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ABSTRACT Three complete severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) genomes from Ethiopian patients were compared with deposited global genomes. Two
genomes belonged to genetic group 20A/B.1/GH, and the other belonged to genetic group
20A/B.1.480/GH. Enhancing genomic capacity is important to investigate the transmission
and to monitor the evolution and mutational patterns of SARS-CoV-2 in this country.

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that emerged in
Wuhan, China, is an RNA virus that belongs to the genus Betacoronavirus, in the family

Coronaviridae (1). Like most RNA viruses, SARS-CoV-2 is expected to display a relatively high
rate of genetic mutations, which may influence viral transmission and pathogenesis, enable
escape from host defenses, and negatively affect the efficacy of vaccines and molecular diag-
nostic tools (2). Thus, enhancing genomic capacity is important to investigate the transmis-
sion and to monitor the evolution and mutational patterns of SARS-CoV-2 in this country.

Here, we report three SARS-CoV-2 genome sequences using Illumina NextSeq sequencing
technology. The protocol was ethically approved by the ALERT/AHRI Research Ethics
Committee. Nasopharyngeal swab samples were collected from subjects with suspected
SARS-CoV-2 following routine surveillance and diagnostic procedures. The first two samples
(GenBank accession numbers MZ172407 and MZ172408) were collected from a hospital set-
ting, and the last one (GenBank accession number MZ172409) was collected from a health
center. Nucleic acid was extracted using a Da An Gene extraction kit (catalog number
DA0591) following the manufacturer’s protocol. The extracted RNA was reverse transcribed
and SARS-CoV-2 was detected using the BGI real-time fluorescent reverse transcription (RT)-
PCR kit (catalog number MFG030010). Positive RNA samples were selected for sequencing
based on their threshold cycle (CT) values (CT values of ,24). The RNA was concentrated
using SPRI magnetic beads, and reverse-transcribed RNA was sequenced using the shotgun
metagenomic workflow outlined by Illumina (3). In short, 200 to 450 ng of input RNA was
subjected to ribodepletion, fragmentation, first- and second-strand cDNA synthesis, adenyla-
tion, adapter ligation, and amplification, according to the TruSeq stranded total RNA protocol.
The prepared libraries were loaded on the NextSeq 500 system for a paired-end 2 � 76-bp
sequencing run. The base call (BCL) files from the NextSeq 500 system were demultiplexed
and converted to FASTQ files using Illumina bcl2fastq2 software v2.20. Quality-checked
paired-end FASTQ files (4) were trimmed using Trimmomatic v0.36 (5). Taxonomic classifica-
tion was performed using Kraken2 (6), and the host reads were removed using Bowtie2 (7)
and SAMtools (8) with the human reference genome (GRCh38) (ftp://ftp.ccb.jhu.edu/pub/
data/bowtie_indexes) to yield unmapped reads. The reads with the host reads removed
were aligned to the complete genome of SARS-CoV-2 Wuhan-Hu-1 (GenBank accession num-
ber NC_045512.2) using BWA (9), and SAMtools was used for intermediate file conversion
and summary. Ivar consensus sequences were used as genome sequences. Variants were
called using Snippy (https://github.com/tseemann/snippy) and Nextclade. Local Nextstrain/
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Nextclade v0.13.0 was also implemented for clade assignment and variant annotation. The
phylogenetic tree was generated with Nextstrain/Augur using its default subsampling
scheme and focusing on country Ethiopia, region Africa, where 1,960 samples were sub-
sampled between December 2019 and February 2021; the tree was visualized using the
Nextstrain/Auspice tool. Lineage assignments were made using the Phylogenetic Assignment
of Named Global Outbreak Lineages (Pangolin) v1.07 tool (https://github.com/hCoV-2019/
pangolin) and clades from GISAID (https://www.gisaid.org). All tools were run with default pa-
rameters unless otherwise specified. There is 99.68 to 99.92% sequence identity using BLAST
between the full genome sequences of the isolates and the reference strain at the nucleotide
level and 99.94% identity at the amino acid level. All three isolates have 99.97 to 100% cover-
age, with 100% coverage of the coding region. The genome sizes were 29,860, 29,856, and
29,871 bp, with GC contents of 53%, 51%, and 49%, for isolates MZ172407, MZ172408, and
MZ172409, respectively. Similarly, the average coverage depths were 2,56.7� (range, 1� to
3,183�), 23.8� (range, 1� to 1,110�), and 1,288.3� (range, 4� to 8,002�) for the isolates
MZ172407, MZ172408, and MZ172409, respectively.

Phylogenomic analysis showed that two of the detected SARS-CoV-2 isolates (iso-
lates MZ172408 and MZ172409) belonged to lineage B.1 of the Pangolin lineage, shar-
ing the most common recent ancestor with viruses detected in Germany (Fig. 1). One
of the isolates (isolate MZ172407) was found to belong to lineage B.1.480. According
to Nextstrain (10), the phylogenetic tree revealed that all of the isolates belonged to
Nextstrain clade 20A and GISAID clade GH.

Mutations among the three SARS-CoV-2 strains were identified throughout the whole
genome, with reference to the SARS-CoV-2 Wuhan strain (GenBank accession number
NC_045512.2), and marked nucleotide differences in some positions were found, as
shown in Table 1. In general, several synonymous and nonsynonymous mutations with

FIG 1 Phylogenetic analysis of representative SARS-CoV-2 genome sequences, including the three current isolates. Available genomes were retrieved from
GISAID (https://www.gisaid.org) in January 2021. Sequences with low quality (i.e., ambiguous bases) were discarded. The figure was created using Nextstrain.
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pyrimidine exchanges (C to T or T to C) (55%) were observed in all three genomes
(Table 1). Currently, we are sequencing more genomes to further investigate the trans-
mission and to monitor the evolution and mutational patterns of SARS-CoV-2 in this
country.

Data availability. The coding-complete sequences were deposited in GenBank
with accession numbers MZ172407, MZ172408, and MZ172409 and SRA accession
numbers SAMN20692030, SAMN20692031, and SAMN20692032 and in GISAID (https://
www.gisaid.org) with accession numbers EPI_ISL_2970353, EPI_ISL_2970354, and
EPI_ISL_2970355 for Ethiopia/AHRI-01/2020, Ethiopia/AHRI-02/2020, and Ethiopia/
AHRI-03/2020, respectively.
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