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Abstract: Milk proteins are prone to changes during the heat treatment process. Here, we aimed to
study the changes in caprine milk fat globule membrane (MFGM) proteins with three heat treatment
processes—ultra-pasteurization (85 ◦C, 30 min), ultra-high-temperature instant sterilization (135 ◦C,
5 s), and spray-drying (inlet, 160 ◦C and outlet, 80 ◦C)—using the label-free proteomics technique.
A total of 1015, 637, 508, and 738 proteins were identified in the raw milk, ultra-pasteurized milk,
ultra-high-temperature instant sterilized milk, and spray-dried reconstituted milk by using label-free
proteomics techniques, respectively. Heat treatment resulted in a significant decrease in the relative
intensity of MFGM proteins, such as xanthine dehydrogenase/oxidase, butyrophilin subfamily
1 member A, stomatin, and SEA domain-containing protein, which mainly come from the membrane,
while the proteins in skimmed milk, such as β-lactoglobulin, casein, and osteopontin, increased
in MFGM after heat treatment. Among these different heat treatment groups, the procedure of
spray-drying resulted in the least abundance reduction of caprine milk MFGM proteins. Additionally,
it showed heating is the key process affecting the stability of caprine MFGM protein rather than
the spray-drying process. These findings provide new insights into the effects of heat treatment on
caprine MFGM protein composition and potential biological functions.

Keywords: milk fat globule membrane proteome; heat treatment; ultra-pasteurized; ultra-high-temperature
instant sterilization; spray-dried

1. Introduction

The role of milk in the growth and development of newborn mammals is irreplaceable,
and it is also an important source of high-quality protein supplements for humans. Al-
though bovine milk occupies a major position in the dairy market, the use of caprine milk
in liquid milk, yogurt, and infant formula milk powder has grown rapidly in recent years,
with ~20.6 million tons of raw caprine milk produced in 2020 [1]. Additionally, the special
nutritional composition of caprine milk provides relatively lower sensitization and higher
digestibility for infants and young children in comparison to bovine milk [2,3]. Therefore,
increasing attention has been paid to caprine milk.

Similar to bovine milk, protein, fat, and carbohydrates are three main nutritional
components in caprine milk. Milk protein, as a key indicator for measuring nutritional
value, has been much investigated by scholars. Milk proteins can be divided into three
parts: casein, whey protein, and milk fat globule membrane (MFGM) proteins. Casein
and whey protein are the two dominant proteins, which account for more than 95% of
total milk proteins, whereas MFGM account for 1–4% of total milk proteins [4]. MFGM is
composed of a lactone monolayer and a complex lipid bilayer [5], and MFGM proteins are
mainly distributed on the inner and outer surfaces of the outer phospholipid bilayer [6].
Although MFGM proteins account for a very small percentage of the total milk proteins,
they have gained increasing attention due to their special physiological functions, including
antibacterial and anti-cancer properties, and their use for the relief of multiple sclerosis
(MS) and autism [7–9].
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An early investigation of caprine MFGM proteins preliminarily demonstrated their
uniqueness by using 1D electrophoresis, and it was found that lactadherin (MFGE8) was
the main differential MFGM protein compared to that of bovine milk [10,11]. With the
development of proteomics technology, our understanding of MFGM proteins has been
improved significantly as proteomics techniques can identify thousands of proteins in
one run, especially for relatively low-abundance proteins [12]. For instance, proteomics
techniques have been used in studying the difference in the MFGM proteins of colostrum
and mature milk, as well as those of different breeds. Lu et al. and Sun et al. studied the
differences in MFGM proteins of Guanzhong caprine and Xinong Saanen caprine colostrum
and mature milk, and found that colostrum contains more acute phase proteins than mature
milk [13,14].

However, MFGM proteins not only vary during physiological processes but also
change during processing. In the modern dairy industry, heat treatment is an indispens-
able technique by which to control the level of microorganisms and ensure the safety of
dairy products. Generally, the shelf life of milk after pasteurization is about 2 weeks;
in contrast, UHT technology can extend the shelf life of milk to 6 months or more [15].
Ultra-pasteurization is used in the production of cheese and yogurt to ensure the quality of
the product, especially in terms of texture and rheology [16,17]. Spray-drying technology is
a processing technology that uses milk as the main raw material to produce milk powder.
The granular product formed by dehydration of milk in a high-temperature vacuum envi-
ronment can be stored for 2 years [18]. Although milk is a thermally stable system, milk
proteins still have physical and chemical changes during heat treatment. MFGM proteins
also change significantly during thermal processing [6,19], which may affect processing
performance and influence the nutritional function of dairy products. Proteins such as
β-lactoglobulin and α-lactalbumin, which originally existed in whey, were bound to MFGM
through disulfide bonds and hydrophobic interactions after heat treatment [20,21]. Fur-
thermore, heat treatment may also affect the iron chelation of milk fat globular membrane
proteins [22]. In addition, heat treatment resulted in the lactosylation of MFGM proteins,
which could affect the nutritional value, biological function, and safety issues [23]. At
present, most previous studies have focused on the effect of heat treatment on caprine whey
protein and casein [24,25]. However, few studies have been performed on the effect of heat
treatment on caprine MFGM proteins. A previous study showed that heating leads to a
loss of caprine MFGM proteins, while under the same conditions (65 ◦C, 30 min), the heat
sensitivity of caprine MFGM proteins is higher than that of bovine MFGM proteins [12].
Caprine milk has smaller-sized fat globules compared to those in bovine milk [12], which
leads to different interaction areas of proteins in the milk fat globule membrane and skim
milk during the heating process. The low stability of casein micelles in caprine milk relative
to bovine milk may also influence the changes in caprine MFGM proteins under different
heating environments [26]. At the same time, changes in bovine origin MFGM proteins
during heat treatment such as pasteurization and ultra-high temperature sterilization have
been reported clearly, especially changes in many low-abundance proteins [6]. Moreover,
MFGM proteins of bovine origin have been used in infant formula powders [27]. In contrast,
there are limited studies on the changes in caprine MFGM proteins during heat treatment.
In our previous research, we analyzed the effect of conventional pasteurization on caprine
MFGM proteins, but conventional pasteurization cannot cover a large number of appli-
cation scenarios [12]. As the stability of MFGM proteins is related to the intensity of heat
treatment [20], the changes in caprine MFGM proteins under different heating intensities
have not been reported yet.

Therefore, this study aimed to investigate the changes in caprine MFGM proteins
during higher-intensity heat treatment by using label-free proteomics techniques, which
may provide scientific advice for the better utilization of caprine milk resources.
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2. Materials and Methods
2.1. Sample Treatment and Reagents

Raw milk (RAW): Untreated fresh Saanen caprine milk from 45 lactating Saanen goats
(lactating days > 15 d) was mixed and collected in refrigerated storage tanks at 4 ◦C using
an automatic milk extractor at 6:00 a.m. from the ranch of Hangzhou Yunquan Yue Animal
Husbandry Co., Ltd. (Hangzhou, China). The samples were transported to the laboratory
using a refrigerated truck at 4 ◦C within 5 h and stored at 4 ◦C for subsequent analysis.
Ultra-pasteurized milk (UP): We took an appropriate RAW sample amount and placed it in
a constant temperature water bath (85 ± 0.5 ◦C) where it was kept for 30 min and stored
at 4 ◦C for subsequent analysis. Ultra-high temperature instant sterilization milk (UHT):
We took an appropriate amount of RAW and used 135 ◦C ± 0.4 ◦C heat for 5 s, bottled
and sealed it, and stored it at 1–3 ◦C for subsequent analysis. Spray-dried caprine milk
powder reconstituted milk (SP): We took an appropriate amount of RAW and placed it
in the spray-dryer at an air inlet temperature of 160 ◦C and an air outlet temperature of
80 ◦C ± 3 ◦C. After spray-drying, the processed milk powder was sealed in a sealed bag
and stored at 4 ◦C. We took 1 g of spray-dried sample and fully dissolved it in 9 ml of water
to make SP and stored it at 4 ◦C for subsequent analysis.

Potassium dihydrogen phosphate, sodium dihydrogen phosphate, potassium chloride,
sodium hydroxide, calcium chloride, sodium chloride, ammonium persulfate, Coomassie
Brilliant Blue R250, acetone, glycerin, methanol, ethanol, glacial acetic acid, and other
reagents were purchased from Sinopharm Group. Acrylamide, methylene acrylamide, tris,
sodium dodecyl sulfate (SDS), N,N,N′,N′-tetramethylethylenediamine (TEMED), glycine,
and imidazole were purchased from Sangon Biotech (Shanghai, China). Two sets of sample
staining solution and β-mercaptoethanol were purchased from Bio-Rad. The BCA protein
quantitative analysis kit was purchased from Thermo Fisher Scientific (San Jose, CA, USA).
All the reagents used in the experiment were of analytical grade (AR), and the experimental
water was ultrapure water.

2.2. MFGM Protein Extraction

The extraction method for MFGM proteins was based on previous studies [12]. Differ-
ent groups of caprine milk samples were centrifuged at 1500× g for 15 min at 10 ◦C. The
fat of the centrifuged sample was transferred to a new test tube, and washed with 0.1 M
PBS buffer at a ratio of 1:1 (v:v), and then centrifuged at 1500× g for 15 min at 10 ◦C. We
repeated the washing step four times. Finally, the washed milk fat was diluted to a ratio of
1:1 (v:v) with 0.4% SDS, sonicated for 1 min, and centrifuged at 4 ◦C and 1500× g for 15 min.
The fat layer was removed, and the MFGM proteins were in the water phase. We used the
BCA kit method to determine the protein concentration. Preparation of the protein samples
was performed on the day during which the different heat treatments were completed, and
then they were stored at −80 ◦C until testing. Each set of samples was repeated twice.

2.3. Sodium Dodecyl Sulfate–Polyacrylamide Gel Electrophoresis (SDS-PAGE)

We configured 12% separation gel and 4% concentrated gel. We used the sample
buffer to divide the caprine milk MFGM protein samples extracted and quantified in the
protein sample preparation into a reduced group and a non-reduced group, and adjusted
the concentration to 1 mg/mL with 0.4% SDS. To these, β-mercaptoethanol was added to
the reduced group to a final concentration of 10%, and the non-reduced group did not have
the addition of β-mercaptoethanol. After mixing, the samples were placed in a boiling
water bath for 2 min, cooled to room temperature, and we dripped the sample staining
solution. After shaking, we took 20 µL and loaded each sample. The initial setting voltage
was constant at 60 V. When the sample strip moved to the junction of the concentrated
gel and the separating gel, the voltage was constant at 120 V. After the electrophoresis
was completed, we moved the electrophoresis adhesive paper in Coomassie Brilliant Blue
Staining Solution and shook it for 6 h at room temperature at 25 ◦C. Then, we poured the
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dyeing solution and shook it until the background of the rubber sheet became colorless
and transparent.

2.4. Protein Digestion

We took 100 µL of caprine milk MFGM protein samples of each group in a 1.5 mL
centrifuge tube, and diluted the SDS concentration to less than 0.1% with 0.5 M TEAB.
Trypsin enzyme is added to the enzyme hydrolysate at a ratio of 1:20 (m:m) to the substrate
protein, shaken well and mixed, vortexed, centrifuged at a low speed at 400× g for 1 min,
and incubated at 37 ◦C for 4 h. After the digestion was completed, a desalting treatment
was performed, and the obtained peptides were freeze-dried after the desalting.

2.5. Liquid Chromatography-Tandem Mass Spectrometry Analysis (LC-MS/MS)

The dried peptide sample was reconstituted with mobile phase A (2% ACN and 0.1%
FA), centrifuged at 20,000 g for 10 min, and the supernatant was taken for injection. The
separation was performed using a Thermo UltiMate 3000 UHPLC. The sample first entered
the trap column for enrichment and desalination, and then it was connected in a series
with a self-packed C18 column (75 µm inner diameter, 3 µm column particle size, and
25 cm column length), and was separated by the following effective gradient at a flow rate
of 300 mL/min: 0–6 min, 6% mobile phase B (98% ACN and 0.1% FA); 6–40 min, mobile
phase B, linearly rising from 6% to 25%; 40–48 min, mobile phase B, rising from 25% to 40%;
48–51 min, mobile phase B, increasing from 40% to 90%; 51–55 min, 90% mobile phase B;
and 55.5–60 min, 6% mobile phase B. The end of the nanoliter liquid phase separation was
directly connected to the mass spectrometer.

The peptides separated in the liquid phase were ionized by the nanoESI source and
then entered the tandem mass spectrometer Q-Exactive HF X (Thermo Fisher Scientific, San
Jose, CA, USA) for DDA (data-dependent acquisition) mode detection. The main parameter
settings were as follows: the ion source voltage was set to 1.6 kV; the scanning range of
the primary mass spectrum was 350~1600 m/z, and the resolution was set to 70,000; the
initial m/z of the secondary mass spectrum was fixed at 100, and the resolution was 17,500.
The screening conditions for the precursor ions of the secondary fragmentation were as
follows: a charge of 2+ to 7+ and a peak intensity of more than 10,000 were ranked in the
top 20 precursor ions. The ion fragmentation mode was HCD, and fragmented ions were
detected in Orbitrap. The dynamic rejection time was set to 15 s. The AGC was set to Level
1 3 × 106 and Level 2 1 × 105.

2.6. Data Analysis

We used MaxQuant (http://www.maxquant.org/, accessed on 4 February 2022) to
identify and quantify the mass spectrometry data of this experiment. The software version
used was MaxQuant 1.5.3.30. During operation, we used the original off-machine data
as the input file, configured the corresponding parameters and the database, and then
performed identification and quantitative analyses. The parameters were selected as
follows: trypsin enzyme, minimal peptide length of 7; a PSM-level FDR and protein-
level FDR of 0.01; the fixed modification used cabamidomethyl; and the database used
uniprot_capra_hircus_nr.fasta (35,280 sequences).

The analysis of MFGM was performed qualitatively and quantitatively using Perseus
1.6.15 software on screened data based on the database. The identified MFGM proteins were
characterized by a Venn diagram using the following online website: http://bioinformatics.
psb.ugent.be/webtools/Venn/ (accessed on 6 March 2022). For the bioinformatics analysis,
the four groups of the identified MFGM proteins were annotated with gene ontology
(GO) by a cluster profiler using the protein annotations downloaded from uniport. The
pathway analysis was performed using the Kyoto Encyclopedia of Genes (KEGG, https:
//www.kegg.jp/, (accessed on 14 June 2022)) for significantly different MFGM proteins as
compared to the heat treatment groups with RAW. In addition, the images were combined
using Photoshop 2018.

http://www.maxquant.org/
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
https://www.kegg.jp/
https://www.kegg.jp/


Foods 2022, 11, 2705 5 of 14

3. Results
3.1. SDS-PAGE of MFGM Proteins

The number and intensity of the bands were greater in the reduced condition than
those in the non-reduced condition (Figure 1A,B). This phenomenon had a different mani-
festation in the heat treatment groups, among which RAW and UHT had the most bands
(lines 3, 4, and 5). The MFGM proteins changed differently under different heat treat-
ment conditions. The MFGM proteins were significantly reduced in UP and UHT, mainly
in xanthine dehydrogenase/oxidase (XDH), periodic acid Schiff glycoprotein 6/7 (PAS
III/IV), butyrophilin subfamily 1 member A1 (BTN1A1), and lactadherin (MFGE8). On the
other hand, the casein region and β-lactoglobulin were increased to different extents after
heat treatment. Among these, β-lactoglobulin had the highest content in UHT, followed
by RAW.
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Figure 1. SDS-PAGE images of MFGM proteins from RAW, untreated milk; UP, ultra-pasteurized
milk; UHT, ultra-high temperature instant sterilization milk; SP, spray-dried milk with reduced
conditions (A) and non-reduced conditions (B). Line M is the molecular weight standard.

3.2. Identification and Quantification of MFGM Proteins

The results presented by the DDA allowed 1326 MFGM proteins to be identified
and quantified (Table S1) from the different heat treatment groups, of which there were
1015 proteins in RAW, 738 proteins in SP, 637 proteins in UP, and 508 proteins in UHT,
as shown in Figure 2. Approximately one-third of the common MFGM proteins were
identified in RAW and the different heat treatment groups. Among all the identified
proteins, unique proteins indicated that 249 proteins were uniquely present in the RAW,
as well as 47, 66, and 49 MFGM proteins being uniquely present in SP, UP, and UHT,
respectively, as compared to RAW.

3.3. Correlation and PCA Analysis of MFGM Proteins from Different Heat Treatment Groups

The Pearson correlation scores (R value) of the two replicates for each group of MFGM
protein analysis were above 0.98 (Figure 3A). This showed that the label-free proteomics
technique used in this experiment was reproducible. The components of the MFGM
proteins in RAW and SP were the most similar to each other, with R values above 0.75
(Figure 3A). The PCA profiles showed significant differences between the different heat
treatment groups, while PC1 to PC2 could explain 52.3% to 21.1% of the variance of the
MFGM protein components from the different heat treatment groups (Figure 3B). RAW
and SP were relatively close. Additionally, they were distributed on the right side of the
coordinate system together. UP and UHT were on the left side of the coordinate system,
separated along the PC2 score.
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Figure 3. Pearson correlation score diagram (A) showing the correlation of caprine MFGM proteins
between the different experimental groups. The score in the upper left corner of each small scatter
plot is the R value of the experimental groups on the corresponding abscissa and ordinate. PCA
score plot (B) showing the identified and quantified caprine MFGM proteins of the different heat
treatment groups.

3.4. Significant Differences in the Changes MFGM Proteins among Different Heat Treatment

In addition to unique proteins, there were 378 common MFGM proteins, as shown in
the hierarchical cluster (Figure 4A). These common proteins were divided into two main
clusters based on heat treatment conditions. The hierarchical cluster analysis showed that
there were significant differences in the changes of MFGM proteins among heat treatment
groups, which was consistent with the PCA analysis results.
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showing the significant differences of MFGM proteins in SP vs. RAW (B), UP vs. RAM (C), and UHT
vs. RAW (D). Green dots indicate significantly downregulated proteins; red dots indicate significantly
upregulated proteins.
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We further compared the changes in the different heat treatment groups using Stu-
dent’s T test with Benjamini–Hochberg FDR ≤ 0.05 (−Log p-value > 1.3010) and |Log2
Fold Difference|>2 as the cutoff for the significant differences of the proteins between the
two groups. Proteins were found to be significant upregulated and downregulated in the
different heat treatment groups as compared to RAW. We used volcano maps to visualize
these significant differences (Figure 4B–D). Obviously, most of the common proteins were
decreased in the heat treatment groups. From the perspective of the amount and dispersion
of downregulated proteins, the decrease in common MFGM proteins in UP and UHT was
significantly greater than that of SP. There were 192, 185, and 37 down-regulated proteins,
respectively. Additionally, there were 23, 10, and 17 significantly upregulated proteins in
the UP, UHT, and SP, respectively, as compared with the RAW.

3.5. GO Analysis of Caprine MFGM Proteins in Relation to Different Heat Treatments

We performed gene ontology annotation analysis according to the three categories
of biological processes, cellular components, and molecular functions on all the MFGM
proteins from the different heat treatment groups (Figure 5). As shown in Figure 5, in terms
of molecular functions, binding, catalytic activity, and structural molecule activity were
the top three in RAW and UP, while binding, catalytic activity, and molecular function
regulation were the most important molecular functions in SP and UHT. In terms of cellular
components, apart from the cell, cell part, and organelle sources of the same genus, more of
RAW is derived from the membrane, while the other heat treatment groups were derived
from the extracellular region. In terms of biological processes, MFGM proteins are mainly
involved in cellular processes and biological regulation, but they were more involved in
metabolic processes in RAW and more involved in biological process regulation in the heat
treatment groups.

The unique proteins were caprine MFGM proteins found in UP (66), SP (47), and UHT
(49) as compared with RAW. A total of 249 unique proteins were found in RAW as compared
with the other heat treatment groups. We also performed GO analysis on these unique
proteins. As shown in Figure S1, there were more unique MFGM proteins of the different
heat treatment groups enriched in the extracellular region of the cellular component.

3.6. Pathway Analysis of Unique MFGM Proteins and Significantly Different MFGM Proteins

The first 20 KEGG pathway analyses were divided into six primary levels: cellular
processes, genetic information processing, human diseases, metabolism, and organismal
systems of significantly different MFGM proteins between the different heat-treated groups,
including downregulated and upregulated proteins as compared with those in RAW
(Figure 6) and unique proteins (Figure S2).

The same KEGG pathway analysis was also used to identify significantly different
MFGM proteins, as shown in Figure 6. In terms of significantly downregulated proteins,
most of the proteins were enriched in the translation of genetic information processing in
SP vs. RAW; most of proteins were enriched in signal transduction of environmental infor-
mation processing in UP vs. RAW; and most of proteins were enriched in immune system
functions in UHT vs. RAW. On the other hand, significantly upregulated MFGM proteins
in the heat treatment groups were mainly enriched in human diseases and organismal
system pathways.

As shown in Figure S2A, 248 unique MFGM proteins of RAW were mainly derived
from global and overview maps of metabolism, folding, sorting, and degradation in genetic
information processing and neurodegenerative diseases in human diseases. As shown
in Figure S2B–D, there were 47, 66, and 49 unique MFGM proteins of SP, UP, and UHT,
respectively, and they were more enriched in human diseases and the immune system in
the physiological system.
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Figure 6. KEGG pathway analysis of significantly different MFGM proteins comparing the heat
treatment groups with RAW. (A,C,E) are significantly downregulated MFGM proteins, and (B,D,F)
are significantly upregulated proteins of SP vs. RAW, UP vs. RAW, and UHT vs. RAW, respectively.

4. Discussion
4.1. Reliability of the Identified MFGM Proteins by Using Label-Free Proteomics Technique

In this experiment, a total of 1119 caprine MFGM proteins were identified and quan-
tified using label-free proteomics technology; among them, RAW had 1015 identified
MFGM proteins from the mixed Saanen caprine milk samples (more than 30), which were
higher than previous studies. In a recent study, 734 MFGM proteins were identified in
Saanen caprine colostrum and mature milk [13]. Using the same techniques, Sun identi-
fied 593 MFGM proteins in Guanzhong caprine milk [28]. Another study also identified
423 MFGM proteins using mixed samples of five Guanzhong caprine milk samples from
colostrum and mature milk [29].

The relatively higher number of caprine MFGM proteins found in our study can be
attributed to the following reasons: (1) The number of samples. In Lu’s study, the milk
samples were collected from five goats, while 30 were used for collection in Sun’s studies. In
this study, 45 caprine milk samples collected on-site were used. The rich source of caprine
milk brings a wealth of MFGM protein types due to individual differences [30]. (2) Lactation
stage of samples. The mixture of colostrum and mature milk may result in a high number
of identified proteins. In the research on caprine colostrum and mature milk, unique
proteins account for approximately one-third of the MFGM protein components [13,29].
The samples used in this study were mixed with caprine milk from different lactation
periods, which may result in more abundant MFGM protein components. (3) Advanced
proteomics technology. The Q-Exactive HF X has better resolution and detection limits
than the previous Q-Exactive Plus and LTQ, which may have led to the higher number of
identified proteins in our study compared to the other previous studies.

In addition, the Pearson correlation coefficient between the two technical replicates
was above 0.98 (Figure 3), indicating that this experimental proteomics technology has
stable reproducibility. On the other hand, the mass spectrometry results also match
the electrophoresis results. These ensure the accuracy of the label-free qualitative and
quantitative comparison.
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4.2. Changes in the Caprine MFGM Proteins after Different Heat Treatment

After heat treatment, a certain number of proteins decreased or were unidentified,
as shown in both the SDS-PAGE (Figure 1A) and proteomic results, which were similar
to those of a previous study [12,31]. This decrease and non-identification may be due to
changes in the structure and state of the proteins, as follows. Firstly, the MFGM proteins
were transferred to the liquid phase of the milk due to the temperature, such as PAS6/7,
XDH, and STOM (stomatin) [12,32]. Secondly, heat treatment can modify the MGFM
proteins, which may cause the proteins to resist enzymatic digestion or/and cause the
peptide to have new modifications after digestion, such as glycosylation of lysine [6,33]. In
general, the amount of caprine MFGM protein was reduced after heat treatment.

Furthermore, the disappearance and decrease in MFGM proteins were related to
heating intensity, and compared with RAW more MFGM proteins were significantly down-
regulated in UHT (Figure 4D) than in SP and UP (Figure 4B,C), which is consistent with
previous studies. In our study, more than 25% of the MFGM proteins were identified in UP
in comparison to than UHT, suggesting that UHT had a greater impact on caprine MFGM
proteins than UP in terms of the types of MFGM proteins. Additionally, the decrease in
some common MFGM proteins in UP was greater than that of UHT (Figure S3A). Previous
studies have also shown that bovine MFGM proteins at 45–60 KD were significantly reduced
in UHT in comparison to pasteurized milk [23]. For instance, membrane glycoproteins,
such as the PAS domain, were found to be reduced after heat treatment due to whey protein
(mainly β-lactoglobulin) replaced it on the fat globule membrane [32]. In sum, the longer
duration of ultra-pasteurization and UHT have a significantly higher impact on MFGM
than traditional pasteurization.

On the other hand, spray-drying had a less noticeable effect on the MFGM protein
number and abundance as compared with the other heat treatments in this study, which
differs from the results of previous reports. In a previous study, the authors found the
content of MFGM proteins in commercial milk powder to be much lower as compared
to RAW [23]. We believe this difference is due to the range of applied processing before
spray-drying, such as preheating and concentration during the manufacture of whole milk
powder [25,34]. We did not perform any preheating before spray-drying in our study, but
infant formula has to undergo preheating and concentration before spray-drying. On the
other hand, although the inlet temperature of the spray-drying barrel can be as high as
160 ◦C, a sample that is separated into small emulsion droplets in a vacuum environment
will be dehydrated quickly, and the actual wet bulb temperature of the emulsion droplet
sample will be lower. Therefore, preheating had a much stronger influence on the MFGM
proteins than that of spray-drying.

4.3. Potential Physiological Functions Changes in MFGM Proteins after Different Heat Treatments

The molecular function of unique proteins in RAW was mainly related to binding,
catalytic activity, structural molecule activity, and molecular function regulation, suggesting
that these disappeared or decreased proteins in the heat-treated sample may have lost some
physiological functions for humans (Figure 5). For instance, lysozyme was only identified
in RAW, and it has a primarily bacteriolytic function. Those in tissues and body fluids are
associated with the monocyte–macrophage system and enhance the activity of immune
agents [35,36]. Another MFGM protein, BTN1A1, decreased after heat treatment. BTN1A1
is a major protein in milk fat droplets; it belongs to the immunoglobulin superfamily and
may inhibit the proliferation of CD4 and CD8 T-cells activated by anti-CD3 antibodies,
T-cell metabolism, and IL2 and IFNG secretion [37]. XDH is a key enzyme in purine
degradation, which can catalyze the oxidation of hypoxanthine to xanthine and catalyze
the oxidation of xanthine to uric acid. Its change during heat treatment was found to be the
same as that in BTN1A1, and this trend is consistent with previous studies [12,25]. C3 plays
a central role in the activation of the complement system and has been widely reported
to play a protective role when milk is used to feed newborns [38,39]; it is also reduced to
varying degrees during the heat treatment process (Figure 4).
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The KEGG annotation analysis of significantly different proteins can help us bet-
ter understand the effect of heat treatment on the function changes in caprine MFGM
proteins. Significantly reduced proteins in UP and UHT with a higher heat intensity
were involved in the immune system pathways of the organic system and human dis-
eases (Figure 6C,E), which is also related to the membrane in cellular components such
as endoplasmin (HSP90B1) Marcks-related protein (MARCK), and small monomeric GT-
Pase (RALB). UP and UHT have significant effects on the immune system-related MFGM
proteins, but the effect is relatively small in the SP, which is consistent with previous con-
clusions. Regarding the KEGG analysis of the significantly upregulated proteins, many of
them were related to immunity (Figure 6B,D,F). For instance, the S100-A8 (S100A8) and
S100-A9 (S100A9) proteins were related to innate immune response in the IL-17 signaling
pathway of the immune system. We speculated that these skim milk proteins combined
with MFGM proteins through disulfide bonds or van der Waals forces during thermal
processing. This may be one of the reasons why immune functional proteins were reduced
in skim milk after heat treatment [40,41].

In general, these results reflect the changes in MFGM proteins composition which
lead to potential functional changes in caprine milk MFGM proteins after heat processing.
Additionally, a previous study reported that lactosylated lysine cannot be recognized by
gastrointestinal proteases [42]. In addition, more mechanisms of nutrient function changes
caused by heat treatment need to be confirmed in further studies.

4.4. The Interaction between Skimmed Milk Proteins and MFGM Proteins under Heat Treatment

Comparing the reduced and non-reduced MFGM protein images in SDS-PAGE, it
was clearly seen that some of the MFGM proteins bind to the proteins in the milk emul-
sion. Therefore, the bands were not obvious in the SDS-PAGE image in the reduced state.
However, the difference can be observed in the proteomic results (Figure S2B). In the
MFGM fraction, binding occurred through disulfide bonds including β-lactoglobulin and
α-lactalbumin with XDH/XO and BTN [43]. This situation was also consistent with the
results of our previous research [12]. Previous studies have shown that milk protein β-
lactoglobulin and casein are combined to MFGM as the heating intensity increases [44],
and the combination is gradually strengthened from 65 ◦C to 85 ◦C [41]. Until recently,
researchers believed that the main reason is that the free sulfur groups of MFGM were
changed to disulfide bonds with β-lactoglobulin after heating, which leads to the com-
bination of MFGM proteins and β-lactoglobulin [21,32]. In addition, the casein micelles
adsorbed by the milk fat globules will react with skimmed milk proteins during the heat
treatment process, and β-lactoglobulin will combine with the casein micelles to enter the
MFGM component [20]. However, in more recent research, non-covalent bonding, such as
hydrogen bonding, electrostatic and hydrophobic interactions are also important links in
the binding of whey proteins and MFGM proteins [45].

The interaction of skim milk proteins and MFGM can partially explain the decrease
in skim milk proteins after heat treatment. However, the effect of this combination on the
function of skimmed milk proteins is temporarily unclear, and further studies are needed
to confirm the impact of this nutritional function change.

5. Conclusions

On the whole, heat treatment can cause a reduction in MFGM protein components,
and different proteins have different sensitivities to heat treatment; this is related to the
actual heating temperature and time. In this study, spray-drying had the least effect on the
changes of MFGM proteins, in that it resulted in more kinds of remaining MFGM proteins,
especially many low-abundance MFGM proteins as compared with ultra-pasteurization
and ultra-high-temperature instant sterilization treatment. The results in this study showed
that the heating is the key process affecting the stability of caprine MFGM protein rather
than the spray-drying process. This experiment provides new insights into the functional
changes that may be caused by heat treatment of caprine MFGM proteins, especially in
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the immune system, and provides necessary support for the further application of caprine
milk resources.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods11172705/s1, Figure S1: GO analysis of the unique MFGM
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content of common caprine MFGM proteins; Table S1: The identified and quantified MFGM proteins
in caprine after different heat treatment.
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