+
hematopoietic stem cells and dendritic cells (DCs), are BrdU+ and

Ki-67+ (Figure 1). These data are consistent with recent reports

[20,21].

BrdU incorporation in monocytes 24hrs post-BrdU injection in

control, uninfected CD8+ T lymphocyte depleted animals showed

that CD8+ T lymphocyte depletion alone did not affect monocyte

turnover (Figure 2A; n = 4). The percentage of BrdU+ monocytes

after CD8+ T lymphocyte depletion was the same as pre-depletion

(approximately 2%). There was no correlation between the

percentage of BrdU+ monocytes and days post CD8+ T

lymphocyte depletion in uninfected animals (r = 0.02427,

P = 0.9289). There was an increase in BrdU+ monocytes in

CD8+ T lymphocyte-depleted infected (Figure 2B–C) versus

uninfected control animals (Figure 2A) and a higher percentage

of BrdU+ monocytes in rapid (Figure 2C) versus slow progressors

(Figure 2B). Differences in the percentage of BrdU+ monocytes

between animals with rapid versus slow progression were evident

as early as 8 and consistent at 27 days post infection (Figure 2B–C).

No correlation was detected between the percentage of BrdU+
monocytes and days post infection in slow progressors (Figure 2B;

r = 20.1464, P = 0.7294). In fact, the percentage of BrdU+
monocytes in these animals was similar to non-infected controls.

There was a dramatic increase in the percentage of BrdU+
monocytes in the rapid progressors and a significant correlation

between the percentage of BrdU+ monocytes and days post

infection (Figure 2C; r = 0.7651, P = 0.0006). At end stage disease,

the percentage of BrdU+ monocytes correlated with the severity of

SIVE (Figure 2C). In rapid progressors, the percentage of BrdU+
cells prior to infection ranged from 0.85%, to 2.77%. This

percentage increased with infection and at necropsy was 6.27% in

an animal with AIDS but no SIVE (AIDS noE), 11.0% in an

animal with mild SIVE, and 23.4% and 31.5% in animals with

severe SIVE (Figure 2C). Thus, the percentage of BrdU+
monocytes correlated with time after infection in rapid progressors

and was increased with severity of SIVE at necropsy (Figure 2C).

To further study if increased monocyte turnover can predict

rapid progression to AIDS, we examined other parameters

previously linked to disease progression including CD4+ T

lymphocyte numbers, CD4+ T lymphocyte turnover, and plasma

Figure 1. Gating strategy for identifying BrdU+ monocytes. In order to identify BrdU+ monocytes after in vivo BrdU injection, we used flow
cytometry on whole blood. We first gated on the monocytes based on their forward (FSC) vs. side scatter (SSC) properties (far left panel), then
excluded HLA-DR negative cells as well as T-lymphocytes using anti-CD3, NK cells using anti-CD8 and B-lymphocytes using anti-CD20 (second panel
from left). Next, we examined monocytes based on their expression of CD14 and CD16 (right top panel). We examined the expression of Ki-67 and
BrdU on monocytes (including CD14+CD162, CD14+CD16+ and CD142CD16+) (bottom right panel). For the purpose of this study, CD142CD162
cells were excluded from all further analyses since this population contains CD34+ hematopoietic stem cells and dendritic cells (bottom left panel).
This gating and data are representative of an infected rapid progressor at day 27 post-infection out of all animals studied.
doi:10.1371/journal.ppat.1000842.g001
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viral load (Figure 3A–D). Using our model of CD8+ T lymphocyte

depletion and SIV infection, plasma viral loads peaked by day 8

and remained high throughout the course of disease, consistent

with persistently depleted animals (Table 1) [32,36]. No

correlation was found between percentage of BrdU+ monocytes

and percentage of BrdU+CD4+ T lymphocytes (P = 0.2845) or

numbers of CD4+ T lymphocytes (P = 0.6641) (Figure 3A and B,

respectively). In addition, there was no correlation between plasma

virus and the percentage of BrdU+ monocytes (P = 0.7880) or

percentage of BrdU+CD4+ T lymphocytes (P = 0.3701) (Figure 3C

and D, respectively). Because the number of CD4+ T cells increase

with CD8+ lymphocyte depletion, the CD4+ numbers are not

comparable to non-CD8 depleted animals [38].

We examined the kinetics of BrdU+ monocyte subsets

(CD14+CD162 and CD14+CD16+) entering and exiting blood

at four time points: pre-infection (9 days before infection), peak

infection (7 days post infection), 26 days post infection, and either 88

days post infection (slow progressors) or 24hrs prior to necropsy

(rapid progressors) (Figure 4A–B and 4C–D). The percentage of

BrdU incorporation was measured at 24hrs and 48hrs and either 96

or 120hrs after a single BrdU injection. First, BrdU incorporation

was examined before SIV infection. In all animals, the percentage of

‘‘classical’’ CD14+CD162 monocytes that were BrdU+ peaked in

blood 48hrs post BrdU (Figure 4A and C; red lines), whereas the

‘‘inflammatory’’ CD14+CD16+ cells that were BrdU+ peaked at

96hrs post BrdU (Figure 4B and D; red lines). This suggests that

CD14+CD16+ cells might arise from CD14+CD162 monocytes in

the blood after leaving the bone marrow or that the majority of the

CD14+CD16+ cells leave the bone marrow later than the

CD14+CD162 cells. Second, the effect of SIV infection on kinetics

of BrdU+ monocyte subsets was examined. In contrast to slow

progressors, a peak in the percentage of BrdU+CD14+CD162

monocytes in rapid progressors appeared at 24hrs post BrdU after

infection (Figure 4C; blue, green, black lines). The percentage of

BrdU+CD14+CD16+ monocytes was increased after infection at

48hrs post BrdU in both slow and rapid progressors (Figures 4B and

D; blue, green, black lines), with a greater increase in the rapid

progressors (Figure 4D). There was no change in any of the

monocyte subsets in the uninfected CD8+ T lymphocyte depleted

animals (data not shown).

Consistent with previous literature describing an increase

of CD14+CD16+ cell numbers in animals with SIVE

[25–27,30,50,51], the absolute number of CD14+CD16+ mono-

cytes was elevated in the rapid progressors (data not shown). There

was no change in the absolute number of CD14+CD16+ monocytes

in the slow progressors throughout infection (data not shown).

Recent studies have shown an association of high plasma LPS

with increased sCD14 thus implicating monocyte activation in

HIV infection [52,53]. Exact correlates between HIV dementia

and plasma LPS were not found [53]. We therefore examined

plasma LPS as a potential stimulus for emigration of monocytes

from the bone marrow. There were no significant differences in

plasma LPS levels between rapid and slow progressors (Figure 5A;

rapid progressors = solid lines, slow progressors = dotted lines) and

no significant correlation between the percentage of BrdU+
monocytes and plasma LPS levels (Figure 5B; r = 20.2040,

P = 0.5038).

To examine whether increased circulating CCL2/monocyte

chemoattractant protein 1 (MCP-1) can result in enhanced

monocyte emigration from bone marrow, plasma CCL2 levels in

Figure 2. Increased percentage of BrdU+ monocytes is
predictive rapid progression to AIDS and severity of SIVE.
(A–C): BrdU was injected prior to (n = 1) and after SIVmac251 infection
(n = 3) and the percentages of BrdU+ monocytes 24hrs after BrdU
injection was determined by flow cytometric analysis. A. In four
uninfected CD8+ T lymphocyte depleted animals, the percentage of
BrdU+ monocytes remained approximately 2% of total monocytes in all
time points. Thus, CD8+ T lymphocyte depletion alone without SIV
infection does not alter monocyte turnover (n = 4). CD8+ T lymphocyte
depleted SIV infected animals were divided into two groups: slow
progressors (B) and rapid progressors (C). B. Monocyte turnover is
unchanged at all points examined after infection in slow progressors
(n = 2). C. The percentages of BrdU+ monocytes increased dramatically
with rapid disease in animals that succumbed to AIDS (n = 5). The
magnitude of BrdU+ incorporation of monocytes at necropsy can

differentiate mild and severe SIVE. Each animal is represented by a
different symbol. Error bars are standard error of the mean.
doi:10.1371/journal.ppat.1000842.g002
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SIV-infected animals were examined (Figure 5C). Plasma CCL2

levels increased at 9 days post infection and then moderately

decreased in all animals, except one slow progressor whose CCL2

concentration returned to pre-infection levels (Figure 5C; rapid

progressors = solid lines, slow progressors = dotted lines). There

was no correlation between the percentages of BrdU+ monocytes

and plasma CCL2 (Figure 5D; r = 0.1049, P = 0.7456). Interest-

ingly, sCD163 did correlate with BrdU incorporation, consistent

with activation of monocyte/macrophages and increased mono-

cyte traffic from the bone marrow (Figure 5E and F) [35,39–

42,45,54,55]. In all animals examined, plasma sCD163 levels

increased by 9 days post infection, the time point when slow and

rapid progressors can be distinguished by differences in the

percentage of BrdU+ monocytes (Figure 5E). At day 20, in slow

progressors sCD163 plasma levels decreased (Figure 5E, dotted

lines), but in rapid progressors sCD163 levels continued to increase

(Figure 5E, solid lines). There was a significant correlation between

the percentage of BrdU+ monocytes and plasma sCD163 levels

(Figure 5F; r = 0.6391, P = 0.02). Thus, sCD163 levels, but not

plasma LPS or CCL2, correlated with the increased percentage of

BrdU+ monocytes in the blood of CD8+ T lymphocyte depleted

SIV-infected macaques.

In a recent study, we showed that higher levels of BrdU+
monocytes in blood were associated with macrophage apoptosis in

lymph nodes [20]. By flow cytometry, we did not find Annexin V+
BrdU+ monocytes suggesting that monocytes were not undergoing

apoptosis in blood (data not shown). Herein, we examined BrdU

labeled cells in the CNS investigating their distribution in the

brains of three animals, two with severe SIVE and one with mild

SIVE (Figure 6). The majority of the BrdU+ cells in all brains were

located within SIVE lesions and in the vasculature (Figure 6A and

B; BrdU: DAB). BrdU+ cells comprised 15.6 and 17.5% of total

cells within SIVE lesions in two rapid progressors with severe

SIVE (Table 2, Figure 6A). In the animal with mild SIVE, similar

percentages of BrdU+ cells were found in lesions, but there were

fewer overall lesions. To determine the identity of the BrdU+ cells,

double immunohistochemistry was performed using antibodies

against CD3 for T cells, GFAP for astrocytes, CD68 for resident

macrophages and Mac387 for recently infiltrated monocyte/

macrophages [56,57]. There was little to no CD3+ T lymphocytes

found in any sections examined (Figure 6C; BrdU: DAB and CD3:

Vector Blue). BrdU+ cells were found in close proximity to

GFAP+ astrocytes, but very few scattered double positive

astrocytes (GFAP+BrdU+) were found (Figure 6D and E; BrdU:

DAB and GFAP: Vector Blue). Approximately 10% of total

BrdU+ cells in SIVE lesions were CD68+ and these BrdU+ cells

comprised between 1.8 and 4.6% of all CD68+ macrophages in

lesions (Figure 6F and G; BrdU: DAB and CD68: Vector Blue and

Figure 3. Percentage of BrdU+ monocytes does not correlate with plasma virus or CD4+ T lymphocyte turnover or numbers. A.
Paired XY values for percentage of BrdU incorporation in CD4+ T lymphocytes and monocytes in all infected animals are plotted. No correlation is
found between the percentage of BrdU+ monocytes and the percentage of BrdU+ CD4+ T lymphocytes (P = 0.2379). B. Paired XY values for
percentage of BrdU incorporation monocytes and CD4+ T lymphocyte counts in all seven infected animals are plotted. No correlation is found
between the percentage of BrdU+ monocytes and CD4+ T cell counts (P = 6641). C. Paired XY values for percentage of monocyte BrdU incorporation
and plasma viral load in all infected animals are plotted. No correlation is found between the percentage of BrdU+ monocytes and plasma viral loads
P = 7880. D. Paired XY values for percentage of BrdU+ CD4+ T cells and plasma virus in all infected animals are plotted. No correlation is found
between the percentage of BrdU+ CD4+ T cells and plasma viral loads P = 0.3701. A Spearman rank test is used for statistics.
doi:10.1371/journal.ppat.1000842.g003
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Table 2). Between 81 to 92% of all BrdU+ cells in SIVE lesions

were Mac387+, representing approximately a third of the total

Mac387+ monocyte/macrophages in lesions (Figure 6H and I;

BrdU: Vector Blue and Mac387: DAB and Table 2). The animal

with mild SIVE had similar percentages of BrdU+Mac387+ and

BrdU+CD68+ cells in lesions as the animals with severe SIVE. In

the brains of control non-infected CD8+ T lymphocyte depleted

animals, few scattered BrdU+ macrophages were detected,

representing normal monocyte traffic (data not shown).

Less than 1% of all BrdU+ cells in SIVE lesions were SIVp28+
and less than 0.2% of all SIVp28+ cells were also BrdU+ (Table 2).

Double positive BrdU and SIVp28 cells are very rare events, thus,

resulting in few productively infected BrdU monocyte/macro-

phages. Immunofluorescence confirmed the presence of numerous

BrdU+ cells in blood vessels (Figure 7A), perivascular cuffs

(Figure 7A), and SIVE lesions (Figure 7B–D) and showed that

the majority of the BrdU+ cells were Mac387+ cells (Figure 7C;

BrdU: Vector Blue and Mac387: DAB) that were not productively

infected. Immunofluorescence was used to identify that the

productively SIV infected BrdU+ cells were CD68+ macrophages

(Figure 7A–B and 7D; white arrow). Thus, the majority of the

BrdU+ cells in the brain were Mac387+ that were not productively

infected, representing monocyte/macrophages that were labeled

with BrdU in the bone marrow and had recently trafficked to the

brain (likely from the last two BrdU pulses). These data are

consistent with Mac387 as one of the earliest differentiation

markers expressed on monocyte/macrophages as they enter tissues

[56,57].

Discussion

Here we have presented data showing that increased monocyte

turnover is predictive of rapid development of AIDS. We have

demonstrated that an increased percentage of BrdU+ monocytes

in blood correlated with the severity of SIVE at necropsy.

Interestingly, the differences in the percentage of BrdU+
monocytes were apparent by 8 days post infection and

differentiated between slow and rapid progression by 27 days

post infection. This data lends support to the importance of early

monocyte activation and deregulation in AIDS pathogenesis.

Furthermore, sCD163 levels, but not plasma LPS or CCL2,

correlated with increased percentages of BrdU+ monocytes in the

blood of SIV-infected macaques. In addition, we showed a

differential rate of turnover in two major monocyte populations

(CD14+CD162 and CD14+CD16+) and the acceleration of their

turnover in rapid progressors. BrdU+ cells were detected in the

brains of animals with SIVE; the majority of these cells were

Mac387+ that were SIV p282 and a minor population of CD68+
macrophages, few of which were productively infected. The data

presented here underscore the importance of increased monocyte

turnover and traffic to the brain during SIVE, and emphasize in

this model that CNS lesion formation is an active process requiring

monocyte/macrophage recruitment, likely a result of enhanced

innate immune responses [27,35].

These data confirm and extend the observations recently

reported by Hasegawa and colleagues, who examined BrdU

incorporation in animals at different stages of SIV infection and

Figure 4. Monocyte subsets leave the bone marrow at different rates that are accelerated in animals that develop SIVE. BrdU was
injected four times over the course of the study. Red = pre-infection (days 210 days post infection (dpi)), Blue = peak infection (7 dpi),
Green = ‘‘asymptomatic’’ period (26 dpi) and Black = 88 dpi (slow progressors = A–B) or necropsy (rapid progressors = C–D). BrdU injections were
given at 24hrs before necropsy. The percentage of BrdU+ monocytes in each subset was determined 24hr and 48hr and either 96 or 120 hrs after
BrdU injection (Time: 0 hr). (A–B) Dots represent the averages of the percentage of BrdU+ cells in the subsets of slow progressors that remained
asymptomatic throughout the period examined. A. There is no change in the percentage of BrdU+ CD14+CD162 cells between pre- and post-
infection time points. B. There is a slight increase in the percentage of BrdU+ CD14+CD16+cells after infection that is apparent at 48hrs. (C–D) Dots
are averages from two rapid progressors (244-96 and 55-05). The percentage of BrdU+ monocytes was only examined 24hrs after BrdU pulse for
animals, DB79 and CM07. C. The difference in the percentage of BrdU+CD14+CD162 cells between pre- and post-infection is apparent at 24hrs. D.
The difference in the percentage of BrdU+ CD14+CD16+cells between pre- and post-infection occurs at 48hrs. The error in all graphs is the standard
error of the mean.
doi:10.1371/journal.ppat.1000842.g004
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found an increase in the percentage of BrdU+ monocytes with

acute and chronic infection and a greater expansion with AIDS

[20]. Our results are consistent with that finding, but add the

observation that increased BrdU incorporation in monocytes

correlates with the severity of SIVE and can distinguish between

slow and rapid progressors.

We have presented evidence that increased monocyte traffic

from bone marrow into the circulation correlates with the rapid

progression to AIDS and severity of SIVE. BrdU+ monocytes

traffic from bone marrow through the circulation into the brain,

fostering the development of AIDS and SIVE. An increase in

monocyte traffic in uninfected animals or slow progressors was not

found. These data underscore the important role of monocyte

activation and augmented traffic from the bone marrow to the

brain in SIV neuropathogenesis. Bone marrow diffusion has been

reported to correlate with the incidence of HIV dementia [58].

Additionally, anemia before the onset of AIDS is predictive of

HIV neuropathogenesis [35,58]. It has been demonstrated in SIV

infected monkeys that rapid disease progression is the best

correlate with the development of SIVE [59]. Our data support

these observations and extend these to include that the rate of

monocyte turnover, demonstrated by the percentage of BrdU+

Figure 5. sCD163 levels in plasma, but not LPS or CCL2, correlates with percentage of BrdU+ in total monocytes. A. LPS plasma levels
in the individual SIV infected animals after infection are shown. Solid lines are plasma LPS levels in rapid progressors. Dashed lines are plasma LPS
levels in slow progressors. B. There is no correlation between plasma LPS levels with the percentage of BrdU+ monocytes. C. CCL2/MCP-1 plasma
levels in individual SIV infected animals after infection are shown. The solid lines represent plasma CCL2/MCP-1 levels in rapid progressors. The
dashed lines represent plasma CCL2/MCP-1 levels in slow progressors. D. There is no correlation between plasma CCL2/MCP-1 and the percentage of
BrdU+ monocytes. E. sCD163 plasma levels in individual SIV infected animals after infection are shown. Solid lines are sCD163 plasma in rapid
progressors. Dashed lines are sCD163 plasma in slow progressors. F. There is a significant correlation between sCD163 plasma levels and percentage
of BrdU+ monocytes. The Spearman rank test is used.
doi:10.1371/journal.ppat.1000842.g005
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monocytes, correlates with the rapid development of AIDS and

the severity of SIVE.

The CD8 depletion, SIV infection model produces rapid AIDS

with a high incidence of SIVE by depleting cytotoxic T

lymphocytes. Using this model, there were both slow and rapid

disease progressing animals with varying degrees of severity of

SIVE that correlated with the percentage of BrdU+ monocytes.

However, CD4+ T lymphocytes, which are linked to CD8+ T

lymphocytes, are not regulated in a normal fashion due to

depletion of CD8+ T lymphocytes [38], a possible reason for the

lack of a correlation between CD4+ T lymphocytes with BrdU+
monocytes in our study. However, in a previous report using non-

CD8 depleted SIV infected monkeys, high monocyte turnover also

did not correlate with CD4+T cell number or plasma viral load

[20].

We found that the percentage of BrdU+ monocytes does not

correlate with LPS or CCL2 levels in plasma, but interestingly

sCD163 did; this is consistent with the notion that activation of

monocyte/macrophages and the increase of monocyte traffic from

the bone marrow drive CNS pathogenesis [39,40]. Previous in

vivo and in vitro studies have shown that CD163 expression on

monocytes inversely correlated with sCD163 in plasma or tissue

culture media directly linking sCD163 to monocyte activation

[39,45,55]. In vitro studies show picogram levels of LPS results in

sCD163 release from monocytes, underscoring the role of innate

immune responses in AIDS pathogenesis [45]. In addition, the

level of sCD163 has been shown to increase in association with

macrophage mediated diseases, including sepsis [40] and Gau-

cher’s disease [60], characterized by macrophage accumulation in

the liver and spleen [60]. Thus, increased traffic of monocytes

Figure 6. Histopathologic studies showed evidence of BrdU+ cells, the majority of which are Mac387+, in the brains of macaques
with SIVE. A–B: Immunohistochemistry with an antibody against BrdU is utilized in brain sections of rapid progressors. A: BrdU+ cells are present in
and around SIVE lesions (BrdU: DAB, brown) B: BrdU+ cells are seen in and around the vasculature (BrdU: DAB, brown) C: Immunohistochemistry with
antibodies against CD3 (Vector Blue, blue) and BrdU (DAB, brown) is utilized in brain sections of rapid progressors to examine if BrdU+ cells are CD4+
T lymphocytes. No double label BrdU+ and CD3+ cells are found in the brains of SIVE+ macaques. D and E: Immunohistochemistry with antibodies
against GFAP (Vector Blue, blue) and BrdU (DAB, brown) is utilized in brain sections of rapid progressors to examine if BrdU+ cells are astrocytes.
There are very few BrdU+ astrocytes seen in all sections examined. The arrow points to a BrdU+ in a vessel surrounded by astrocyte foot processes.
The asterisk points out a BrdU+ cells in close proximity to GFAP+ astrocytes. F and G: Immunohistochemistry with antibodies against CD68 (DAB,
brown) and BrdU (Vector Blue, blue) is utilized in brain sections of rapid progressors to examine if BrdU+ cells were CD68+ mature macrophages. Few
BrdU+CD68+ cells are seen. H and I: Double staining with antibodies against BrdU (Vector Blue, blue) and Mac387 (DAB, brown) is utilized to
determine if BrdU+ cells in the brain are early monocyte/macrophage infiltrates. BrdU and Mac387 did co-localization in the brain of SIVE animals. The
arrows indicate BrdU+Mac387+ monocyte/macrophages, in a lesion (H) or perivascular region (I). The asterisk is a Mac387 BrdU- cell in the
vasculature. Brain sections are representative of three SIVE+ animals examined for all stains.
doi:10.1371/journal.ppat.1000842.g006
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from the bone marrow (increased BrdU+ monocytes in the

circulation) and increased levels of sCD163 in the plasma are

consistent with an inflammatory environment resulting from

stimulation of innate immunity that may play important roles in

the development of SIVE.

Release of monocytes from the bone marrow could be triggered

by increased apoptosis of monocytes in the blood. Although

CD3+CD4+ T cells from HIV-1 subjects have been shown to

undergo constitutive and induced apoptosis [61], HIV-1+ monocytes

are resistant [61]. Recently, it was demonstrated that peripheral

blood monocytes from chronically HIV-1 infected individuals have a

stable anti-apoptotic gene signature suggesting a greater resistance to

apoptosis in circulating monocytes during HIV infection [61]. In this

study, pro-apoptotic genes were down-regulated and anti-apoptotic

genes were up-regulated in infected monocytes [61]. When we

examined whole blood by flow cytometry for the presence of

apoptotic monocytes, we did not detect monocytes that were

Annexin V and propidium iodide (PI) positive 24hrs after BrdU

injection (data not shown). Thus, we could rule out apoptosis of

peripheral blood monocytes as a trigger for the increased release of

monocytes from the bone marrow. Apoptosis of tissue macrophages

in lymph nodes has already been demonstrated to correlate with the

percentage of BrdU monocyte label in blood [20].

A report by Serbina and Pamer suggested that monocyte

emigration from bone marrow during bacterial infection requires

signals mediated by the chemokine receptor CCR2 [62]. Using a

Ccr22/2 mouse model, it was found that CCR2 is important for

release of Ly6Chi monocytes (equivalent to the CD14+CD162

monocytes in humans) from bone marrow [62]. A more recent

paper concluded that not only CCL2, but also CCL7 (MCP-3) was

critical in monocyte mobilization from the bone marrow [63]. We

did not see a correlation between CCL2 plasma levels and the

percentage of BrdU+ monocytes, but that does not rule out the

involvement of CCR2 and additional ligands. In addition, the

chemokine CXCL12 (SDF-1) and its receptor CXCR4 are known

to be involved in the retention of hematopoietic stem cells in the

bone marrow [64,65]. The roles of these additional factors are

worthy of exploration in the SIV model of disease and may lead to

further insight into the increased release of monocytes from the

bone marrow during AIDS and SIVE progression.

Not only did we find differences in the percent of BrdU+ total

monocytes between slow and rapid progressors, but we found

kinetic differences in BrdU incorporation of two monocyte subsets,

CD14+CD162 and CD14+CD16+ entering the blood from the

bone marrow. In the rapid progressors, the percentage of BrdU

incorporation was increased dramatically with infection in both

populations. The CD14+CD162 (CCR2+) monocyte population

may have accelerated release due to increased levels of MCP-3, as

discussed above. The CD14+CD16+ monocyte blood population

has been shown to be phenotypically similar to perivascular

macrophages in the brain, which supports the concept that the

CD14+CD16+ monocytes transmigrate into the brain to differ-

entiate further into perivascular macrophages [25,33]. Our data

suggests that although CD14+CD16+ cells leave the bone marrow

later than CD14+CD162 cells, the CD14+CD16+ cells spend less

time in the circulation, possibly a result of traffic to tissues. This

likelihood is supported by the finding that CD14+CD16+
monocytes are inflammatory mediators expressing high levels of

pro-inflammatory cytokines and are potent antigen presenting

cells. We have not ruled out the possibility that CD14+CD162

monocytes convert to CD14+CD16+ monocytes in blood [66].

The overall number of brain macrophages in HIVE and SIVE

is increased despite evidence of proliferation in situ, supported by

the notion that the majority of these macrophages are derived

from the periphery [25,34]. Here, we present evidence that newly

infiltrated BrdU+ monocyte/macrophages are a significant

population of monocyte/macrophages in perivascular cuffs and

lesions in brains of SIVE+ animals. Recruited monocytes may

increase the number of viral target cells in the brain. Most of the

BrdU+ cells were Mac387+ cells representing newly recruited and

infiltrated monocytes/macrophages [56,57]. It is not known how

long the BrdU+Mac387+ cells stay in the CNS with lesion

formation nor at which BrdU pulse these cells were labeled in the

periphery. This might, in part, explain why CD68+BrdU+ cells

are found in the CNS; they might have trafficked earlier as less

mature cells and undergone maturation within tissues. Addition-

ally, the CD68+ BrdU+ cells could have migrated directly from

the blood, thus bringing HIV into the CNS. Lastly, they may

represent macrophages that divided in the CNS, although we

believe this in unlikely since we found little evidence of BrdU+
microglia, astrocytes or epithelial cells in our studies. We have

previously shown using specific markers for cell proliferation,

including Ki-67 and topoisomerase II alpha, that macrophages

within SIVE lesions were not undergoing significant active

proliferation in the time frame studied [34].

Increased monocyte turnover correlated with high levels of

sCD163 in plasma. These findings along with potential anti-

inflammatory properties of sCD163 [44], which is directly shed

from the M2 anti-inflammatory alternative activated macrophages

[39,67], suggest that BrdU+ cells recruited to the CNS may aid in

Table 2. Percentages of BrdU+, Mac387+, CD68+ and
SIVp28+ cells in SIVE lesions.

Animal 244-96 Animal DB79

BrdU+ cells vs. all cells# 15.661.5; n = 34 17.561.7; n = 19

BrdU+Mac387+ cells vs. all BrdU+ cells* 81.067.8; n = 14 92.264.7; n = 11

BrdU+CD68+ cells vs. all BrdU+ cells** 9.863.0; n = 31 10.767.6; n = 5

BrdU+SIVp28+ cells vs. all BrdU+ cells*** 0.7860.39; n = 27 0.4860.48; n = 14

BrdU+Mac387+ cells vs. all Mac387+ cells{ 34.064.9; n = 14 45.368.3; n = 11

BrdU+CD68+ cells vs. all CD68+ cells{{ 1.860.5; n = 31 4.663.9; n = 5

BrdU+SIVp28+ cells vs. all SIVp28+ cells{{{ 0.1260.062; n = 27 0.1960.19; n = 14

#Mean6SEM (standard error of the mean) of the percentage of BrdU+ cells in
SIVE lesions calculated as followed; (number of BrdU+ cells/total number of
cells in lesions using hematoxylin) 6100.

*Mean6SEM of the percentage of BrdU+ cells expressing Mac387 in SIVE lesions
calculated as followed; (number of BrdU+Mac387+ cells/total number of BrdU+
cells) 6100.
**Mean6SEM of the percentage of BrdU+ cells expressing CD68 in SIVE lesions
calculated as followed; (number of BrdU+CD68+ cells/total number of BrdU+
cells) 6100.
***Mean6SEM of the percentage of BrdU+ cells expressing SIVp28 in SIVE
lesions calculated as followed; (number of BrdU+SIVp28+ cells/total number of
BrdU+ cells) 6100.
{Mean6SEM of the percentage of Mac387+ cells expressing BrdU in SIVE lesions
calculated as followed; (number of BrdU+Mac387+ cells/total number of
Mac387+ cells) 6100.
{{Mean6SEM of the percentage of CD68+ cells expressing BrdU in SIVE lesions

calculated as followed; (number of BrdU+CD68+ cells/total number of CD68+
cells) 6100.

{{{Mean6SEM of the percentage of SIVp28+ cells expressing BrdU in SIVE
lesions calculated as followed; (number of BrdU+SIVp28+ cells/total number
of SIVp28+ cells) 6100.

n = number of total lesions examined. For 244-96 frontal cortex, prefrontal
cortex and basal nuclei and for DB79 frontal cortex and occipital cortex sections
were examined. The mild SIVE animal, 55-05, had similar percentages of BrdU+
cells, BrdU+Mac387+ and BrdU+CD68+ cells in lesions compared to DB79 and
244-96, but there were fewer lesions overall.
doi:10.1371/journal.ppat.1000842.t002
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lesion resolution. Monocyte/macrophages may traffic to the brain

as inflammatory cells in response to or causing neuronal injury or

as anti-inflammatory vehicles to minimize injury to the brain

during SIV infection.

Although we detected very few SIVp28+ BrdU+ cells in SIVE

brains, this does not rule out the possibility that the BrdU+ cells

are not latently infected. In fact, our data suggests BrdU+ cells

may act as viral reservoirs that may with maturation actively

replicate virus. Our finding that only the BrdU+CD68+
monocytes are productively infected underscores the importance

of monocyte/macrophage maturation (possibly Mac387 to CD68

expression) for active viral replication. Invasion of the CNS by

BrdU+Mac387+ perivascular macrophages with concomitant viral

infection of the CNS compartment upon maturation is a likely

scenario for this. Overall, our data examining BrdU+ monocytes

in blood and BrdU+ monocyte/macrophages with the brain,

underscore the role of monocyte/macrophages derived from bone

marrow in AIDS pathogenesis and CNS disease.

Materials and Methods

Ethics statement
All animals were handled in strict accordance with good animal

practice as defined by the Harvard University’s Institutional

Animal Care and Use Committee, and all animal work was

approved by this committee.

Animals, viral infection and CD8+ T lymphocyte
depletion

Eleven rhesus macaques were utilized in this study. Seven

animals were infected with SIVmac251 (20 ng of SIV p27) by

intravenous injection, kindly provided by Ronald Desrosiers. In

order to achieve rapid disease progression with high incidence of

SIVE, animals were CD8+ T lymphocyte depleted by treatment

with a human anti-CD8 antibody cM-T807 administered s.c.

(10mg/kg) at 6 days post infection and i.v. (5mg/kg) at 8 and 12

days post infection (previously described [32]). Four uninfected

Figure 7. The majority of BrdU+ monocyte/macrophages in the brain are not productively infected. Triple label with antibodies against
BrdU (red), SIV p28 (green), CD68 (blue) is used to determine if BrdU+ cells are productively infected. Side panels are single-color images of SIVp28
(green), BrdU (red), CD68 (blue) and differential interference contrast (DIC). A: BrdU+ (red) cells in blood vessels and a BrdU+ cell infiltrated in the
brain B–D: Multiple BrdU+ cells are detected in and around SIVE lesion. B: BrdU+ cells are seen in and around this SIVE lesion; the majority BrdU+ cells
are SIV p282 and thus not productively infected. C: The majority of the BrdU+ cells in lesions are Mac387+. Double label with antibodies against BrdU
(blue) and Mac387 (brown) in an SIVE lesion is shown. D: An SIVE lesion in the brain of a rapid progressor showing a rare triple positive cell: SIV-
infected CD68+BrdU+ macrophage (white arrow). Data presented here are representative of n = 3 macaques with SIVE. Multiple tissue sections from
different brain regions were examined.
doi:10.1371/journal.ppat.1000842.g007
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animals were used as controls: two were CD8+ T lymphocyte

depleted by treatment with a human anti-CD8 antibody cM-T807

administered once (50mg/kg) i.v. and two were CD8+ T

lymphocyte depleted by treatment with a rhesus anti-CD8

antibody cM-T807 administered once (50mg/kg) i.v. These

antibodies were provided by the NIH Non-human Primate

Reagent Resource (RR016001, AI040101). CD8+ T lymphocyte

depletion was monitored by flow cytometry prior to antibody

treatment and weekly thereafter during infection (as previously

described [32]). All animals were housed at Harvard University’s

New England Regional Primate Research Center in accordance

with standards of the American Association for Accreditation of

Laboratory Animal Care. Animals were anesthetized with

ketamine-HCl and euthanized by an intravenous pentobarbital

overdose and exsanguinated. Animals were sacrificed with any of

the following 5 criteria: 1. weight loss .15% body weight in 2

weeks or .30% body weight in 2 months, 2. documented

opportunistic infection, 3. persistent anorexia .3 days without

explicable cause, 4. severe intractable diarrhea, progressive

neurological signs or 5. significant cardiac and/or pulmonary

signs. The diagnosis of AIDS was determined by the presence of

AIDS defining lesions: Pneumocystis pneumonia, Mycobacterium

avium infection (most commonly small intestine, liver and

mesenteric lymph node), intestinal adenovirus infection (most

common in small intestine). Other, less common lesions include

SIV giant cell disease in the lung, gut, and lymph nodes and SIV

associated arteriopathy. SIV encephalitis (SIVE) was defined by

the presence of multinucleated giant cells (MNGC) and accumu-

lation of macrophages, some of which are infected [59,68–70]. No

animals with opportunistic infections in the CNS were used in this

study.

Viral load determination
Plasma SIV RNA was quantified using real-time PCR as

previously described [71]. SIV virions were pelleted from 0.5ml

EDTA plasma by centrifugation at 20,000 g for 1 hour. The

fluorescently labeled, real-time PCR probe employed contained a

non-fluorescent quencher, BHQ-1, at its 39 end. The threshold

sensitivity was 100 copy Eq/ml, with an average interassay

coefficient of variation of less than 25%.

BrdU administration
A 30 mg/ml stock of solution was prepared by adding 5-bromo-

29-deoxyuridine (BrdU) (Sigma) to 16 PBS (without Ca2+ and

Mg2+), U.S.P. grade (Aestus Pharmaceuticals) and heated to 60uC
in water bath (as previously described [20,24]). BrdU was

administered as a slow bolus i.v. injection at a dose of 60 mg

BrdU/kg body weight. In the uninfected animals, BrdU was given

four times throughout the study (days 211, 3, 38 and 72 days post-

CD8 antibody administration). In the infected animals, BrdU was

administered pre-infection (day 29), peak infection (day 7), and

days 26, day 50 (n = 1) and 88 (n = 2) post infection and 24 hours

prior to necropsy (n = 4; days 55, 76, 88 and 91). CM07 did not

receive BrdU prior to necropsy.

Flow cytometry
Flow cytometric analyses were performed with 100 ml aliquots

of EDTA-coagulated whole blood. Erythrocytes were lysed using

ImmunoPrep Reagent System (Beckman Coulter), washed twice

with PBS containing 2% FBS, then incubated for 15 minutes at

room temperature with fluorochrome-conjugated surface antibod-

ies including anti-HLA-DR-PerCp-Cy5.5 (clone L243), anti-

CD16-PE-Cy7 (clone 3G8; BD Biosciences), anti-CD3-APC (clone

SP34-2), anti-CD8-APC (clone RPA-T8;), anti-CD20-APC (clone

2H7) and anti-CD14-Pacific blue (clone M5E2) (BD Biosciences).

For intracellular staining, cells were fixed and permeabilized with

BD Cytofix/CytopermTM buffer (BD Biosciences) for 30 mins at

room temperature. Cells were again washed and incubated with

BD Cytoperm PlusTM buffer for 10 mins on ice, then washed and

incubated with DNase (30mg) for 1hr at 37uC, washed and then

stained for intracellular antigen with anti-BrdU-FITC (clone 3D4;

BD Biosciences) and anti-Ki-67-PE (clone B56; BD Biosciences)

for 20 mins at room temperature. For controls, BrdU naı̈ve

animals and isotype controls were used. To test for apoptotic

monocytes anti-Annexin V (Invitrogen) and propidium iodine (PI;

BD Biosciences) were used. Samples were acquired on a BD FACS

Aria (BD Biosciences) and analyzed with Tree Star Flow Jo version

8.7.

sCD163 and CCL2 ELISAs and LAL assay
Soluble CD163 (sCD163) and CCL2 plasma levels were

quantified by ELISA according to manufacturer’s protocol

(Trillium Diagnostics and R&D Systems, respectively). The

Diazo-coupled Limulus amebocyte lysate (LAL) assay (Associates

of Cape Cod Inc.) was used to quantify endotoxin/liposaccharide

(LPS) levels in plasma from SIV-infected animals, according to the

manufacturer’s protocol. Briefly, samples diluted 1/5 were

inactivated for 30 min at 65uC and incubated with LAL for

30 min at 37uC. Addition of reagents led to formation of a

magenta derivative that absorbs light at 570 nm. For LAL assay,

samples were handled with non-pyrogenic plastic or glassware to

avoid LPS contamination.

Immunohistochemistry
Formalin-fixed, paraffin-embedded brain tissues were depar-

affinized and assessed by immunohistochemistry for BrdU (Mouse

IgG1; Dako, 1:50, 1hr room temperature. Before primary

antibody incubation, non-serum protein block was applied. The

EnVision+ System- horseradish peroxidase (HRP) (EnVision+ Kit;

DAKO) was used according to the manufacturers’ instructions.

The color reaction product was developed using 3,39-diamino-

benzidine tetrahydrochloride (DAB; DAKO) as the chromogenic

substrate for HRP. The sections were counterstained with

hematoxylin and then dehydrated and mounted. Controls

consisted of the addition of isotype-matched immunoglobulin.

To detect BrdU+ cells and CD3+ T lymphocytes, GFAP+
astrocytes, SIVp28+ infected cells, CD68+ macrophages and

Mac387+ monocyte/macrophages in monkey brains, double-label

immunohistochemistry was performed using the DAKO Double

Stain System, according to the manufacturer’s instructions. The

color reaction product was developed using DAB and Vector Blue

(Vector Laboratories). Sections were visualized under a Zeiss Axio

Imager M1 microscope (Carl Zeiss MicroImaging, Inc., Thorn-

wood, NY) using Plan-Apochromat 620/0.8 and 640/0.95 Korr

objectives.

Confocal microscopy
Tissues were collected in 10% neutral buffered formalin, and

embedded in paraffin. Tissues were sectioned at 6 mm and

deparaffinized with xylene and hydrated in graded alcohols.

Immunohistochemical staining followed a basic protocol using a

citrate antigen retrieval method. For immunofluorescence, sections

were blocked with 10% normal goat serum (NGS) in PBS with

0.2% Fish Skin Gelatin (FSG) (Sigma) for 40 min. Tissues were

incubated with rat anti-BrdU (IgG2a; BU1/75, Novus Biologicals,

1:50, 1hr RT) followed by AlexaFluor 568 conjugated goat anti-rat

IgG (Molecular Probes; 1:500), then with mouse anti-SIV p28

(IgG1; Microbix Biosystems, 1:500) followed by AlexaFluor 488
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conjugated goat anti-mouse IgG1 (Molecular Probes; 1:500) and

then CD68-biotin conjugated (1:20, overnight at 4uC) followed by

streptavidin conjugated AlexaFluor 568 (Molecular Probes; 1:500).

After immunofluorescence labeling and washing, sections were

treated with 50 mmol/L CuSO4 ammonium buffer for 45 min-

utes to quench auto-fluorescence. Confocal microscopy was

performed using a Leica TCS SP2 laser-scanning microscope

equipped with 3 lasers (Leica Microsystems, Exton, PA).

Individual optical slices represent 0.2 mm. Optical slices were

collected at 5126512 pixel resolution. The fluorescence of

individual fluorochromes was captured separately in a sequential

mode, after optimization to reduce bleed-through between

channels (photomultiplier tubes) using Leica software. NIH Image

v1.62 and Adobe Photoshop v7 software were used to assign

correct colors of up to four channels collected (3 fluorochromes:

Alexa 488 (green), Cy3, Alexa 568 (red), and Alexa 647 (far red),

and the differential interference contrast image (gray scale).

Statistical analysis
For statistical analyses we used the Prism version 5.0a

(GraphPad Software, Inc., San Diego, CA) software. Spearman

rank test was used for all correlations.
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