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The process of translation initiation in prokaryotes is mediated by the hybridization of the 16S rRNA of
the small ribosomal subunit with the mRNA in a short region called the ribosomal binding site. However,
translation initiation in chloroplasts, which have evolved from an ancestral bacterium, is not well under-
stood. Some studies suggest that in many cases it differs from translation initiation in bacteria and
involves various novel interactions of the mRNA structures with intracellular factors; however currently,
there is no generic quantitative model related to these aspects in chloroplasts.
We developed a novel computational pipeline and models that can be used for understanding and

modeling translation regulation in chloroplasts. We demonstrate that local folding and co-folding energy
of the rRNA and the mRNA correlates with codon usage estimators of expression levels (r = �0.63) and
infer predictive models that connect these energies and codon usage to protein levels (with correlation
up to 0.71). In addition, we demonstrate that the ends of the transcripts in chloroplasts are populated
with various structural elements that may be functional. Furthermore, we report a database of 166 novel
structures in the chloroplast transcripts that are predicted to be functional.
We believe that the models reported here improve existing understandings of genomic evolution and

the biophysics of translation in chloroplasts; as such, they can aid gene expression engineering in chloro-
plasts for various biotechnological objectives.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Chloroplasts are intracellular organelles in plants that are
responsible for photosynthesis and carbon fixation; they were gen-
erated by an endosymbiosis process in which a eubacterium was
engulfed by a common eukaryotic ancestor [1-4]. Chloroplasts con-
tain their own genetic system with a circular double-stranded DNA
molecule [5,6]. Some endosymbiont genes were lost, while others
were transferred into the host genome as a result of coevolution
between the host and the endosymbiont; this led to a significantly
smaller chloroplast genome with asize of approximately 120–
160 kb and containing and average of 120 genes, most of which
encode essential components of the photosynthesis machinery
and are therefore essential for chloroplast viability. The size, struc-
ture, and genetic content of chloroplast genomes of land plants
appear to be relatively conserved. It is reported that �80% of the
genes present in chloroplast genomes of land plants and the most
ancient algae, which is a green algae species (Mesostigma viride),
are shared; this indicates that both gene content and gene order -
are generally conserved in chloroplast genomes throughout evolu-
tion [7,8]. The majority of chloroplast translation studies have been
carried out on land plants (‘green’ phylogenetic lineages, e.g.,
tobacco, maize, spinach, and barley), as well as on chlorophytes
(green algae, e.g., Chlamydomonas reinhardtii), and on Euglena gra-
cilis which is not a chlorophyte but a member of the euglenoid
algae. However, little is known about the mechanisms of chloro-
plast translation that developed in other algal lineages due to evo-
lution and diversification over the past 1–2 billion years.

The chloroplast’s translational machinery is most closely
related to that of eubacteria, but there are some similarities with
the nuclear-cytosolic system of eukaryotes [4]. A highly similar
composition of the translation machinery between chloroplasts
and bacteria indicates the bacterial origin of the chloroplast gene
expression mechanism. Chloroplast translation is performed by
prokaryotic-type 70S ribosomes, which consist of a small 30S and
a large 50S subunits composed of orthologs of Escherichia coli’s
(E. coli) reference ribosome rRNAs and proteins [9]. Over the years,
the similarity between the translation initiation of prokaryotes and
chloroplasts was questioned, and the search for differences
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between the two mechanisms’ features has attracted attention. In
all systems studied to date, the translation initiation in chloro-
plasts starts when a complex consisting of the 30S subunit of the
ribosome and the initiator tRNA (N formylmethionine), called the
preinitiation complex, binds the initiation site in the mRNA [9].
Three protein initiation factors (IF), IF1, IF2, and IF3, which were
found as an ortholog of the bacterial IFs, control and accurate ini-
tiation process steps [10].

The translation initiation model in prokaryotes can be described
by the Shine–Dalgarno (SD) mechanism. According to this model,
the 30S subunit of the ribosome binds the mRNA through base-
pairing between the SD sequence (another name for the ribosomal
binding site) of the mRNA, which is located upstream of the start
codon, and the anti-SD (aSD), a conserved sequence found at the
30-edge of the 16S rRNA of the small subunit of the ribosome
[11]. The role of the SD motif in chloroplasts has raised questions
and was a source of great research. According to research done in
this field to answer these questions, it was found out that there
does not seem to be any obvious signal indicating conserved
sequences in the SD position in chloroplast mRNA. However, the
16S aSD sequence is highly conserved across chloroplasts [12]. It
was discovered that 38% (30 out of 79) of tobacco chloroplasts
genes contain no SD-like sequences within 20 nucleotides (nt)
upstream from the start codon, and 14% of the genes have the
SD-like sequence but not in the expected positions of �18 to
�16 upstream of the start codon, therefore there are only 48%
genes with SD-like sequence in the expected positions at the 50

UTRs of their mRNAs [13]. Several studies tried to investigate the
role of the SD-aSD interaction in C. reinhardtii, Euglena, and tobacco
chloroplast genes by site-directed replacement mutations or dele-
tion of the SD-like sequences and revealed that some genes require
SD-like sequence for translation while others do not. More specif-
ically, in some genes, the altered SD positions had little or no effect
on their translation in vivo, genes such as petD [14], atpB, atpE,
rps4, rps7 [15] (C. reinhardtii), and rbcL (Euglena) [16], while other
genes rpl2 and rpls16 (tobacco) do not even have such sequences
[13]. On the other hand, the altered SD positions had a negative
effect on the translation of genes such as psbA [17], psbD, psbC (C.
reinhardtii) [18], atpH (Euglena) [19], rps14 (tobacco) [20], indicat-
ing that this SD-like element has a positive role in their translation
initiation. It has been suggested that the requirement for SD-like
sequences may be more important for the translation of highly
expressed mRNAs in C. reinhardtii [4,18]. The lack of an absolute
requirement for the SD-like sequences of several mRNAs indicates
that other cis-acting elements recruit ribosomes to the start codon
position.

Previous research has also shown that chloroplast ribosomal
RNA and ribosomal proteins differ from those of E. coli; the ratio
between ribosomal proteins and rRNA significantly shifted during
evolution, favoring ribosomal proteins, which led to modifications
in the rRNA domains. As a result, ribosomal proteins in chloro-
plasts interact differently with rRNAs or other ribosomal proteins
and perform structural changes that compensate for altered rRNA
domains. These ribosomal changes may result in new contact sites
with the mRNA molecule and therefore are hypothesized to affect
translational regulation [12,21,22]. Additionally, it was discovered
that point mutations are leading to changes in the local structure of
ribosomal RNA in chloroplasts; these mutations create signifi-
cantly folded structures in the positions of the a-SD, which reduce
the probability of ribosomes binding to the mRNA [12].

It was discovered that there are protein factors (trans-acting
factors) that mediate translation initiation by interacting with
the mRNA sequence or secondary structures at the 50UTR located
in cis, typically upstream of the reading frame in the mRNA. These
factors are gene-specific, and were discovered for specific chloro-
plast genomes, tables including information regarding some of
2522
these protein factors can be found [9,23,24]. Some specific cis-
elements controlling the translation of individual genes in a partic-
ular chloroplast genome were studied and discovered [9]; how-
ever, the molecular function of RNA cis-elements and
proteinaceous trans-factors in the regulation of chloroplast transla-
tion, in general, is mostly unknown. In addition to primary
sequence elements, features of mRNA 2D or 3D structures (or lack
of structure) can represent cis-elements that influence the transla-
tion process [47]; there are some chloroplast genes, for example,
with mRNA molecules that have a secondary structure that reveals
the ribosomal binding site or the start codon that triggers the
translation initiation [26].

Today, there are various pieces of evidence regarding the nature
of translation initiation in chloroplasts; however, there is no uni-
fied model that can predict translation initiation in chloroplasts.
The current study aims to develop such a generic quantitative
model.
2. Results

The flow diagram of the study is described in Fig. 1 (all details
are in the Materials and Methods section). The analyzed database
includes the genome of 4,306 chloroplasts from various species;
each chloroplast includes 74 genes on average, so that we analyzed
318,315 genes in total (Fig. 1A). The study is divided into two main
parts: the first one includes the development of an energy-based
model for translation initiation prediction, and the second part
includes the development of a large-scale database with predicted
local functional mRNA structure.

The genes in the database were divided into orthologous groups
to find the translation regulation characteristics for different gene
products. The energy-based model was inferred by using the CAI as
a proxy for expression levels (see Materials and Methods section
5.4); for every gene in the database, the CAI was computed and
was normalized to be comparable to the CAI of genes from other
chloroplasts (Fig. 1B). The energy values in the model were based
on the local minimum free energy of a sequence. The local rRNA-
mRNA hybridizations (Fig. 1C) and local mRNA folding (Fig. 1D)
were calculated for every gene in the database. By these three steps
(A-C), an Energy-based Translation Initiation Predictor (ETIP) was
conducted (Fig. 1H). The local mRNA folding was computed for
every gene in every ortholog group (Fig. 1D) and compared to
the local mRNA folding generated based on a null model
(Fig. 1F). Selection for strong mRNA energy was detected
(Fig. 1G) in the multiple sequence alignment (MSA) of every ortho-
log group (Fig. 1E). After inferring the positions in which there is
selection for strong energy in the ortholog group of genes, the local
common functional mRNA structures were predicted (Fig. 1I).
Combining the energy-based gene expression prediction (Fig. 1H)
and the local functional mRNA structures (Fig. 1I) provides predic-
tive biophysical mRNA-rRNA interaction models that can, shed
light on novel aspects of chloroplasts translation mechanism and
regulation.
2.1. Folding and co-folding between the 50UTR of the mRNA and the
16S small subunit of the ribosome predict chloroplast gene expression
levels

This subsection aims to conduct an energy-based model that
will be able to evaluate and predict mRNA translation initiation
efficiency. It is expected that there will be a high positive correla-
tion between translation efficiency and protein abundance (PA)
values. However, there are no measurements of PA for all the genes
in the database, therefore we used normalized CAI scores that are
known to be highly correlated with PA [27]. Our biophysical model



Fig. 1. The general flow diagram of the study. See details in the main text.
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is based on minimum free energy computations of the local mRNA-
rRNA hybridization and folding. The model compares the free
energy between two states (as can be seen in Fig. 2): 1) before
the 16S hybridizes to the mRNA when the mRNA and 16S exhibit
self-folding structures; 2) after hybridization when the two
sequences bind together and create a new co-folded structure. A
greater decrease in the free energy in state 2) compared with state
1) is expected to be related to a more efficient initiation rate as it is
related to higher probability of hybridization (for further informa-
tion, see Materials and Methods sections 5.6 and 5.7).

Fig. 3 includes examples of local self-folding structures of mRNA
and 16S rRNA and their co-folded structure, for two different genes
of Abelia sanguinea’s chloroplast.

Since translation efficiency is associated with higher protein
levels, we expect a negative Spearman correlation between the
predictions of our model and PAs, and between the predictions
and CAI scores. We aimed to investigate the typical properties of
the local structures (four parameters) that comprise the free
energy model: 1) the mRNA window length, 2) the position upon
the 50UTR of the mRNA where the local structure starts, 3) the
16S rRNA sequence length from the 30 edge, and 4) the ETIP con-
stant that determines the subtraction of the self-foldings from
the co-folding energy (Fig. 2).

The energy model relies on finding the optimized parameters
out of a set of values such that the energy values calculated will
optimally predict the CAI scores. It is expected that the parameters
that optimize the correlation will have meaning in terms of trans-
lation mechanisms and will imply or reveal mRNA functional
2523
structures and properties of the mRNA – rRNA interactions that
correspond to translation regulation and reflect translation
efficiency.

According to the literature, transaltion of different genes is gen-
erally regulated in different ways; therefore it is expected that dif-
ferent orthologous groups will have different optimal parameters
of the energy-based model.

The different stages of the optimization process are described in
a flow diagram in Fig. 3, which describes Fig. 1H of the project’s
global flow diagram in more detail.

As a first step, all the genes in the database were divided into
training and test datasets (Fig. 3H1). Then a hill-climbing optimiza-
tion algorithm was applied on the training dataset to find the opti-
mal parameters that predict the codon usage levels for every
ortholog group (Fig. 3H4). By assuming that there is a finite num-
ber of regulation strategies in chloroplasts we added constraints to
the objective function, such that instead of examining all the val-
ues in every parameter set, we took a subset of values of size X
(we checked different X values) that must include all the possible
parameters of the model for all the orthologous groups. This
approach simplified the model and reduced overfitting. For every
X-value, optimization was performed (Fig. 3H5) with multiple dif-
ferent initiation points, by randomly selecting a new different sub-
set of values to check (Fig. 3H6). We also compared the
optimization with a case in which the parameters weren’t limited
at all. Every initial point for every X reached an optimal correlation
with optimal energy parameters for every group and then the cor-
relations were validated with the test set and were compared to



Fig. 2. Illustrations of the local self-folding and co-fold of the mRNA and rRNA. A. The local self-folding of the mRNA. B. The local self-folding of the 16S rRNA from the 30 edge.
C. The local interaction between the mRNA and the 16S rRNA, with the four typical properties of the local structures and hybridization: 1. mRNA window size – the length of
the mRNA portion that interacts with the 16S sequence of the ribosome, 2. The start position at the mRNA - the position, relative to the start codon, of the first nucleotide of
the mRNA window sequence, 3. 16S rRNA length – the length of the 16S portion from its 30end that interacts with the mRNA, 4. The model’s constant that determines the
subtraction of the self-foldings from the co-folding energy and corrects second-order aspects of translation regulation.
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the null model (Fig. 3H7). For further details, see Materials and
Methods section 5.6.

Fig. 4A shows the optimal correlation between the free energy
model and CAI for every X.

The correlations are all negative, although for ease of viewing
they are presented in figure 4A as absolute values. All the optimal
correlations are in the expected direction and are significant:
above 0.61 with P-value (Pv) < 10�324. The strongest correlation
was obtained for X = 5, which is also a local maximum between
the correlations of X = 3,7. Fig. 4B presents the distances between
the optimal correlation of the real and the null models, divided
by the null model’s standard deviation (STD). We selected the opti-
mal solution from the minimal X that got high correlation in addi-
tion to high difference from the null model, X = 5 answers these
conditions with a correlation of r = �0.63 with Pv < 10�324, and dif-
fers from the correlation of the null model by 400 STD. As elabo-
rated in Materials and Methods section 5.9 we included two
types of null models: in one, the permutations were less global
than the other. The results using the less global null model are pre-
sented in Supplementary S1 section 2. Supplementary S1 also
includes the results related to all the three types of energy models
we conducted (see Fig. 2). The scatter plot of the optimal correla-
tion between the Z-scored CAI values and the energy values are
shown in Fig. 4C with approximately 16,000 points (see Supple-
mentary S1 Fig. 3 for the scatter plots of the optimal correlations
for all the three energy models). The correlations of every chloro-
plast’s genome in the database were calculated separately such
that for every gene of a certain chloroplast the energy was calcu-
2524
lated according to the optimized parameters of the ortholog group
it belongs to. The genomes correlations can be seen in in Fig. 4D
and in Supplementary S1 Fig. 5. The genome’s optimal correlations
are in the expected direction with a median correlation of
r = �0.64, the Pv of the genome with the median correlation is
Pv=6 � 10�10; these results demonstrate that the energy model con-
ducted can be used as a gene expression predictor for every gene of
every chloroplast’s genome.

2.2. Different gene families in chloroplasts have different translation
initiation mechanisms, most of which do not rely on the Shine-
Dalgarno interaction

The optimized parameters for every ortholog group were taken
from the optimal correlation of X = 5 (see Fig. 5). It can be observed
that the optimized parameters of the null model distribute uni-
formly, and all the parameters’ values of the real model differ from
the null model which gives confidence that the model is meaning-
ful. As mentioned above, we also performed randomization which
maintains various aspects of the real data; in this case the inferred
values of the real model still significantly differ from the null
model. The optimized parameters of the real and null models for
all three types of energy models can be seen in Supplementary
S1 Fig. 4, and Supplementary S4 includes tables with the optimized
parameters for every gene product and for every energy model.

In addition, it can be seen that there are parameters that opti-
mize the prediction for a majority of the orthologous groups. We
call groups that share the same optimized parameters that also



Fig. 3. Examples of the local self-folding and co-fold of the mRNA (length of 75 nt, one nt upstream of the start codon) and 16S rRNA (length of 35 nt from the 30 end), of
Abelia Sanguinea’s chloroplast, and the flow diagram of the energy-based gene expression prediction. A. mRNA folding of rpl20 gene (ribosomal protein L20). B. 16S rRNA
folding. C. Co-fold of A. and B. D. mRNA folding of atpF gene (ATP synthase CF0 subunit I). E. 16S rRNA folding. F. Co-fold of D. and E. G. Flow diagram of the energy-based gene
expression prediction.
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belong to more than 10% of the groups ‘‘typical groups”; we call the
remaining groups ‘‘non-typical groups”. For mRNA window length,
the values that appear in more than 10% of the groups are: lengths
2525
of 85 nt (74%) and 35 nt (18%). As for the 16S window length, the
typical parameter’s values are: 22 nt (72%) and 41 nt (17%). The
typical values of the parameter related to the position of the win-



Fig. 4. Optimal Spearman correlations of ETIP model. A. Optimal Spearman correlations of real genomes, and for every X (number of parameters that limits the degree of
freedom). B. Distances between optimal correlations of real and random genomes divided by the std of the random correlations for every X. C. Optimal correlation between
ETIP energies (x-axis) and Z-scored CAI scores (y-axis) when the dots correspond to the energy and Z-scored CAI of all the genes in the test set. D. All genomes optimal
correlations, Pv of the genome with the median correlation.
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dow at the 5’UTR are: 26 nt (78%) and 7 nt (13%) upstream of the
start codon; these three parameters have two peaks, one with
�75% and the second one with �16% of the groups, that together
sum up to �91%. However, the constant parameter has three peaks,
at 7 (53%), 0 (20%), and 9 (13%), which in total covers 87% of the
groups. When considering all the typical values mentioned above,
we conclude that there are 49 (64%) groups that are considered
typical (i.e., groups that all their parameters are typical), and the
rest (36%) are non-typical groups.

We also studied the sets of all four parameters mentioned
above. There are three sets of parameters that repeat in a high
number of groups; the sets are used by 34%, 14%, and 12% of the
typical groups respectively. The parameters of these sets are pre-
sented in Table 1. Notably, a 16S rRNA window length of 22 nt
2526
and a position of 26 nt upstream of the mRNA start codon are
shared by all the three sets (58% of the genes in the typical groups);
in addition, 46% of the typical groups have an mRNA window
length of 85 nt. In the case of the ETIP constant, the values 7 and
9 (which together account for 44% of the typical groups) are close
to each other and support the conjecture that the self-folding influ-
ences can have a high effect on the translation efficiency. However,
the ETIP constant was optimal at 0 for 14% of the typical groups, in
these cases the hybridization between the mRNA and the 16S is
likely to be more important than the self-folding for the predictive
power of the model mechanism. It could be concluded that the first
set in Table 1 includes the optimized parameters which probably
have an important role in translation initiation regulation that
affect the translation efficiency in most genes.



Fig. 5. All the groups’ optimal energy parameters of ETIP model. A. Window length of mRNA. B. Window length of 16S. C. Position upon 50UTR. D. ETIP Constant.

Table 1
Typical parameters sets.

Number of shared groups [%] mRNA window length [nt] 16S window length [nt] Position at 50UTR upstream of the mRNA start codon [nt] ETIP Constant

32 85 22 26 7
14 85 22 26 0
12 35 22 26 9
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2.3. Genes of C. reinhardtii that belong to the typical translation
initiation regulation groups do not rely on the Shine-Dalgarno
interaction

In this subsection, we aimed to better understand the genes
related to the typical and non-typical groups. According to C. rein-
hardtii’s PA, the PA of the non-typical groups tend to be higher than
the PA of other groups with Pv = 0.02, in addition, the typical
groups tend to be lowly expressed with Pv = 0.03. The distribution
of PA is presented in Fig. 6A.

We calculated the average aSD-SD energy in C. reinhardtii for
the typical and non-typical groups: the average energy of the
non-typical groups is significantly stronger (-1.489) than the aver-
age energy of the typical groups (-0.997), with Pv = 0.018 as shown
in Fig. 6B. The average position of the SD sequence in the typical
groups is 35–30 nt upstream of the start codon, whereas for the
non-typical groups it is 16–8 nt upstream of the start codon, in
accordance with the typical position of SD in prokaryotes (see
Fig. 6C, Pv < 10�324).

2.4. High correlation of a model based on codon usage and the ETIP
with energy measurements of protein abundance and ribosomal
profiling values

First, a regression was conducted for predicting the PA values of
C. reinhardtii’s genes, once with the CAI scores only and once with
the CAI scores and the ETIP values. The Spearman correlation
between the observed PA values and the predicted ones was calcu-
lated. The correlation of the predicted PAs with a regression model
based only on the CAI scores is r = 0.65 (Pv = 0:31 � 10�6), whereas
the correlation with the predicted PAs by the regression model
2527
based on the CAI scores and the ETIP values is r = 0.71
(Pv = 0:73 � 10�8). The results show that the energy-based model
improves the PA predictions. In order to examine the significance
of additional information of the energy model towards the PA val-
ues, the partial correlation was calculated and resulted with
r = �0.399 and Pv = 0:003 which supports the conjecture that
the energy-based model is useful for predicting PAs; moreover,
with 95% confidence the coefficient of the energy in the regression
is not zero supporting the conjecture that it significantly improves
predictions.

Next, a similar process was conducted to predict the ribosomal
profiling values of C. reinhardtii’s genes [28]. In this case the corre-
lation of the predicted ribo-seq values with a regression model
based only on the CAI scores is r = 0.60 (Pv = 0:26 � 10�4), whereas
the correlation with the predicted ribo-seq values by the regres-
sion model based on the CAI scores and the ETIP values is
r = 0.66 (Pv = 0:35 � 10�4). The partial correlation resulted in
r = �0.33 and Pv = 0:035, and the coefficient of the energy in the
regression is not zero (also with 95% confidence). The scatter plots
of the predicted and real PAs and ribo-seq values are presented in
Fig. 7.

2.5. Chloroplast genes tend to have strong structures upstream of the
start codon and downstream of the stop codon

Here, we aimed to infer functional local mRNA structures in dif-
ferent chloroplast genes. The functionality of structures can deter-
mine their interactions with the rRNA, protein factors, micro-
mRNAs, and other components, which can affect various gene
expression mechanisms (for instance translation regulation, mRNA
stability, mRNA transcription, mRNA transport). They can also



Fig. 6. Histograms of C. reinhardti genes divided into typical and non-typical
groups. A. PA. B. Scores of aSD-SD interaction. C. Positions of aSD-SD interaction.
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affect translation by changing the distance between regulatory
sequence motifs and the start codon or by interacting with regula-
tory sequence motifs.
2528
To this end, folding energies of the mRNA were calculated for
every mRNA in the real and random groups and the selection for
strong folding was determined by calculating Z-scores and empiric
Pvs for every position in the mRNA. The regions of interest to
examine the significance of the Z-score values were limited to
the positions in the alignment in which more than 50% of the genes
in the ortholog group contribute a nucleotide (i.e. the majority of
the values in the position are not indels; see Supplementary S1
Fig. 1).

Figs. 8A-8B includes the Pvs related to strong/weak folding
energy in comparison to the null model for different positions
along the mRNAs. Figs. 8C-8F presents the number of groups that
have significant Z-score values normalized by the number of
groups with a nucleotide in the positions for the real groups and
in comparison to the null model.

There are a few major findings related to this analysis: first,
there are many groups with a significant negative Z-score down-
stream of the stop codon, as shown in Fig. 8B and Fig. 8F. It can
be seen that at the positions of 8–20 nt and 140–195 nt down-
stream of the stop codon there are �45–48% of groups with signif-
icant negative Z-score which differs by more than 45 STD from the
average random Z-scores (Pv < 10�324). This result suggests that the
mRNA undergoes selection to be folded in the positions down-
stream of the stop codon, possibly to improve the efficiency of
the termination by the release factors (RFs). Second, as can be seen
in Figs. 8 and 8E, there is a significant negative Z-score at positions
70–50 nt, 185–170 nt and 280 nt upstream of the start codon
where the number of groups with such score is close to 40%, higher
by more than 30 STD from the average random Z-scores
(Pv < 10�324); this may suggest that the mRNA tends to undergo
selection to be strongly folded upstream of the start codon. It is
possible that there are factors that interact with the mRNA in these
positions via these structures to promote initiation (as was sug-
gested in [9,23,24]). In addition as can be seen in Fig. 8A and 8C,
the mRNA tends to be open at the positions of 30–1 nt upstream
of the start codon; this may promote efficient recognition of the
start codon by the initiation complex (a signal that also appears
in many nuclear genomes [29]). Specifically, �20–25% of the
groups have this signal, which is also stronger by approximately
20 STD than the average random Z-scores (Pv < 10�324). In
Fig. 8D it can be seen that at the 30 end there is no significant ten-
dency for any position to be weakly folded in comparison to the
null model.
2.6. Conserved potentially functional mRNA structures at the ends of
the coding regions

mRNA molecules are populated with functional local structures
that can affect gene expression regulation in various ways such as:
1) The binding of the RNA binding proteins (e.g., to the RNA loop);
note that the existence of a structure can decrease the distance
between the binding motif and the start codon and thus improve
the translation efficiency. 2) Via base pairing the structures can
prevent the interactions of RNA binding proteins with unwanted
binding motifs. 3) The structure can improve the stability of the
mRNA by blocking exonucleases.

We expect that functional structures will tend to be conserved
throughout all the genes in the ortholog group and structures that
are not conserved will probably not be functional. In this study, we
tried to detect the functional consensus secondary structure for
every ortholog group. Such structures can be used to inform mod-
eling and engineering of gene expression in chloroplasts.

In order to predict the functional secondary structures, posi-
tions with significant strong energy folding were discovered by
comparing the local self-folding energies of every position at the



Fig. 7. Spearman Correlations of predicted values of C. reinhardtii A. Predicted PA by CAI scores. B. Predicted PA based on CAI scores and ETIP energy values. C. Predicted ribo-
seq values by CAI scores. B. Predicted ribo-seq values based on CAI scores and ETIP energy values.

S. Carmel Ezra and T. Tuller Computational and Structural Biotechnology Journal 20 (2022) 2521–2538
MSA of the real mRNAs to the folding energies obtained by the null
model in the same position. At the next step, the consensus sec-
ondary structures were detected for these positions on the MSA
for every ortholog group by finding the structures based on a
dynamic programming algorithm that searches for conserved min-
imum energy structure over the entire alignment (more details in
the Materials and Methods section 5.14 and 5.15).

The information that we provide regarding every structure
includes the consensus structure, the energy of the structure in
kcal/mol, the expected frequency of the structure among large
set of identical mRNAs and the expected structure’s diversity
related to the current position (i.e., how many different structures
we expected to see in this position). The results of this section
include many consensus secondary structures related to various
orthologous groups which are expected to be functional.

According to our analysis, some of the orthologous groups have
more than one typical local structure, most of the groups have 0–2
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structures at the 50UTR (i.e. structures that begin at the 50UTR and
may also include part of the ORF) and 0–1 structures at the 30UTR
(i.e. structures that end at the 30UTR but may begin at the ORF), as
can be seen in Fig. 9A and B. The lengths of the structures at the
50UTR are between 50 and 350 nt while most of them have a length
of �100 or �200 nt (Fig. 9C), and most structures at the 30UTR are
in the range of 200–450 nt (Fig. 9D). The lengths of the structures
and their geometry may be related to the lengths and properties of
the factor that binds to these structures that contributes to the
translation initiation or termination. The frequencies of the struc-
tures both at the 50UTR and 30UTR are very high and close to
100% (Fig. 9E and F; i.e. almost 100% of the mRNA copies are
expected to have the predicted structures). The diversities of the
structures at the 50UTR mostly ranges between 8 and 24 (Fig. 9G)
and similarly, at the 30UTR the diversities range between 1 and
28 (Fig. 9H); low diversity means that the molecule has fewer
options for local probable structures to fold into, therefore the



Fig. 8. P values and Z-scores related to a selection for/against strong energy (i.e. stronger/weaker folding in comparison to the null model) according to positions along the
mRNA. A.-B. Heat maps of the significant P values for selection for (red)/against (green) strong energy according in different position along the mRNA. A. Alignment to the
50UTR. B. Alignment to the 30UTR. C.-F. Number of groups in percent of orthologous groups (y-axis) that has significant Z-score values in different positions (x-axis) along the
mRNA of the real groups (blue) compared to the null model (orange). C. Significant positive Z-score values; alignment to the 50UTR, D. Significant positive Z-score values;
alignment to the 30UTR. E. Significant negative Z-score; alignment to the 50UTR. F. Significant negative Z-score; alignment to the 30UTR. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

S. Carmel Ezra and T. Tuller Computational and Structural Biotechnology Journal 20 (2022) 2521–2538
probability of the molecule being folded in the detected structure
is higher. The energies of the structures at the 50UTR and 30UTR
ranges between �20 to �2 kcal/mol (Fig. 9I and 9J).

2.7. A database of novel conserved secondary structures in chloroplasts

We detected 96 conserved structures at 50UTR and 70 conserved
structures at 30UTR that we have compiled into a database. All the
2530
structures and information regarding their position on the mRNA,
length, energy, frequency, diversity, as well as their images are
reported in Supplementary S3 and S5.

An example of consensus structures can be seen in Fig. 10A-D.
Fig. 10A is the consensus structure that appears in the gene psbC
at the 50UTR, its product is photosystem II CP43 chlorophyll
apoprotein. The start position of the structure is nucleotide 806
upstream of the start codon, in the length of 75 nt, the energy is



Fig. 9. The general statistics related to the detected conserved structures. A. Number of structures at the 50UTR. B. Number of structures at the 30UTR. C. Structures’ lengths at
the 50UTR. D. Structures’ lengths at 30UTR, E. Structures’ frequencies at the 50UTR. F. Structures’ frequencies at the 30UTR. G. Structures’ diversities at the 50UTR. H. Structures’
diversities at the 30UTR. I. Structures’ energies at the 50UTR. J. Structures’ energies at the 30UTR.
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�11.9 kcal/mol, the frequency is 0.9994 which means that 99% of
the sequence’s copies would have the specific structure and is con-
sidered very high, and the diversity is 12.65 which means that
there are 12.65 different structures out of the sequence’s copies.
Fig. 10B includes the consensus structure that appears in the gene
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infA at the 50UTR, its product is translation initiation factor IF-1.
The start position of the structure is at nucleotide 244 upstream
of the start codon, length of 288 nt, energy of �18.6 kcal/mol.
The frequency is 0.9988 (very high), and diversity is 20.5.
Fig. 10C is the consensus structure that appears in the gene atpB



Fig. 10. Examples of the consensus secondary structures. A. Consensus secondary structure in the mRNA of the gene psbC at the 50UTR; its length is 75 nt and it is located 806
nt upstream of the start codon. B. Consensus secondary structure of gene infA at the 50UTR; its length is 288 nt and it is located, 244 nt upstream of the start codon. C.
Consensus secondary structure of gene atpB at the 30UTR; its length is 85 nt and it is located, 82 nt upstream of the stop codon. D. Consensus secondary structure of gene rpl20
at the 50UTR; its length is of 94 nt and it is located 880 nt upstream of the start codon.
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at the 30UTR, the product of this gene is ATP synthase CF1 subunit
beta. The start position of the structure is at nucleotide 82
upstream of the stop codon, and is 85 nt long, with an energy of
�10.9 kcal/mol. The frequency is 0.9992 (very high), and diversity
is 24.47. Fig. 10D includes the consensus structure of that gene
rpl20 at the 50UTR, the product of this gene is the ribosomal protein
L20. The start position of the structure is at nucleotide 880
upstream of the start codon, with a length of 94 nt, and energy
of �10.3 kcal/mol. The frequency related to this structure is
0.9996 (very high), and related diversity is 13.19.
3. Discussion

Today there is no generic large-scale computational model of
translation initiation in chloroplasts that can be used for all genes
and all organisms. Therefore, our general aim of this study was to
develop novel quantitative models that connect mRNA translation
to mRNA and rRNA local folding in chloroplasts; these models are
expected to help in understanding the evolution and biophysics of
chloroplasts. We studied translation mechanisms in chloroplast
genomes by conducting an energy-based model (ETIP) that will
efficiently predict protein levels in different orthologous groups
of chloroplast genes. Based on the ETIP we studied the local folding
of the mRNA and the local interactions between the mRNA and the
16S rRNA of the small ribosomal subunit. In addition, we identified
functional secondary structures that have a wide consensus in
genes that belong to the same ortholog group of different chloro-
plasts genomes. We validated our models via the analysis of PA
values and ribosomal profiling values of genes in the chloroplasts
of C. reinhardtii, a green unicellular alga that is widely used as a
model system for studying fundamental aspects of chloroplasts
and is also widely used as a model in biotechnology [29]. These
results demonstrate the biotechnological promise of our models.
In addition, we created, for the first time, a database of 77 orthol-
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ogous groups out of 4,306 different chloroplast genomes, which
can aid future research of chloroplast genomes.

Our predictive energy-based model of translation efficiency is
based on the local folding of the mRNA and the local mRNA-
rRNA hybridization; it has different parameters for different
orthologous groups. We inferred for each ortholog group the typi-
cal local energy parameters that are expected to determine trans-
lation initiation regulation. The optimized correlation across all
genomes between our energy model and the Z-scored CAI values
is r = �0.63 with Pv < 10�324.

The model also efficiently predicts the Z-scored CAI values
when a correlation is computed for each genome separately (me-
dian correlation of r = �0.64 and Pv = 6 � 10�10for the genome with
the median correlation) which supports the conjecture that this
model is generic and universal for all genes in all chloroplasts.
Moreover, CAI scores are known to be highly correlated with PA
values and we showed that adding the energy-based model to
the CAI scores can further improve the correlation with PA values.
In all cases we provide comparisons to the null model that support
the conclusion that the results are meaningful.

Our model is composed of four variables that describe the local
structure and provide a constant parameter which corrects for
second-order aspects of translation regulation that are not directly
considered in the model. Although it has been reported that PPR
proteins support translation by interacting with the 50UTR of some
chloroplasts’ UTRs [9,23,24], with the current available data it is
impossible to specifically add one (or more) proteins (such as
PPR) to our models due to the following reasons: 1) First, there is
no quantitative data that measures how PPR proteins interact with
mRNA. Note that these interactions are gene and organism-
specific. Without such data we cannot infer parameters of a rele-
vant model. 2) The aim of the model we developed here is to pro-
vide generic predictive power without getting into the specific
details of the many factors involved in translation (since we do
not have data related to all of them). Thus, all these aspects are
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inferred indirectly via the C constant. 3) There are many additional
factors (not only PPR) related to translation which would be nec-
cessary to include in a non-generic model; such a model would
have with nonoptimal performances.

The parameters related to the ETIP vary among the different
orthologous groups, suggesting that indeed different gene families
in chloroplasts use different translation initiation mechanisms.
Recently it was discovered that in some chloroplasts translation
initiation regulation of some genes is based on SD interaction while
in other genes it is not. Our model confirms that the SD interaction
is not a ubiquitous mechanism of translation initiation in chloro-
plasts although it does facilitate initiation in some genes; further-
more, our model suggests that typical translation regulation in
chloroplasts is not SD dependent.

Our analysis suggests that 64% of gene families have a ’typical’
translation initiation mechanism with optimal parameters consist-
ing of an mRNA window size of 85 nt, a start position of 26 nt
upstream of the start codon, a 16S rRNA window size of 22 nt from
its 30 end, and an ETIP constant of 7. The mRNA-rRNA interaction at
this position of the mRNA probably has an important role in the
translation initiation that should be further investigated to eluci-
date the exact biophysical mechanisms. As described in the intro-
duction [12], it was discovered that the structure of the 16S rRNA
in the region of the anti-SD sequence tends to have point muta-
tions that lead to a stronger structure in these positions; in accor-
dance with these findings, the high optimized constant of the ETIP
model shows that the self-folded structures of the mRNA and the
16S rRNA are dominant in the initiation regulation.

In accordance with prior studies [4,13-20], genes that were
found not to be dependent on the SD (e.g. petD, atpB, atpE, rps4,
rps7, rbcL, rpl2 and rpls16) were found in the typical groups while
genes that require the aSD-SD interaction during translation initi-
ation (e.g. psbA, psbD, psbC, atpH and rps14) were found in the non-
typical groups. It was also previously suggested that highly
expressed genes in C. reinhardtii rely on SD interactions in their
translation initiation regulation. We provide evidence to support
this, with C. reinhardtii’s non-typical genes being significantly
more highly expressed (Pv = 0.01) and showing stronger SD inter-
actions than in the other gene groups with SD sequences positions
similar to those in prokaryotes (i.e. 16–8 nt upstream of the start
codon). Conversely, the typical groups identified in this study are
lowly expressed, their aSD-SD interactions tend to be weaker,
and their SD sequences tend to be positioned 35–30 nt upstream
of the start codon). Thus, our study supports the hypothesis that
typical translation regulation in chloroplasts tends not to rely on
SD motifs although it is still used in some genes.

Future work should be done in this field in order to improve our
predictive model: a direct high-quality measurement of translation
over all chloroplasts could improve the quality of our models. Since
such data is not available, we used CAI as a proxy which is known
to be related to translation efficiency and other gene expression
steps [30]. In addition, we analyzed the PA and ribo-seq measure-
ments of values C. reinhardtii’s (in Results section 2.4) since cur-
rently this is the only microalgae with such large scale
measurements.

Our model could also be improved and further validated by gen-
erating libraries of heterologous genes that are designed based on
our model and measuring their expression levels (as was done for
other organisms [31,33]). Such an experiment would provide
insights into the strength of the effect of each parameter of the
model on protein levels and the causality of the reported
relationships.

In this study, we investigated the positions with significant
strong/weak folding selection across the mRNAs in different
orthologous groups. We observed novel patterns of selection for
strong mRNA folding at the mRNA ends that may be related to
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unique chloroplast regulatory aspects; the positions with selection
for strong folding tend to appear upstream of the start codon and
downstream of the stop codon.

We created a database containing 166 predicted functional
mRNA structures that are specific to different orthologous groups
in chloroplasts, this database is open-source and can be used for
studying and engineering chloroplast genes.

As mentioned in the introduction, there are many previous
studies that describe various translation factors which function
via the interaction with specific RNA structures in chloroplast
genes [9,23,24]; these cases are usually presented schematically
without a generic quantitative model. The potentially functional
secondary structures that we report here may explain some of
these. In order to further investigate these structures and the
related factors and understand their functionality, it would be
helpful to perform experiments that include rRNA-protein cross-
linking followed by capturing the different potential factors with
antibodies, as is frequently done for the study of RNA binding pro-
teins (e.g. see [33,35]). For example it is possible to examine the
interactions between protein PPR10 and atpH of the maize chloro-
plast; as was previously discovered the role of this protein is to sta-
bilize the atpH gene’s mRNA that affects the translation and makes
it stronger [9]. Furthermore, some experiments could be conducted
in order to check the importance and functionality of the structures
by introducing mutations that will affect their folding and studying
the effect of these changes on the expression levels of the relevant
genes.
4. Conclusions

In this study we conducted a predictive energy-based model of
translation initiation (ETIP) in chloroplasts that considers the local
folding and co-folding energy of the rRNA and the mRNA. A model
which combines the ETIPwith measures of codon usage is expected
to yield a correlation of up to 0.71 with protein levels and 0.66 with
ribosomal profiling measures. This model can be used to engineer
genes in the chloroplast with desired expression levels.

We found the local energy parameters for our model that influ-
ence the translation regulation for every ortholog group and
demonstrated that there are some different gene families in
chloroplasts that use different parameters and thus probably have
different translation mechanisms. In agreement with previous
studies [4,13-20], our model predicts that in most of the genes in
the chloroplasts, translation initiation does not rely only on an
aSD-SD interaction; in this study, we provide more details of the
alternative translation initiation models.

We observed novel patterns of selection for strong mRNA fold-
ing at the ends of the transcripts that may be related to unique
chloroplast regulatory aspects. In addition, we created a database
of 166 predicted functional mRNA structures that are specific to
different orthologous groups in chloroplasts that can be also used
for modeling and engineering gene expressions in chloroplasts.
5. Materials and methods

5.1. The analyzed organisms

All the chloroplasts’ genomes (4603) were downloaded from
NCBI according to their accession number which were extracted
from NCBI website (https://www.ncbi.nlm.nih.gov/).

Information regarding the genomes downloaded from NCBI
including the genomes name and accession number can be found
in Supplementary S2.

https://www.ncbi.nlm.nih.gov/
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5.2. Genes’ regions, 50UTR, ORF, 30UTR

The ORF for every gene was taken according to the positions in
the genome listed in the information from NCBI. The UTRs in
almost all the genomes that were analyzed in this study are not
annotated. Since it is not clear where the 50UTR of every gene
begins we took the nucleotides from the end of the ORF of the pre-
vious gene in the chromosome until the last nucleotide before the
start codon as the 50UTR raw data, and the nucleotides of the 30UTR
of every gene was taken from the end of the ORF until the start
codon of the following gene in the chromosome (with median pre-
dicted 50UTR length which is 334 nucleotides and median 30UTR
which is 262). However, we performed a procedure to infer the rel-
evant features of the model (i.e., the length and position of the win-
dow upstream of the ORF) by fitting the model to gene expression
(as elaborated in Materials and Methods section 5.7). Indeed, the
inferred relevant UTR was usually short (a few dozen nucleotides)
according to the results. The fact that the model has high predictive
power supports the conjecture that our inference is meaningful.

5.3. Protein abundance and ribosomal profiling values

The PA values that were used in this study are based on the nor-
malized average PA from the following two sources:

1) C. reinhardtii PA values that were downloaded from [35]; in
this case, for each gene the PA was calculated by averaging over
all the hours of the day.

2) PA values that were downloaded from PaxDB and includes
whole organism PA of C. reinhardtii GPM,Aug 2014) [36].

The PA values from every source were normalized such that
both sources will have the same average of 1 by dividing the aver-
age PA.

C. reinhardtii ribo-seq values were downloaded from [28].

5.4. CAI calculation

CAI, codon adaptation index, is a computational method of pre-
dicting the expression level of a gene based on its codon sequence
[30].

The steps for calculating this index are:

a) Calculating weights for every codon i according to the fre-
quency of this codon in a reference set (the highly expressed
genes of the current genome) divided by the maximum fre-
quency of the codon that encodes for the same amino acid,
according to Eq. (1):

xi
wi ¼ max xð Þ ð1Þ
where wi refers to the weight of codon i, xi refers to the fre-
quency of codon i in the reference set, maxðxÞ refers to the
maximal synonymous codon’s repetitions.

b) Calculating CAI for every gene in length of L codons is by the
geometrical mean of all the codons’ weights in the sequence
according to Eq. (2):
CAIgene ¼
YL

i¼1
wi

� �1
L ð2Þ
DCBS refers to the directional codon bias score, a measure of the
strength of the codon usage bias (CUB) of the gene [37].

DCBS is calculated with the following equations:
the directional codon bias (DCB) of a codon triplet xyz:

dxyz ¼ max
f x; y; zð Þ

f 1 xð Þ � f 2 yð Þ � f 3 zð Þ ;
f 1 xð Þ � f 2 yð Þ � f 3 zð Þ

f x; y; zð Þ
� �

ð3Þ
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The DCBS of a gene of length L codons:

DCBS ¼
PL

i¼1dxyz

L
ð4Þ

CAI was calculated for every gene in every chloroplast genome
according to the following steps:

a) DCBS was calculated for every gene, 20% of the genes with
the highest DCBS were taken as the reference set for CAI
calculations.

b) CAI scores were calculated for every gene.
c) The CAI scores were normalized for every chloroplast by

replacing them with a Z-score according to Eq. (3):

Zscore ¼ xi �mean xð Þ
stdðxÞ ð5Þ

where x represents the entire group of values (i.e. CAI values related
to all the genes in the genome), and xi is one value from the group
(i.e. the CAI of one gene).

5.5. Orthologous groups

In order to create orthologous groups of chloroplast genes we
first grouped together genes from different chloroplasts with the
same gene product according to the proposed chloroplast gene
names [38–41].

The homology between every couple of genes in every group
was estimated by BLAST [41].

Pairs of genes that did not meet with the following conditions
were filtered:

� E value higher than 10�5 (considered as not significant enough
based on empirical studies [42]).

� Identity percent lower than 50%.

After this elimination step, a graph was calculated for every
group by the remaining pair of genes that are considered to be suf-
ficiently similar. In this graph, nodes are genes in the group and an
edge between a couple of genes means that these genes are suffi-
ciently similar according to the conditions explained above. The
number of edges that are related to each gene in the graph was cal-
culated, and genes that are connected to less than 40% of the rest of
the group members were eliminated from the group. Lastly, genes
with lengths significantly different than the mean gene length of
the group (probably because of false sequence annotations) were
eliminated:

� Gene length shorter than 65% of the group’s mean gene length.
� Gene length longer than 140% of the group’s mean gene length.

As a result, we generated 77 orthologous groups from the genes
in the database with an average of 4,325 genes per group.

Based on this procedure, a gene is added to an orthologous
group if its similarity to the rest of the group is above a certain
threshold. This threshold (an edge in the graph) is sensitive enough
to detect homology even for pair of organisms that are not evolu-
tionary close. Thus since the threshold is absolute and not relative,
we do not expect to miss orthologs due to the distribution of
organisms in the databases.

5.6. Minimum free energy calculations

The minimum free energies of different sequences (of mRNA
and 16S rRNA) were calculated using ViennaRNA package which
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predicts the secondary structure of RNA sequences and provides
the minimum free energy of the thermodynamic ensemble [43].

The analyses along this study used two types of energy calcula-
tions by ViennaRNA:

a) RNAfold – calculates the minimum free energy of an RNA
sequence, used to calculate the following energies:
I. mRNA fold - minimum free energy and secondary struc-

ture of an mRNA sequence.
II. 16S fold - minimum free energy and secondary structure

of a 16S rRNA sequence.
b) RNAcofold – predicts the secondary structure upon a dimer

formation, used to calculate the following energy:

III. Co-fold of mRNA and 16S - minimum free energy of the

hybridization between the mRNA sequence and the 16S
rRNA sequence.
The lower and more negative the minimum free energy is, the
stronger the structure is folded.

5.7. Energy-based model

We conducted a minimum free energy-based model related to
energies of the local mRNA-rRNA hybridization. The model is based
on the biophysical model in which at first the mRNA and the 16S
are folded in self-folding structures with energy calculated by
RNAfold from the previous section, and the second stage is that
the two sequences, the mRNA and the16S rRNA, bind together
and create a new folded structure, the hybridization energy is cal-
culated by RNAcofold as described previously.

The mRNA window inferred in the model is the portion of the 50

of the mRNA (which can include both parts of the 50UTR and parts
of the ORF) representing a fragment that (most) effect mRNA trans-
lation. This window is described by its length in nucleotides and
the position in the transcript where this window starts; thus, the
‘‘start position” refers to the position, relative to the start codon,
of the first nucleotide of the mRNAwindow sequence that interacts
with the 16S sequence of the ribosome. For example, if the start
position of the mRNA window is �15 with a window size of 35
nt, it means that the mRNA window that interacts with the 16S
window according to the model is 35 nucleotides long, and it starts
at the position of 15 nucleotides upstream of the start codon.

The model, which we called ‘‘Energy based Translation Initia-
tion Predictor” (ETIP), estimates whether the hybridization energy
between the local sequence of the mRNA and the 16S rRNA is
stronger than the folding energies of the mRNA and the 16S rRNA
separately. If it is, then the probability that the sequences will bind
together in order to initiate translation will be higher and the
translation will be more efficient. The model actually estimates
how much the stability of the mRNA and the 16S rRNA was
improved by their hybridization. The energy model is calculated
according to Eq. (4):

4ð ÞETIPi ¼ cofoldmRNAi16Sj � C � fold16Sj þ foldmRNAi

� �
ð4Þ

When i refers to the i’th gene in the database, 16Sj is the 16S rRNA
sequence of chloroplast j.

The aim of the correction factor C is to deal with and correct
second-order aspects of translation regulation that are not directly
considered in the model.

The purpose of this energy-based model is to predict the gene
translation initiation efficiency that is expected to be highly corre-
lated with the PA value and therefore with the CAI scores of a gene.

In order to predict the Z-scores of the CAI scores we investi-
gated what are the typical properties of the local structures of
the mRNA and its interactions with the 16S rRNA, which optimizes
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the correlation between the energy value of a gene’s local struc-
tures and its CAI score, hence we characterized the structures by
four parameters:

1) mRNA window length
2) Start position of the mRNA window on the 50UTR of the gene
3) 16S rRNA window length from the 30 end
4) The correction factor, C, of the ETIP model.

We expect that genes with different products will have different
translation initiation mechanisms and it will tend to be conserved
among the different genes in a group; thus, our model constrains
all genes from a certain group to have identical parameters.

For comparison, we also conducted simpler energy-based mod-
els: one is based solely on the local folding energy of the mRNA
which is predicted by ViennaRNA RNAfold algorithm, and the sec-
ond one is based on the co-folding energy of the hybridization
between the local mRNA sequence and the local 16S rRNA
sequence predicted by ViennaRNA RNAcofold algorithm. The
mRNA folding model is based on the optimization of parameters
1 and 2, and the co-fold model is based on the optimization of
parameters 1,2, and 3. We show that ETIP outperformed the sim-
pler models in terms of the correlation with the Z-scored CAI.
The optimal correlations and the distance from the null model of
all the three energy models (mRNA fold, co-fold, ETIP) can be seen
in Supplementary S1 Figs. 2–4.

5.8. Optimization process for the energy-based model

The optimization process was conducted by hill-climbing which
is an optimization algorithm that makes local steps that improve
the objective function until reaching optimization. We randomly
divided all the genes in the database into 50% training and 50% test
sets such that every set included an equal amount of genes from
every ortholog group. The objective function, in this case, is the
Spearman correlation between the energies’ values and the Z-
scored CAI of the genes in the train set, which is expected to be
highly negative, since the more negative the ETIP energy result is,
the higher the probability of the hybridization occurring, resulting
in more efficient translation initiation and therefore higher PA val-
ues and CAI scores.

In the optimization process, the aim is to choose the values of
the local structure’s four energy parameters that optimize the cor-
relation. Every parameter has a set of values that can be checked
and can be selected in the process:

1) mRNA window length, 25–90 nt in steps of 5 nt.
2) 16S rRNA window length from its 30 end, 20–45 nt in steps of

1 nt.
3) Start position of the mRNAwindow on the 50UTR of the gene,

50–0 nt upstream of the start codon, 0means the start codon
itself, in steps of 1 nt.

4) Const of ETIP, 0–10 in steps of 0.5.

When the mRNA window size (parameter 1) is bigger than the
start position (parameter 3), the sequence of the mRNA’s local
structure includes the start codon of the gene.

As already explained, the solution of the process will be such
that every group has a set of four parameters, one for every param-
eter type; such a set is considered as the optimized parameters set
for the group.

In addition, we added constraints to the hill-climbing algorithm
such that the chosen parameters are not from the entire range
described above but are from a limited sub-set in size of X that
was sampled from this range. We added these constraints to sim-
plify the model and to reduce overfitting; these constraints are also
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based on the assumption that there is a finite (relatively small)
number of regulation strategies in chloroplasts that tend to appear
in many genes.

The process was performed for X = 3, 5, 7, 9, 11, 13 and we also
ran the optimization without limiting the possible parameter val-
ues (i.e. each parameter can be selected from the entire range men-
tioned above). Eventually, the results were validated by the test set
and were compared to the null model.

5.9. Null model for evaluating the energy-based translation initiation
predictor

Two types of null models were conducted. The first one is based
on shuffling the Z-score related to the CAI values between the
genes of an ortholog group, this operation maintains all the funda-
mental properties of the real ortholog group (e.g. the amino acid
sequence, codon usage, GC content, and evolutionary
conservation).

The second null model includes a more global shuffling: the Z-
score related to the CAI between all the genes in the database was
shuffled. The results of the first, less global, null model appears in
Supplementary S1 section 2, and the results of the second one are
presented in the main text.

5.10. A regressor for predicting the PA value and ribosomal profiling
values of C. reinhardtii’s genes

To show that the ETIP model adds predictive information over
the CAI values, a regressor was inferred in order to predict the
PA values and the ribosomal profiling values of C. reinhardtii’s
genes based on the combinations of CAI scores and the ETIP values;
its performance was compared to prediction based only on CAI. The
predictor was based on ranked values of all the variables and it was
evaluated by computing Spearman correlation. In addition, we
computed partial correlations to show that ETIP has significant cor-
relation with PA values and the ribosomal profiling when control-
ling for the CAI values.

5.11. P-values

All empiric Pvs in this study were calculated as the fraction of
null model randomization with higher/lower value than the real
model. Pv lower than 0.05 was considered significant.

5.12. P-value of highly expressed genes in the non-typical groups, and
lowly expressed genes in the typical groups, for genes of C. reinhardtii

In order to find out if the C. reinhardtii genes that are in the
typical/non-typical groups tend to be highly or lowly expressed,
the average PA of the genes in the typical/non-typical groups were
compared via a permutation test to the average PA of 100 sampled
C. reinhardtii’s gene with similar size to the typical/non-typical
groups.

5.13. aSD-SD interaction PSSM in C. reinhardtii

In order to receive the positions where the aSD-SD interaction is
most likely to appear in the 50UTR of the mRNA in C. reinhardtii’s
genes, the hybridization energy between the mRNA and the aSD
of prokaryotes (‘UCCUCC’) was calculated with ViennaRNA RNAco-
fold algorithm, using a 6 nt sliding window moving along the
sequence of the mRNA in 1 nt steps until the start codon. As a
result, the position with the lowest interaction score (co-fold
energy) was received for every gene. In order to find out if the C.
reinhardtii genes in the typical/non-typical groups tend to have a
strong/weak aSD-SD interaction, the average interaction score of
2536
the genes in the typical/non-typical groups were compared via a
permutation test to the average interaction score of 100 sampled
C. reinhardtii genes with similar size to the typical/non-typical
groups.
5.14. Significant strong/weak folding selection in different positions
upon mRNA

In order to investigate the positions with significant strong/
weak folding selection upon the mRNA of genes in an ortholog
group, folding energies of the mRNA were calculated by RNAfold
of ViennaRNA package, with a 39 nt sliding window moving in 1
nt steps such that the energies are calculated for every position
at the mRNA, divided into the 50UTR (positions at the 50UTR, from
the start of 50UTR until the start codon; the last window includes
38 nt of the ORF) and 30UTR (positions at the 30UTR, from the stop
codon until the end of the 30UTR; the first window includes 38 nt of
the ORF).

For every group, the average folding energy values were calcu-
lated for every position of the mRNA, and Z-score and empiric Pv
were calculated for every position with 50 null models, with an
alignment to the start codon or the stop codon.

The Z-score was calculated according to Eq. (3) and Pv was esti-
mated empirically based on the null model mentioned above. A
significant Pv was considered lower than 0.05.

In order to define the threshold for an unusual Z-score value in a
certain position, we compared it to the position surrounding it
with the following procedure:

The difference between the Z-score of the position and the aver-
age Z-scores of the surrounding of 100 nt (100 nt to the left, and
100 nt to the right) was calculated according to Eq. (5):

Diff ¼ Zscorei � ðPiþ100
i�100ZscorejÞ

200
ð5Þ

The threshold of this measure (Diff) was computed based on the
distribution of values of this measure for orthologous groups gen-
erated by the null model; the top and bottom 5 percentile (corre-
sponding to the Diff value of �1.5 and 1.5) were used as the
significant Z-score threshold.
5.15. Detecting the conserved, potentially functional secondary
structures of the mRNA

It is known that mRNA molecules tend to include local func-
tional structures that, among others, can regulate gene expression.
We expect that functional structures will be relatively conserved in
comparison to non-functional ones. In order to detect the consen-
sus secondary structures that are potentially functional in the dif-
ferent orthologous groups we performed the following steps: first,
the MSA of the mRNAs (nucleotide 30/50 UTR MSA and amino acid
ORF MSA) was computed by Clustal Omega [44]. Next, the folding
energies and Z-score were calculated similarly to the previous sec-
tion on the MSAs, for positions at the 50UTR (in this case the folding
energies for every position are aligned to the start codon) and for
positions at the 30UTR (in this case the folding energies for every
position are aligned to the stop codon).

Positions on the mRNA with significant negative Z-scores com-
pared to the surrounding Z-scores (which are considered signifi-
cant strong energy) were entered into RNAalifold- a ViennaRNA
tool which predicts a consensus secondary structure of a set of
aligned sequences; this tool finds a structure in this region that
is conserved in all the genes in the MSA and reaches the minimum
free energy using dynamic programming [45,47]. The output of the
RNAalifold algorithm is the consensus secondary structure, its free
energy, the predicted frequency of the structure, and the predicted
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diversity of the structure. The structures are divided into two
regions in the gene: the 50 end of the transcript (the 50UTR and
the beginning of the ORF) and the 30 end (the 30UTR and the end
of the ORF).

5.16. Null model for detecting the conserved functional secondary
structures

In this sub-section we describe how we computed a null model
that maintains various fundamental properties of the mRNA MSAs
such as the GC content, codon distribution, the encoded proteins,
and the sequence distances (and thus the evolutionary distances
among the sequences in the MSA) induced by the MSA. Among
others the randomization controls for the distribution of organisms
in the dataset.

ORF MSA randomization included swapping the codons (while
ignoring positions with indels) of the same AAs between two col-
umns of the MSA that are similar in more than 95% of the AAs,
and while considering only columns that have no more than 15%
indels. UTR MSA randomization included swapping the nucleotides
between two columns that have no more than 20% indels. We per-
formed in each case 10n columns swapping, when n is the length of
the MSA (in AAs for the ORF MSA, and in nucleotides for the UTR
MSA).

5.17. Source code

All the code generated in this study appears in https://www.
cs.tau.ac.il/~tamirtul/ChloroplasTrans/.
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