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ABSTRACT
Phosphorus (P) participates in various assimilatory and metabolic processes in
plants. Agricultural systems are facing P deficiency in many areas worldwide, while
global P demand is increasing. Pioneering efforts have made us better understand the
more complete use of residual P in soils and the link connecting plant P resorption to
soil P deficiency, which will help to address the challenging issue of P deficiency.
We summarized the state of soil “residual P” and the mechanisms of utilizing this
P pool, the possible effects of planting and tillage patterns, various fertilization
management practices and phosphate-solubilizing microorganisms on the release of
soil residual P and the link connecting leaf P resorption to soil P deficiency and the
regulatory mechanisms of leaf P resorption. The utilization of soil residual P
represents a great challenge and a good chance to manage P well in agricultural
systems. In production practices, the combination of “optimal fertilization and
agronomic measures” can be adopted to utilize residual P in soils. Some agricultural
practices, such as reduced or no tillage, crop rotation, stubble retention and
utilization of biofertilizers-phosphate-solubilizing microorganisms should greatly
improve the conversion of various P forms in the soil due to changes in the balance of
individual nutrients in the soil or due to improvements in the phosphatase profile
and activity in the soil. Leaf P resorption makes the plant less dependent on soil P
availability, which can promote the use efficiency of plant P and enhance the
adaptability to P-deficient environments. This idea provides new options for helping
to ameliorate the global P dilemma.

Subjects Agricultural Science, Microbiology, Plant Science, Soil Science, Natural Resource
Management
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INTRODUCTION
Phosphorus (P), a key component of nucleic acids, phospholipids and adenosine
triphosphate (ATP), participates in various assimilatory and metabolic processes in plants
(Rawat et al., 2020). Plant growth and productivity are limited by soil P availability, which
ultimately affects material circulation and function of ecosystems (Agren, Wetterstedt &
Billberger, 2012). P deficiency has adverse impacts on plant growth and productivity and
may readily occur in various ecosystems especially those of agricultural systems.
Around 67% of the world’s agricultural land is P-deficient (Dhillon et al., 2017) and 51% in
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China (Wang, 2016). The use of traditional manure alone can no longer sufficiently
supplement P consumption in these production systems. Therefore, large amounts of P
fertilizer have been applied to meet the increasing P demand. However, mined P is a
nonrenewable resource. Based on the data released by the U.S. Geological Survey in 2017,
statically calculated according to the P consumption rate of 2016, the verified global
reserve of phosphate ore can meet the global demand of 300 years (USGS, 2016). For an
extensive phosphate resource-consuming country, such as China, whose resource
guarantee life is only 37 years according to the current production rate, the problem of
P resource crisis still exists (Zhang et al., 2017). In addition, excess use of P fertilizer has led
to the transfer of most P from terrestrial ecosystems into aquatic systems. The reimport
of P back to the terrestrial ecosystems is a long and complex process with little human
control. It takes nearly a million years for the P in marine sediment to participate in the P
cycle of the terrestrial ecosystems again as phosphate rock (Cordell, Drangert & White,
2009). Therefore, to address P deficiency, it is vital to manage P fertilization efficiently and
increase P use efficiency in agricultural systems.

The global population explosion and increased demands for meat and dairy products
have further aggravated P consumption in the 21st century, which has led to increased
severity of P deficiency in terms of global production (Ashley, Cordell & Mavinic, 2011;
Cordell et al., 2011). Significant advances have been made in revealing P dynamics at the
plant, ecosystem and global scales in the past few decades, with particular advancements
in understanding the effects of fertilizer applications on P dynamics and the P cycle in
terms of plant-soil integration (Carpenter & Bennett, 2011; Venterink, 2011). These
pioneering efforts grant us chances to integrate the information and better understand
more comprehensively the use of residual P in the soil and the link connecting plant P
resorption to soil P deficiency, which will help in addressing the challenging issue of P
deficiency. Here, we summarized the state of mechanisms related to the use of soil residual
P and the internal reuse of P by plants (Fig. 1), which will help solve the contradiction
between P deficiency and increased P demand (Carpenter & Bennett, 2011).

SURVEY METHODOLOGY
The peer-reviewed articles in this paper were obtained from Web of Knowledge, Google
Scholar, Baidu Scholar and subject-specific professional websites, scanning also in the
corresponding references, selected papers, and related articles. We employed the following
keywords: “phosphorus cycle”, “soil residual phosphorus”, “leaf phosphorus resorption”,
“agricultural system”, “phosphate-solubilizing microorganism” and “phosphorus
management”. All the articles chosen in this paper should show the state of soil “residual
P” and the mechanisms of utilizing this P pool, the possible effects of planting and tillage
patterns and various fertilization management practices on the release of soil residual P
and the link connecting leaf P resorption to soil P deficiency and the regulatory
mechanisms of leaf P resorption. Both qualitative and quantitative articles were reviewed
in this paper. The qualitative articles provide insights into problems by helping to
understand the reasons and opinions. The quantitative articles use measurable data to
express facts.
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UTILIZATION OF SOIL RESIDUAL P AND ITS REGULATION
“Residual P” in soils
Generally, P in parent material enters the soil through weathering, is absorbed and stored
by plants, and ultimately is returned to the soil in the form of litter (or metabolites
produced by animals) (Foster & Bhatti, 2006). A P cycle involving utilization and
transportation among plants, animals, the soil and microorganisms are formed (Aerts &
Chapin, 2000). However, in terrestrial ecosystems such as agricultural systems, great
amounts of P enter into aquatic systems, and it is difficult for this P to re-enter the effective
P cycle in the short term (Cordell, Drangert & White, 2009). In these cases, the cycle is
broken, and P deficiency can occur, seriously affecting plant growth and productivity.
Therefore, P fertilizer application serves as an efficient way to supplement P, which can
help to maintain and even promote the productivity of agricultural production systems
(Smit et al., 2009). However, P is easily absorbed and settles in the form of organic and/or
inorganic P with different stabilities, when soluble P components perform covalent
bonds or electrostatic interactions with soil particles, or convert to insoluble forms by
precipitation. And this accumulated P in the soil is difficult to convert into soluble P for
plant absorption and utilization (Sattari et al., 2012; Nash et al., 2014). P fertilizer has long
been overused in the farming system for decades to meet the P demand of crop growth
because there is a traditional concept that the fixation of P in soils is irreversible, which

Figure 1 Utilization of soil residual P and its regulation. Full-size DOI: 10.7717/peerj.11704/fig-1

Yang and Yang (2021), PeerJ, DOI 10.7717/peerj.11704 3/21

http://dx.doi.org/10.7717/peerj.11704/fig-1
http://dx.doi.org/10.7717/peerj.11704
https://peerj.com/


results in a large P accumulation in the soil and ineffective utilization of P (Smit et al.,
2009). Crops absorb only 20% to 30% of inorganic orthophosphate-P in most soils
after P fertilization, and the remaining P applied is rapidly fixed (Herrera-Estrella &
López-Arredondo, 2016). Mclaren et al. (2016) demonstrated that the majority of the
P fertilizer applied to two pasture soils in Australia was absorbed in inorganic and organic
P forms, while only 35% was taken up by subterranean clover (Trifolium subterraneum)
in the year of application. A very small portion of the P added to the soil by fertilizer,
manure and/or crop stubble is used by crops the same year it is applied (Calloway, 2016).
In contrast, a varying but often substantial portion accumulates in the soil as “residual P”
(Syers, Johnston & Curtin, 2008), which is defined as the difference between P input
(mineral fertilizer, manure, weathering, and deposition) and P output (withdrawal of P in
harvested products, and P loss by runoff or erosion) in the soil (Bouwman, Beusen &
Billen, 2009; Sattari et al., 2012). Soil inorganic P stocks constitute on average 1006 ± 115
kg ha−1, while monoester P constitutes approximately 587 ± 32 kg ha−1 (Menezes-
Blackburn et al., 2018), indicating the enormous potential for future agronomic use.

Utilization of inorganic residual P in soils
Fixed P in the soil can be converted into available P for plant use, and the recycling rate is
up to 90% in some cases (Smit et al., 2009). However, there is obvious hysteresis in the
use of soil residual P (Sattari et al., 2012). Most of the soil residual P has undergone
deposition and solidification in the formation process and is ultimately fixed in different
inorganic P forms. Generally, P is adsorbed mainly by oxides and hydroxides containing
iron and aluminium, resulting in the formation of an iron-aluminium binding state of
P in acidic soils (Arai & Sparks, 2007). In neutral and calcareous soils, P mostly reacts
with calcium carbonate to form more stable forms such as calcium phosphate and
hydroxyapatite (Nriagu & Moore, 2012). These forms of fixed residual P can be absorbed
and utilized by plants only after they are hydrolysed into orthophosphate in the soil
solution (Ashley, Cordell & Mavinic, 2011).

Therefore, it is fundamental in the utilization of residual P to promote the hydrolysis
of soil calcium (magnesium) and/or iron (aluminium) phosphate. Existing utilization
mechanisms of inorganic residual P might be divided into the following categories:
(1) Direct acidification of the soil surroundings. Arai & Sparks (2007) found that
rhizosphere acidification was an effective way to help obtain mobile P from calcareous
soils. Additionally, the organic acids (like citric acid, gluconic acid, oxalic acid, and tartaric
acid) (Rawat et al., 2020), inorganic acids (like hydrochloric acid, sulfuric acid, nitric
acid, and carbonic acid) and H2S production by phosphate-solubilizing microorganisms
have been reported to solubilize inorganic phosphate, although inorganic acids have low
efficiency compared to organic acids (Gaind, 2016). (2) The cation-anion exchange
balance, organic anion and proton extrusion, which lower soil pH to dissolve insoluble
phosphates. Hinsinger et al. (2003) found that the cation–anion exchange balance and
organic anion contributed to pH change in the rhizosphere since they all needed to be
balanced by an exchange of charges, e.g. by the release of either H+ or OH−. Proton
extrusion is also an alternative mode of P dissolution in the soil by microorganisms,
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e.g. ammonium (NH4+) (Gaind, 2016). (3) Root exudation and assimilation/respiration,
which lead to the decrease of rhizosphere pH in neutral to alkaline soils (Hinsinger et al.,
2003). (4) Direct redox-coupled reaction. Plant roots and associated microorganisms can
also alter the pH of the rhizosphere via redox-coupled reactions, thereby improving the
availability of residual P in the soils (Hinsinger et al., 2003). For instance, predominantly
gram-negative bacteria can help the production of dominant organic acids like gluconic
acid via alternative pathways for glucose oxidation and diffuse through bacterial periplasm
into the surroundings (Krishnaraj & Dahale, 2014). (5) Production of siderophore by
phosphate-solubilizing microorganisms (PSMs), which can be a strategy to chelate iron
from Fe–P complexes in the soil. Toscano-Verduzco et al. (2019) found that a novel fungus,
Beauveria brongniartii, secreted siderophores, which resulted in 59.8% of Fe3+–Chrome
azurol-S degradation and 158.95 mg L−1 P solubilized in vitro. (6) Production of
exopolysaccharide, which forms complexes with metal ions in the soil (Al3+ > Cu2+ >
Zn2+ > Fe3+ > Mg2+ > K+) (Ochoa-Loza, Artiola & Maier, 2001). This mechanism can be
extrapolated as a means of P solubilization by exopolysaccharide-secreting
microorganisms. Additionally, microbial cell lysis during stress conditions releases this P
into the soil, which is taken up by plants and other soil organisms (Butterly et al., 2009).

Utilization of organic residual P in soils
The utilization of organic P also plays a major role in the use of soil residual P. Organic P in
soils generally accounts for 20–30% of the total residual P and in some cases accounts
for 95% (Rawat et al., 2020). The vast majority of soil organic P is held by a single or double
lipid bond, which can be divided into inositol (mainly from plant residue), nucleic acid
(from plant and soil organism residue) and phospholipid (from plant, soil animal and
microbial residue) forms (Betencourt et al., 2012).

The conversion from organic P to available P in soils is largely controlled by
phosphatase catalysis and hydrolysis (Kumar & Shastri, 2017). These extracellular
phosphatases produced by microorganisms and plant roots mostly belong to non-specific
acidic phosphatases, and can catalyze the dephosphorylation of phosphoesters or
phosphoanhydride bonds of organic compounds to promote the degradation of organic P
complexes (Sharma et al., 2013), thereby driving the continuous P cycle between microbial
fixation and release (Richardson et al., 2011). However, it remains unclear how much
microorganisms, plant roots and other soil organisms contribute to the release of the
residual P in soils (Gaiero et al., 2018). Generally, microorganisms (including bacteria,
fungi and actinomycetes) produce acidic and alkaline phosphatases, while plants produce
only acidic phosphatases (Nannipieri et al., 2011). For instance, fungi such as
ectomycorrhizae are well known for their ability to secrete acidic phosphatases, and
associated plants can thus grow well with improved P availability (Rosling et al., 2016).
Acidic soils are dominated by acidic phosphatases, while alkaline soils are dominated by
alkaline phosphatases (Juma & Tabatabai, 1977). The ability of alkaline phosphatases to
break down substrates under alkaline conditions is obviously greater than that under
neutral and acidic conditions.
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Non-specific acidic phosphatases like acidic and alkaline phosphatases are typical
inducible enzymes and their activity are readily affected by P supply levels. Hofmann,
Heuck & Spohn (2016) showed that the activity of acidic and alkaline phosphatases in
rhizosphere soils was 27–53% higher in P-deficient areas than in P-rich areas of Fagus
sylvatica forests. Further, they found that at low P availability, acidic phosphatase activity
increased in the rhizosphere but not in the bulk soil, and microbial phosphatase activity
was not responsive to P fertilization and was still high in the P-rich soil. These results
suggested that compared with microbial phosphatase, plant acidic phosphatase activity
may increase more at P-deficient sites, and microbial phosphatases contributed more to
total phosphatase activity than plant phosphatases in the P-rich soil (Hofmann, Heuck &
Spohn, 2016). That is probably because phosphatase activity is regulated not only by P but
also by C availability. The microbial phosphatases activity would increase to mineralize
organic phosphorylated compounds extracellularly and the organic fraction of the
compound can be used as a C source (Heuck, Weig & Spohn, 2015). In practice, microbial
inoculation of plant roots can not only prevent pathogens but also induce rapid soil P
cycle and reduce P fixation, which thus enhances P fertilizer utilization in agricultural
systems (Richardson et al., 2011; Li et al., 2018). For instance, tomato (Solanum
lycopersicum) under low-P conditions inoculated with Pseudomonas sp. RU47 primarily
increase their microbial phosphatase activity in soils and stimulate the enzymatic cleavage
of organic P compounds in rhizosphere and bulk soil, which promotes plant growth
and utilization efficiency of P fertilizer in agricultural systems (Nassal et al., 2018).
Sundara, Natarajan & Hari (2002) also reported a 25% decrease in the P requirement of
sugarcane (Saccharum hybrid) when P fertilizer was used in combination with the
P-solubilizing bacterium Bacillus megaterium var. phosphaticum.

Phytases widely found in animals, plants and microorganisms, can catalyze the removal
of P from the phytate compounds (abundant organic P in soils) that is the dominant
source of inositol and stored P in seeds and pollen (Sharma et al., 2013). Compared to
plants and animals, the potential of phytase producing bacteria and fungi to obtain P from
phytates is very huge (Zineb, Trabelsi & Ayachi, 2019). Besides, phosphatases/
carbon–phosphorus (C–P) lyases can also catalyze the cleavage of the C–P bond of
organophosphates, improving the P availability to plants (Rodriguez et al., 2006). Some
studies have focused on revealing the function and mechanism of soil microorganisms
involved in soil C mineralization to improve soil organic P mineralization (Nuccio, 2014).

Regulation of the release of residual P in soils
Multiple different tillage and management practices are beneficial for improving the
release of soil residual P in production practices to strengthen the activity of soil
phosphates and acidify soil rhizosphere (Fig. 1). This will ultimately promote the use of
residual P and reduce the dependence of crops on P fertilization.

Planting and tillage pattern
Intercropping and crop rotation can reduce the competition for soil P between plants due
to increased plant diversity, and enhance the utilization of soil original residual P and
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newly accumulated organic P (Garland et al., 2017), mainly through more organic acid and
phosphatase secretion. Darch et al. (2018) found that barley (Hordeum vulgare)/legume
intercropping led to 10–70% greater P accumulation and 0–40% greater biomass than
monocultures in a pot trial. The difference in the release patterns of organic acids and
phosphatases by different species in the two systems may partly explain the results. More
organic acid and phosphatase release can effectively increase the activation of soil residual
P (Hinsinger et al., 2011; Darch et al., 2018). Compared with that under monocultures,
acid phosphatase secretion under wheat (Triticum aestivum)/soybean (Glycine max) or
wheat/corn (Zea mays) intercropping would increase, which potentially improves the
use efficiency of residual P in soils (Zhang, 2001). In addition, soil phosphatase activity
significantly increases under long-term alfalfa (Medicago sativa)-potato (Solanum
tuberosum)-wheat rotation compared with fallow systems in the dryland areas on the
Loess Plateau of China (Fan & Hao, 2003). Straw return after rotation reduces the P
fixation rate in soils to improve soil P availability (Calonego & Rosolem, 2013). Hallama
et al. (2019) stated that cover cropping strengthened nutrient cycling in agricultural
systems under different conditions, increasing crop P nutrition and yield, as this practice
could enhance soil microbial communities. Additionally, the phosphatase activity under
reduced tillage is higher than that under traditional tillage (Monreal & Bergstrom,
2000). The promotion of phosphatase activity leads to increased release of soil residual
P and an increase in soil P availability. In the rhizosphere acidification to get soil
inorganic residual P, we might grow crops, e.g. white lupin (Lupinus albus) (Dinkelaker,
Rmheld & Marschner, 2010) which can release organic acids, such as citric, oxalic and
malic acids (Jones et al., 2002). The cereals allocated more photosynthates to below-ground
parts, e.g. maize (Urte et al., 2013) or wheat, also increase root exudation and respiration
to acidify soil rhizosphere (Lambers, Atkin & Millenaar, 2002). And the crops root-induced
oxidation of Fe can decrease rhizosphere pH by redox-coupled process (Chen, Dixon &
Turner, 1980), e.g. wetland plants and lowland rice (Oryza sativa L.) (Ando, Yoshida &
Nishiyama, 1983). In general, compared with monocultures, crop rotation and intercropping
significantly promote the release and utilization of residual P in soils. Although Tang, Zhang
& Yang (2015) found that compared with tobacco (Nicotiana tabacum) / garlic (Allium
sativum) intercropping, the tobacco - garlic rotation could better activate O-P, Ca10-P and
resistant organic P in soils. There are few studies comparing crop rotation and intercropping,
and there is no consistent conclusion since the effects of intercropping and crop rotation
on the utilization of soil residual P were different with different fertilization or co-cropped
species (Githinji et al., 2011; Yong et al., 2014; Djuniwati & Pulunggono, 2019).

Fertilization management
P fertilizer has long been applied to maintain high soluble P concentration in soils in
production practices, although most of the P fertilizer is fixed only three hours after
application (Chang & Chu, 1961). The combined application of P fertilizer with other
fertilizers can not only improve total soil fertility but also promote the use of residual P in
soils. Several reasons may explain the P availability increase in soils after mixed fertilizer
application. The application of multiple inorganic fertilizers balances the individual

Yang and Yang (2021), PeerJ, DOI 10.7717/peerj.11704 7/21

http://dx.doi.org/10.7717/peerj.11704
https://peerj.com/


nutrients and each form of the same nutrient, which helps to regulate the transformation
between Ca–P systems and A1-P (Fe–P) systems. This significantly increases the available
inorganic P accumulation and improves the P availability in soils. Combinations with N or
organic fertilizers lead to soil acidity or a change in phosphatase activity, which
consequently enhances soil residual P release to improve P availability.

Long-term N and P fertilizer application causes soil acidification, which increases the
available P level in calcareous soils. The increase in soil P availability under N or N plus
P fertilization can also be the result of increased phosphatase activity induced by N
(Wang, Houlton & Field, 2007; Peñuelas et al., 2012). Compared to the sole fertilizer
applications, soil enzyme activity, microorganisms or organic P content would increase in
response to applications of inorganic fertilizer combined with organic fertilizer (Ahlgren
et al., 2013). However, P fertilizer alone hardly affects the secretion of acidic phosphatase in
non-rhizosphere soils but reduces the acidic phosphatase activity in rhizosphere soils
(Spohn, Carminati & Kuzyakov, 2013).

The application of organic fertilizers can not only increase the available P content but
also improve residual P release in soils. Supply of organic matter from organic P
fertilization to upland soil has been reported to decrease P-sorption and increase P
desorption. This is mainly because organic and/or inorganic anion can compete with
orthophosphate for the presence in the soil, leading to increase in P availability. While
mineral P fertilization generally provides more reactive Al and Fe into the soil, and fixes
more P (Djuniwati & Pulunggono, 2019). The single-lipid P content in soils increases
after the application of various types of manure in practice (Shafqat, Pierzynski & Xia,
2009), and the combination of manure and mineral P fertilizer also significantly increases
the orthophosphate portion of soil P (Ahlgren et al., 2013). Organic fertilizer contains a
large number of highly active acidic phosphatases and soil microorganisms, and these
microorganisms can also greatly increase the activity of acidic phosphatase. Neset et al.
(2008) found that the activities of acidic phosphatase, alkaline phosphatase,
phosphodiesterase and pyrophosphatase in animal waste (which can be used as organic
fertilizer) were 10, 45, 50 and 160 times higher than that in soils. This activity will greatly
help catalyze soil organic P in the soil, improving soil P availability. In addition, stubble is
one of the most important sources of organic fertilizer in conservation agricultural
systems. The return of stubble can directly increase soil P amount and help to improve
residual P release. Compared with the removal of aboveground parts, the return leads to
31–63% increase in the contents of soluble P, unstable organic P and total P in soils in
mixture grassland of red clover (T. pratense), white clover (T. repens), perennial ryegrass
(Lolium perenne) and cocksfoot (Dactylis glomerata) (Boitt et al., 2017). Zhan et al. (2015)
found that the activities of acidic, neutral and alkaline phosphatases and soil available
P content with rice straw mulching were significantly higher than those without mulching.
Notably, in natural systems, plant litter is the main source of organic P and acts as a stubble
return to drive the P cycle (Jiang, Yin & Wang, 2013). In addition, phosphatase activity
is also regulated by C availability in soils (Steenbergh et al., 2011). Hofmann, Heuck &
Spohn (2016) found that microorganisms could use the organic part of phosphates as a C
source to enhance the secretion of phosphatases. Given these advantages, organic fertilizer
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application constitutes a preferred method for agricultural production to meet P
requirements.

Utilization of biofertilizer
Phosphate-solubilizing microorganisms are bioinoculants that are promising substitutes
for agrochemicals, which adopts different strategies to solubilize insoluble P to soluble
forms and can reduce the phosphate fertilizer input in agricultural land (Hussain et al.,
2019). Generally, bacteria belonging to the genera Pseudomonas, Enterobacter, Bacillus
(Biswas et al., 2018), Rhizobium, Arthrobacter, Burkholderia and Rahnella aquatilis HX2
(Liu et al., 2019), Leclercia adecarboxylata and fungi like Penicillium brevicompactum
and Aspergillus niger (Rojas et al., 2018) as well as Acremonium, Hymenella and
Neosartorya (Ichriani et al., 2018) are all potent phosphate-solubilizing microorganisms.
Recently, Astriani et al. (2020) have discovered novel elite strains like Pseudomonas
plecoglossicida isolated from soybean rhizosphere, which solubilized 75.39 mg L−1 P and
produced plant hormones, for instance indole acetic acid concentration was up to 38.89
ppm. These microorganisms serve as potent biofertilizers that improve the agricultural
yield in harmony with ecological concerns.

In practical production, phosphate-solubilizing microorganisms are generally
inoculated on the crop, added to soil, and applied together with organic/inorganic
fertilizers to solubilize residual soil P to soluble forms. Martinez et al. (2015) found
inoculation with phytate-producing bacteria like Enterobacter sp. N0-29PA significantly
increased the biomass and P uptake of oat (Avena sativa) by changing the rhizosphere
properties and soil enzyme activities (acidic phosphatase and urease) as well as auxin
production potential without the use of fertilizer. In addition, phosphobacteria inoculation
enhances the benefit of P fertilization. Barra et al. (2019) found the consortium of
phosphobacteria (Klebsiella sp. RC3, Stenotrophomonas sp. RC5, Klebsiella sp. RC J4,
Serratia sp. RC J6, and Enterobacter sp. RJAL6) with P fertilization improved P content in
the shoot of perennial ryegrass by 29.8% compared to uninoculated control in P-deficient
soils. Moreover, the addition of phosphate solubilizing bacteria such as Bacillus,
Pseudomonas, Enterobacter, Acinetobacter, Rhizobium, and Burkholderia (Teng et al.,
2018) as well as endophytic fungi such as Aspergillus, Penicillium, Piriformospora, and
Curvularia (Mehta et al., 2019) can improve C-P lyases activity to promote the utilization
of residual organic P. The application of phosphate-solubilizing microorganisms in
combination with different P sources and nutrients (iron, silicon) improves P uptake and
use efficiency of the crop, consequently enhancing the growth and yield of crops.
Boroumand, Behbahani & Dini (2020) reported that phosphate-solubilizing Pseudomonas
stutzeri and Mesorhizobium sp. along with nano-silica (0.05, 0.07 ppm) improved
vegetative growth of land cress (Barbarea verna) and increased soil nitrogen and P content.
This is, nano-silica might either act as a substrate for microorganisms or a stimulant that
results in an increased microbial population (Karunakaran et al., 2013). The interaction
of phosphate-solubilizing microorganisms (Pseudomonas, Mycobacterium, Bacillus,
Pantoea Rhizobia and Burkholderia) and phosphate fertilizer improve wheat grain yield by
22% and P uptake by 26%, while reduce fertilizer input by 30%. Moreover, these
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biofertilizers are safe and non-toxic to the environment (Rawat et al., 2020). In addition,
transgenic technology has also been used in phosphate-solubilizing microorganisms to
achieve efficient utilization of P resources. Richardson (2001) found improved P nutrition
and growth in Arabidopsis that is genetically transformed with the phyA gene from
Aspergillus niger. In recent years, metagenomics approach has also been used to modify not
only phosphate-solubilizing microorganisms but also other microorganisms for improving
and introducing phosphate-solubilizing efficiency (Kumar & Shastri, 2017).

Given the nonrenewable particularity of P resources, the utilization of mined P should
be developed toward the way of “moderate mining and efficient utilization” in the future.
During production, the combination of “optimal fertilization and agronomic measures”
should be adopted to improve the utilization of residual P in soils to promote the use
efficiency of P fertilizer and soil P stocks. A better understanding of residual P dynamics
and its regulation by agricultural practices such as reduced tillage, crop rotation and
stubble retention should help the conversion of various P forms in the soil, as these
measures lead to changes in the balance of individual nutrients in the soil or lead to
improvements in the phosphatase profile and activity in soils. The addition of organic
fertilizer such as green manure also has a similar effect. Therefore, full exploration of soil
residual P dynamics is still needed, and especially in conservation agricultural system, the
mechanisms by which conservation practices influence soil and soil microorganisms
warrant further attention. Notably, in some areas, such as the Qinghai-Tibetan Plateau of
China, where extremely low temperatures have heavily restricted the release and use of soil
P, the effects of cover crop change, tillage method and fertilization management also
warrant deep study from the standpoint of a low-temperature background.

INTERNAL REUSE OF P IN THE PLANT AND ITS
REGULATION
Plant P resorption
P limitation to plant growth is common in diverse ecosystems and is particularly vital for
grain production due to its significant effects during the reproductive stages (Vergeer et al.,
2003). When plants have difficulty acquiring sufficient P supplies from soils, they
adjust the distribution of the limited P among various organs (tissues) to maintain
metabolic activity, growth and survival. For instance, decreased litter nutrient content is
often one of the nutrient preservation strategies for plants growing in N- and/or P-limited
soils (Wright & Westoby, 2003).

Nutrient resorption refers to the process by which nutrients from senescent tissues
(such as senescent leaves) are transferred to other actively growing tissues (such as green
leaves and new tissues). This process can not only reallocate nutrients for the growth of
new and surviving tissues of the plant (Mao et al., 2013), but also reduce the risk of nutrient
loss with litterfall. Therefore, the plant can effectively maintain the productivity and
exhibit enhanced stress resistance to soil nutrient deficiency, such as P deficiency.
Retranslocation may occur in senescing leaves, stems and roots (Gordon & Jackson, 2000).
In American desert shrubbery, where the soils contain a large number of carbonates with
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strong P fixation, Larrea tridentata growth was not limited by soil P because there was
72–86% P resorption efficiency (Lajtha, 1987). Vergutz et al. (2012) found that
approximately 64.9% of P was transferred from senesced tissues to active tissues during
plant senescence at a global scale, and Wang et al. (2014) found that leaf P resorption
efficiency of alfalfa varied with the growth stage. This efficiency can reach 67–84% at the
early flowering stage of alfalfa when forage harvest is performed (Lu et al., 2019).
Compared to N, P generally shows higher variability of resorption efficiency (proportion
resorbed) and higher resorption sensitivity to nutrient availability, implying that P
resorption seems more important for plant nutrient conservation and N:P stoichiometry
(Staff, 2014). P resorption within the plant is very important for improving P use efficiency
at the individual level, making the plant less dependent on soil P availability and more
tolerant to soil P deficiency.

Regulation of P resorption
Leaf P resorption differs among different genetic origins (Sakuraba et al., 2015) and
functional groups (Miao et al., 2019), and is readily affected by environmental variations
(Du et al., 2017), such as soil P availability and its balance with other nutrients
(stoichiometric ratio) (Tang et al., 2013). However, the mechanisms to drive P resorption
from senesced tissues may involve both the source-sink relationship and acidic
phosphatase hydrolysis in the plant.

Source-sink relationship

The source-sink relationship of P plays a major role in regulating P resorption of the plant.
Generally, senescent tissue is the P source, while active tissues constitute the sink
(Bieleski, 1973). When the P content in a plant exceeds the normal demand of the variety,
P accumulates in senesced leaves, which causes a decrease in P resorption (Uliassi &
Ruess, 2002). Kobe, Lepczyk & Iyer (2005) found that P resorption efficiency decreased
with increasing P content in green leaves (P sink). Therefore, the change in nutrient
concentrations in different organs (representing sources or sinks) is closely related to
nutrient redistribution (Zhang et al., 2018). Other studies have shown that nutrient
resorption efficiency is more strongly regulated by carbohydrate flux from leaves
(source-sink interaction) than by factors governing the hydrolysis of nutrient-containing
fractions in leaves (Aerts, 1990). Under P-deficient conditions, a decrease in carbohydrate
accumulation is an important regulatory mechanism to enhance source-sink
interaction, which primes nutrient transfer in the plant (Demars, 1997). Usuda (1995)
found during mature leaf blades senescence in maize, the mature leaves were still
photosynthetically active but no longer grew, thus reducing the need for P by RNA, and P
from nucleic acids was therefore transferred to new leaves. Meanwhile, P deprivation
may induce the early initiation and accelerate remobilization of N from old leaf blades.
So soil P deficiency does not immediately slow plant growth because P can be transferred
from senesced leaves to sites where P is largely needed (Limpens, Berendse & Klees, 2003),
but leaf senescence is often accelerated by nutrient deficiency (Bollens, 2000). Thus,
leaf senescence results in increased P resorption.
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Acidic phosphatase hydrolysis
Acidic phosphatase can hydrolyze organic P compounds in the plant into inorganic
phosphate and thus help transfer phosphate from senesced tissues to young tissues. The P
content accounts for 0.05–0.5% of plant dry weight (Vance, Uhde-Stone & Allan, 2003).
Most of this P exists in plant leaves as organic P, including nucleic acids, phospholipids,
and phosphorylated metabolites, among which ribosomal ribonucleic acid represents
the largest organic P pool in the cell, accounting for 40–60% of the total organic P in
mature leaves (Veneklaas et al., 2012). Plants can hydrolyze their organic P compounds
into inorganic phosphate by acidic phosphatase and help transfer the phosphate from
senesced tissue to young tissue. The activity of acidic phosphatase is enhanced when P is
deficient in soils, and P transportation from older organs and tissues to active sites occurs
sooner under low P availability. Generally, the higher the acidic phosphatase activity is
in a plant, the greater the internal reuse rate of the phosphate. A recent study has shown
that purple acidic phosphatases not only help activate organic P around Arabidopsis
root systems but also promote P utilization in the plant. These phenomena are evidenced
by the fact that the AtPAP26 gene in Arabidopsis promotes P transfer in the leaf senescence
process (Robinson et al., 2012). Although there are some clues that acidic phosphatase
is related to P resorption and leaf senescence, the regulation of P transfer from senesced
leaves is still far from fully understood (Veneklaas et al., 2012).

It is necessary to use the potential of a plant to maximize the P effectiveness.
P resorption is an important strategy that the plant has evolved to address soil P deficiency
(Kobe, Lepczyk & Iyer, 2005). We can use optimal species with this trait in production,
e.g. evergreen tree species, to reduce the dependence on soil P and P fertilization
(Fife, Nambiar & Saur, 2008). Although a relationship between acidic phosphatase and
P resorption has been shown and the existence of acidic phosphatase genes controlling
P transfer to regulate leaf senescence has also been ascertained, the metabolic network
regulating P transfer in senesced leaves still needs to be revealed. A more systematic
discussion of the transfer of P from senesced tissues and the control of P resorption at the
molecular level should be carried out. In addition, litterfall is one of the consequences of
nutrient resorption and contributes relatively large amounts of organic matter to soils,
which is important in maintaining the cycles of P and other nutrients in diverse systems.
However, the tradeoff of resorbed nutrients and the nutrition of litter need to be explored
within individual plants. This idea may be one of the keys that unlock the resorption
and residual P release.

CONCLUSIONS
We summarized the state of soil “residual P” and the mechanisms of utilizing this P pool.
The utilization can be facilitated by the acidification of the soil surroundings, the
cation-anion exchange balance, organic anion and proton extrusion, root exudation and
assimilation/respiration, direct redox-coupled reactions, production of siderophore and
exopolysaccharide, and other pathways to utilize inorganic residual P in soils. It is also
promoted by plant and microorganism secreted non-specific acidic phosphatases,
phytases, and phosphatases/C-P lyases to utilize organic residual P in soils. In addition, the

Yang and Yang (2021), PeerJ, DOI 10.7717/peerj.11704 12/21

http://dx.doi.org/10.7717/peerj.11704
https://peerj.com/


phosphate-solubilizing microorganism, namely biofertilizer play an important role in the
utilization of the two kinds of residual P. We also summarized the possible effects of
planting and tillage patterns and various fertilization management practices on the release
of soil residual P and the link connecting leaf P resorption to soil P deficiency and the
regulatory mechanisms of leaf P resorption. The utilization of soil residual P represents a
great challenge and a good chance to manage P well in agricultural systems. In production
practices, the combination of “optimal fertilization and agronomic measures” can be
adopted to utilize residual P in soils. Some agricultural practices, such as reduced or no
tillage, crop rotation and stubble retention, should greatly improve the conversion of
various P forms in the soil due to change in the balance of individual nutrients in the soil
or due to improvements in the phosphatase profile and activity in the soil. Leaf P
resorption makes the plant less dependent on soil P availability, which can promote the use
efficiency of plant P and enhance the adaptability to P-deficient environments. This idea
provides new options for helping to ameliorate the global P dilemma.
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