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Abstract

Estrogen (17β-estradiol or E2) is a crucial regulator of the synthesis and secretion of pituitary 
reproductive hormones luteinizing hormone, follicle-stimulating hormone, and prolactin. 
In this review, we summarize the role of estrogen receptors in nonfunctioning pituitary 
neuroendocrine tumors (NF-Pitnets), focusing on immunoexpression and gonadotroph 
cell proliferation and apoptosis. Gonadotroph tumors are the most common subtype of 
NF-Pitnets. Two major estrogen receptor (ER) isoforms expressed in the pituitary are es-
trogen receptor alpha (ERα) and estrogen receptor beta (ERβ). Overall, estrogen actions are 
mostly exerted through the ERα isoform on the pituitary. The G protein–coupled estrogen 
receptor (GPER) located at the plasma membrane may contribute to nongenomic effects of 
estrogen. Nuclear immunoreactivity for ERα and ERβ was highest among gonadotroph and 
null cell tumors. Silent corticotroph tumors are the least immunoreactive for both recep-
tors. A significantly elevated ERα expression was observed in macroadenomas compared 
with microadenomas. ERα and ERβ may act in opposite directions to regulate the Slug-
E-cadherin pathway and to affect invasiveness of NF-Pitnets. In the cellular pathway, ERs 
regulate estrogen-induced proliferation and differentiation and impact several signaling 
pathways including the MAPK and PI3K/Akt pathway. Estrogen was the first-discovered in-
ducer of pituitary tumor transforming gene 1 that was abundantly expressed in NF-Pitnets. 
ERα can be a potential biomarker for predicting tumor size and invasiveness as well as 
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therapeutic target for NF-Pitnets. Selective estrogen receptor modulators or antiestrogen 
may represent as an alternative choice for the treatment of NF-Pitnets.

Key Words: estrogen, estrogen receptor alpha, estrogen receptor beta, nonfunctioning pituitary neuroendocrine 
tumors, gonadotroph tumors, SERMs

Pituitary adenomas, also referred to as pituitary neuro-
endocrine tumors (Pitnets) [1], are common neoplasms 
comprising ~10% to 20% of intracranial tumors [2]. 
Nonfunctioning pituitary neuroendocrine tumors 
(NF-Pitnets) are benign tumors characterized by the ab-
sence of clinical and biochemical evidence of hormonal 
overproduction [3]. However, these tumors can grow into 
large tumors and cause hypopituitarism and visual dis-
turbances. NF-PitNETs represent more than one-third of 
PitNETs, with predominance in men and increasing fre-
quency with older age [4]. NF-Pitnets represent a hetero-
geneous group of adenomas classified as gonadotroph 
adenomas, silent tumors that express only 1 pituitary hor-
mone (adrenocorticotropin hormone; thyroid-stimulating 
hormone, prolactin [PRL], and growth hormone [GH]), 
multiple pituitary hormones (silent adenoma subtype III), 
or no hormone (null cell) based on hormone expression on 
immunohistochemical examination [5]. Most NF-Pitnets 
stem from gonadotropic cells, with immunostaining for 
follicle-stimulating hormone (FSH), LH, and/or alpha sub-
unit of glycoprotein hormones. Among silent corticotroph 
adenomas, silent adenoma subtype I  (densely granulated) 
and subtype II (sparsely granulated) can be found. The  silent 
gonadotroph adenoma is the most common subtype [6].

17β-Estradiol regulates the synthesis and secretion of 
several pituitary hormones through the activation of es-
trogen receptors (ERs). 17β-Estradiol (E2) effects are typic-
ally mediated through 2 structurally related ERs, ERα and 
ERβ subtypes that function as ligand activated transcription 
factors [7]. In humans, ERα is encoded by an 8-exon gene 
on chromosome 6 [8], whereas the ERβ gene is located on 
chromosome 14 [9]. Evidence has demonstrated that ERα 
mediates the proliferative response to estrogen, whereas ERβ 
represses proliferation and induces differentiation. Overall, 
gonadotroph tumors have intermediate levels of protein 
and constitute a lower (50%) percentage of ERα-positive 
tumors, whereas the highest levels of ERα messenger ribo-
nucleic acid (mRNA) protein and the highest percentages of 
ERα-containing tumors have been among PRL-containing 
tumors, with or without GH (70-100%) [10]. Null tumors 
with ERα were less frequent, and GH tumors were consist-
ently ERα negative in several studies [11-13]. In contrast 
to the results with ERα, ERβ mRNA is expressed prefer-
entially in gonadotroph tumors, much less frequently in 
prolactinomas, and in the majority of tumors expressing 
only GH or GH plus PRL [10]. In the rat, estrogen stimulates 

basal secretion of LH, FSH, and PRL, and sensitizes the pitu-
itary to the gonadotropin-releasing hormone (GnRH) [14]. 
Estrogen also induces pituitary progesterone receptor (PR) 
expression in the gonadotrope and elicits GnRH self-priming 
[15]. Complex interactions between multiple signaling path-
ways are involved in estrogen regulation of hormone secre-
tion and gonadotroph cell proliferation and apoptosis [16].

In the present article, the emphasis is on the ER 
immunoexpression in NF-Pitnets and its role in gonado-
trophic cell proliferation and apoptosis. Finally, we re-
viewed the role of selective estrogen receptor modulators 
(SERMs) and antiestrogen as potential therapeutic agents 
in NF-Pitnets.

ER Immunoexpression in NF-PitNET

Through the use of a biochemical analysis, Pichon et al. 
[17] were the first to identify an increase in the number 
of ERs in gonadotroph adenomas. Subsequent study by 
Shupnik and colleagues [11] demonstrated the expression 
of ERα and ERβ mRNA isoforms and splice variants in 
gonadotroph adenomas by using reverse transcription 
polymerase chain reaction and hybridization blotting. 
Intriguingly, ERβ mRNAs were found to be more abundant 
in gonadotroph adenomas if compared with prolactinoma. 
ERα expression was found to be higher in NF-Pitnets than 
in functioning Pitnets in patients younger than 50  years 
[18]. In a study by Manoranjan et  al. [19], null cell ad-
enomas and gonadotroph adenomas were found to be 
among the most reactive for ERα. The expression pat-
tern of silent corticotroph adenomas (silent subtypes I, 
II) and subtype III indicate that these adenomas were the 
least reactive for ERα and ERβ, with silent corticotroph 
adenomas showing the lowest percent immunopositivity 
score for ERα expression. Similarly, gonadotroph and 
null cell adenomas demonstrated among the strongest 
immunoreactivity for ERβ. Their findings of elevated ERα 
and ERβ immunoexpression in gonadotroph adenomas are 
in keeping with results from previous studies [11-13, 20, 
21]. These findings may suggest that estrogen has a pos-
sible role in the stimulation and growth of these tumors. 
Moreover, ERα seems to be more abundantly expressed 
in large than in small pituitary tumors [19, 22]. ERα ex-
pression was also found to be significantly higher in inva-
sive NF-Pitnets. Zhou et al. [23] found that ERα staining 
was significantly stronger in invasive than in noninvasive 
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NF-Pitnets. Interestingly, decreased expression of ERβ was 
observed in invasive NF-Pitnets. In contrast to findings by 
Manoranjan et al. [19], noninvasive adenomas expressed 
a significantly higher level of ERα expression when com-
pared with invasive adenomas. This implies that the inva-
sion of NF-Pitnet may be affected by the balance between 
ERα and ERβ expression although conflicting results have 
been reported regarding the role of ERα in invasiveness 
of NF-Pitnets. This hypothesis was also supported by the 
findings in ER knockout mice that demonstrated forma-
tion of gonadotropin-positive pituitary tumors in female 
mice at 2 years of age following loss of ERβ [24]. However, 
previous studies failed to find significant difference in the 
marker of cell proliferation (proliferating cell nuclear 
antigen [PCNA] index) between invasive NF-Pitnets and 
noninvasive NF-Pitnets [23, 25]. The Ki-67 expression 
was also detected, but without any significant difference 
between invasive NF-Pitnets and noninvasive NF-Pitnets 
[23]. Nevertheless, immunohistochemistry data derived 
from a very large tissue microarray study of NF-Pitnets 
demonstrate that the Ki-67 index is the most consistent 
marker of biological behavior in these tumors [29].

The aggressiveness of pituitary adenomas has been as-
sociated with loss of the cell adherence protein, E-cadherin 
[26]. Previous studies have demonstrated that ER signaling 
pathways play important roles in the regulation of 
E-cadherin [27, 28]. In a study with 41 cases of NF-Pitnets, 
the expression of ER, Slug, and E-cadherin were determined 
to evaluate the relationship of ER with the invasiveness of 
NF-Pitnets and its correlation with E-cadherin or Slug [23]. 
In invasive NF-Pitnets, nuclear ERα staining was found 
to be significantly stronger in contrast to nuclear ERβ 
staining, which was significantly weaker. Both E-cadherin 
mRNA and protein were decreased significantly in invasive 
NF-Pitnets compared with noninvasive ones. Moreover, 
Slug, a repressor of E-cadherin, was significantly increased 
in invasive NF-Pitnets. Thus, there were significant correl-
ations between ER and Slug or E-cadherin in NF-Pitnets, 
in which Slug was positively correlated with ERα and in-
versely correlated with ERβ, whereas E-cadherin was posi-
tively correlated with ERβ and inversely correlated with 
ERα [23].

The role of ERα has emerged as a prognostic factor in 
male patients with NF-Pitnets. Low expression is related 
to an earlier and greater repeat intervention rate in male 
patients with NF-Pitnets [30]. Furthermore, the absence of 
ERα together with younger age appeared to predict the risk 
of reintervention in men with gonadotroph adenomas. The 
level of ERα (immunoreactive score and mRNA) was also 
found to be significantly correlated to the level of SSTR2 
in men [30]. Studies on breast cancer cells have shown 
that ER and SSTR2 expressions were correlated, and it has 

been suggested that estrogens regulate the level of SSTR2 
through ERα activation [31, 32].

Estrogen Functions in Gonadotroph Cell 
Proliferation and Antiapoptosis

The involvement of estrogens in the control of pituitary func-
tion has been extensively studied and reviewed [33]. It has 
been demonstrated that estrogens act on the biosynthesis 
and secretion of all hormones of the anterior pituitary. In 
the anterior pituitary, 2 classic targets for estrogen action 
are the lactotropes, where estrogen stimulates PRL, and 
the gonadotropes, where estrogen regulates FSH and LH. 
Estrogen has been shown to act through ERα and regulate 
gonadotroph cell differentiation, proliferation, and hormone 
production [11, 12, 34]. E2 selectively stimulates the prolif-
eration of both normal and transformed gonadotrophs [24]. 
Estrogen has been shown to cause cellular responses through 
both rapid, nongenomic action and the “classical” genomic 
responses [40]. Estrogen exerts rapid nongenomic effects ini-
tiated at the cell surface through binding to membrane ERs. 
That membrane-initiated signaling could be mediated by the 
classic receptors ERα and ERβ trafficked to the cell mem-
brane. It has been proposed that the 7-transmembrane G 
protein–coupled estrogen receptor (GPER) collaborates with 
membrane ERα signaling [35, 36]. GPER is a transmembrane 
receptor belonging to the G-protein–coupled receptor family. 
It was first identified in human breast cancer cells [39], and 
was later found to be expressed ubiquitously even in the 
rat brain and pituitary [38]. Previous reports have provided 
strong evidence of GPER expression in the pituitary gland 
and most of these studies focused on gonadotroph cells [37, 
38]. Estrogen has been shown to be involved in sensitizing the 
pituitary gonadotroph to GnRH stimulus [41] by increasing 
expression of GnRH receptor (GnRH-R) in gonadotrophs 
[42], mobilizing secretory granules to the periphery of the 
cell [43], and recruiting the pool of gonadotrophs that are 
capable of responding to GnRH stimulation [44, 45]. It has 
also been shown that estrogen downstream pathways include 
cytoskeleton rearrangement [46], regulation of ion channels 
[47], and energy metabolism [48]. In the cellular pathway, 
ERs regulate estrogen induced proliferation and differenti-
ation and impact several signaling pathways including the 
MAPK and PI3K/Akt pathway (Fig. 1). Yin and Arita [49] 
reported that gonadotrophs undergo a cyclic change in 
apoptotic cell death during the estrous cycle and suggested 
that inhibition of apoptosis at estrus could be a result of the 
proestrous surge of GnRH, helping to maintain the popula-
tion of gonadotrophs needed for the next cycle.

Diverse lines of evidence indicate that ERα is the pre-
dominant mediator of estrogen action in the pituitary. ER 
knockout mice rat models have been used to investigate on 
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the respective roles of ERα and ERβ. Agonists for ERα were 
capable of inducing increased LH secretion in estrogen-
primed GnRH-stimulated rat pituitaries [50]. In the study, 
ovariectomized rats were treated with nonsteroidal selective 
ligands for ER subtypes. Their effects were compared with 
those of estrogen actions on serum concentrations of LH, 
FSH, and PRL, and in vitro basal and GnRH-stimulated LH, 
FSH, and PRL secretion, and GnRH self-priming and pitu-
itary PR expression. ERα was found to be the mediator of 
all the studied effects of estrogen in the pituitary, while ERβ 
activation induced PR expression and gonadectomy cell re-
duction only [50]. Nonetheless, absence of physiological 
interactions between both ER isoforms in these models can 
be misleading. ERα activation was shown to be primarily 
responsible for the reorganization of the disrupted organ-
elle morphology seen in the gonadotroph after ovariectomy 

[51]. Targeted deletion of ERα in the gonadotroph was also 
reported to cause infertility in female mice [52].

Intriguingly, estrogen has been shown to increase pitu-
itary tumor transforming gene (PTTG) expression. PTTG 
stimulates fibroblast growth factor 2 and vascular endothe-
lial growth factor production to affect tumor growth, inva-
sion, and angiogenesis [53]. Overexpression of PTTG leads 
to cellular transformation and tumor development [54, 55]. 
The transcription and translation levels of the PTTG both 
increased after estrogen administration, and under the ad-
ministration of estrogen, PTTG, fibroblast growth factor 2, 
and vascular endothelial growth factor showed the same 
expression pattern, showing that estrogen is an inducer 
of PTTG [58]. To date, 3 studies have analyzed the PTTG 
expression in exclusive series of NF-Pitnets. The study by 
Noh et al. [56] showed PTTG expression in 100% of the 

Figure 1. Nongenomic and genomic estrogen signaling pathways. Endogenous estrogens including 17β-estradiol are nonselective activators of the 3 
known ERs, ERα, Erβ, and GPER. 17β-Estradiol activates nuclear ERs, inducing receptor dimerization and binding of receptor dimers to the promoters 
of target genes. Alternatively, activated ERs modulate the function of other classes of TFs through protein–protein interactions. Subpopulations of 
ERs at the plasma membrane activated by E2 interact with adaptor proteins (adaptor) and signaling molecules such as c-Src, which mediates rapid 
signaling via PI3K–Akt and MAPK pathways. E2, or selective agonists such as G-1, or selective estrogen receptor down-regulators, such as fulvestrant, 
or selective estrogen receptor modulators, such as tamoxifen, also activate GPER, which is predominantly localized intracellularly. GPER activation 
stimulates cAMP production, calcium mobilization and c-Src, which activates MMPs. These MMPs cleave pro-HB-EGF, releasing free HB-EGF that 
transactivates EGFR, which in turn activates MAPK and PI3K–Akt pathways that can induce additional rapid (nongenomic) effects (X), or genomic 
effects regulating gene transcription. E2-mediated transcriptional regulation may involve phosphorylation (P) of ER or other TFs that may directly 
interact with ER, or bind independently of ER within the promoters of target genes. Abbreviations: cAMP, cyclic adenosine 5′-monophosphate; E2, 
17β-estradiol; EGFR, epidermal growth factor receptor; ER, estrogen receptor; GPER, G-protein-coupled ER; MMP, matrix metalloproteinase; pro-HB-
EGF, pro-heparin-binding-epidermal growth factor; TF, transcription factor. (Figure reprinted by permission from Springer Nature Customer Service 
Centre GmbH: Nature:Nature Reviews Endocrinology. The G-protein-coupled estrogen receptor GPER in health and disease. Prossnitz ER, Barton M) 
[COPYRIGHT] (2011)
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cases and a statistically significant relationship with tumor 
regrowth and with a higher expression in the regrowth ad-
enomas. Ramírez et al. [29] found positivity in 99% of the 
samples, but no relation with invasiveness or hormonal ex-
pression. A recent study by Trott et al. [57] observed posi-
tivity in more than 50% of NF-Pitnets sample.

Selective Estrogen Receptor Modulators 
and Antiestrogen as Therapeutic Agents in 
NF PitNET

Surgery remains the first-line treatment of symptomatic 
NF-Pitnets. No medical therapies have been proposed so 
far in the guidelines of NF-PitNETs treatment although 
cabergoline and somatostatin analogues are able to improve 
visual problems and result in tumor shrinkage in 20% to 
40% of tumors [59, 60]. There have been investigations into 
antiestrogen-based treatments, since it is already established 
that estrogen signaling plays a key role in the pathogenesis 
of pituitary adenomas [61]. The relative levels of ERα and 
ERβ are an important determinant of the pharmacology 
of antiestrogens [62]. SERMs are a group of nonsteroidal, 
chemically diverse substances with a common mechanism 
of action. SERMs show a tissue-specific behavior as they 
can act as estrogen agonists in some tissues but also as es-
trogen antagonists in others. SERMs are approved for nu-
merous clinical applications such as treatment of breast 
cancer, prevention and treatment of postmenopausal osteo-
porosis, and acromegaly treatments [63]. The first SERM, 
tamoxifen (TX), was developed in the 1970s, followed 
by several others including raloxifene, clomifene, and 
bazedoxifene [64]. Among SERMs, the triphenylethylene 
TX was the first identified compound that exhibits mixed 
agonist and antagonist activities at the rat pituitary level. 
In cultured pituitary cells, TX was observed to be a more 
potent competitive antagonist of ERβ and was postulated 
to show a better response in ERβ-positive tumors [62, 65]. 
ERβ may suppress the partial agonist activity of TX on 
ERα. At the rat pituitary gonadotrope level, TX reduces 
GnRH-stimulated LH secretion, whereas, in the absence of 
the cognate ligand, it induces PR expression and GnRH self-
priming [66, 67]. Interestingly, neither the raloxifene nor the 
“pure” antiestrogens (RU58668 or ICI182,780) were able 
to dissociate reproductive pituitary functions of ERs. Only 
TX was shown to do so, which may suggest involvement of 
selective activation of different ER isoforms in the regula-
tion of LH, FSH, and PRL secretion [66]. Fulvestrant, is a 
nonselective pure ER antagonist, which has potential advan-
tages over TX derivatives that have partial agonist actions 
in the pituitary. Fulvestrant appears to downregulate ER 
expression and block ER-mediated gene transcription [68]. 
Fulvestrant could inhibit pituitary adenomas growth in vivo 

and in vitro through inducing apoptosis [61]. Fulvestrant 
was shown to reduce PTTG expression in human pitu-
itary tumors in vitro, thus supporting a role for selective 
antiestrogen treatment in human pituitary tumors [69].

Conclusion

In NF-Pitnets, estrogen exerts a complex regulatory pat-
tern affecting the hormone secretion and gonadotroph cell 
proliferation as well as apoptosis at the same time. Future 
studies are required to further characterize ERα as a novel 
biomarker for tumor size and invasiveness. Emerging thera-
peutic approaches will need to be evaluated to better serve 
this unique group of patients as significant number of 
gonadotroph tumors regrow following surgical resection. 
SERMs may have role in the management of significant 
post-operative residual NF-Pitnets
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