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Abstract 
Motivation:  

Longitudinal microbiome studies (LMS) are increasingly common but have analytic challenges including 
non-independent data requiring mixed-effects models and large amounts of data that motivate 
exploratory analysis to identify factors related to outcome variables. Although change analysis (i.e. 
calculating deltas between values at different timepoints) can be powerful, how to best conduct these 
analyses is not always clear.  For example, observational LMS measurements show natural fluctuations, 
so baseline might not be a reference of primary interest; whereas, for interventional LMS, baseline is a 
key reference point, often indicating the start of treatment. 
  
Results: 
To address these challenges, we developed a feature selection workflow for cross-sectional and LMS 
that supports numerical and categorical data called EXPLANA (EXPLoratory ANAlysis). Machine-learning 
methods were combined with different types of change calculations and downstream interpretation 
methods to identify statistically meaningful variables and explain their relationship to outcomes. 
EXPLANA generates an interactive report that textually and graphically summarizes methods and 
results. EXPLANA had good performance on simulated data, with an average area under the curve 
(AUC) of 0.91 (range: 0.79-1.0, SD = 0.05), outperformed an existing tool (AUC: 0.95 vs. 0.56), and 
identified novel order-dependent categorical feature changes. EXPLANA is broadly applicable and 
simplifies analytics for identifying features related to outcomes of interest. 
 

Availability and implementation:  

Software is available at https://github.com/JTFouquier/explana 

 

Contact: 

jennifer.fouquier@cuanschutz.edu 

 

Supplementary information: 

Software documentation can be found at explana.io  

 

Background/Introduction 

Currently, scientific studies often include a collection of complex multiomic data,1 such as microbiome,2 

transcriptome,3 and metabolome,4 and it is of interest to explore whether any novel features, or 

collections of features, may be related to an outcome variable. Adding to the complexity, researchers 

often collect other data from individuals that may impact an outcome, such as demographic and health 

data, or surveys on diet or medications. The growing quantity of available data complicates statistical 

decisions regarding variable inclusion, which is often based on hypotheses that motivated initial study 
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design. Additionally, studies can include both categorical and numerical variables and can often contain 

non-independent longitudinal data, posing greater statistical challenges. As research advancements are 

made, collaborative efforts with different research laboratories produce more data per study, and human 

biases are often introduced during study design and analytics. These challenges have ultimately 

stimulated a growing interest in data-driven methods. 

One field particularly impacted by an abundance of data is microbiome research, which focuses 

on characterizing the community of viruses, fungi and bacteria and their genes. Characterization of the 

microbiome is often performed by 16S ribosomal RNA (rRNA) gene sequencing, which identifies the 

bacteria and archaea in an environment. One well-studied microbial environment is the gut microbiome 

because of the metabolic potential of the bacterial community and its association with numerous human 

diseases, including obesity,5 depression,6 autism,7 cancer,8,9 HIV10 and cardiovascular disease.11 The gut 

microbiome relationship to human disease suggests that gut microbiome modification through 

interventions like dietary changes, probiotics, or fecal microbial transplants may provide disease 

prevention or treatment options. 

To understand changes in health outcomes and to address the impact of individual variation, 

longitudinal studies that collect data from multiple individuals, at different timepoints, are essential. In 

addition to these studies often containing diverse subject data (with numerical and categorical variables), 

they include repeated measurements on individuals which requires special statistical consideration to 

identify relationships between features within non-independent data.12 Random Forest (RF)13 based 

machine learning (ML) approaches are powerful for combining different data types to predict outcomes 

and identify important features. RFs work well with high-dimensional data (more features than 

samples/instances),14 find non-linear relationships, work with non-normal data distributions, and are more 

interpretable than many other ML models because they are based on simple decision trees. 

Implementation of interpretable methods can improve accessibility of complex tools. Additionally, mixed-

effects RF (MERF)15 models can be used for longitudinal study designs. However, numerous challenges 

can hinder effective application of these methods. 

MERFs can be run on original (raw) data from longitudinal studies or by using changes (s) 

between different reference timepoints, which can reveal unique insights in some studies.16–20 However, 

the research question of interest can affect decisions regarding optimal calculation of s. In some 

designs, such as interventions, or some observational studies with an expected trend over time (e.g., gut 

microbiome changes over the first years of a baby’s life16), changes are expected to be compared to a 

baseline value, so s can be calculated using baseline as a reference.17,18 However, some observational 

studies have no meaningful baseline, and it might be of interest to relate an outcome variable to changes 

in predictors between adjacent timepoints or all pairs of timepoints.21,22 For instance, in an observational 

longitudinal study of children with autism spectrum disorder (ASD) that we conducted,22 children with 

ASD were evaluated over time to identify relationships between diet, gastrointestinal distress, or the 
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microbiome and ASD-associated behaviors. Because of high interpersonal gut microbiome variation, this 

LMS revealed relationships between the gut microbiome and ASD behaviors as a correlation between 

the degree of microbiome change and ASD behavior change between timepoints. However, because 

more than two timepoints were studied, and because the first timepoint was not a meaningful baseline, 

pairwise analyses were performed. Pairwise analysis is useful for identification of effects that are time-

delayed (i.e., a change from time 2 to time 4), order-dependent, or reference dependent. Different 

longitudinal study designs highlight the importance of understanding differences/changes (s) in 

features, for each subject over time, and that feature changes differ depending on their reference values. 

Statistical methods differ regarding how and when to apply change analysis and can even lead to 

different conclusions.23 Thus, our method compares results from original and  datasets for a more 

complete picture of a longitudinal study. 

Another analytic challenge encountered in the application of RFs to complex microbiome studies 

is the integration of microbiome data as predictor variables (i.e. features) with other data types (e.g., 

surveys or clinical reports with numerical and categorical data). To the best of our knowledge, there are 

no software tools that create and select order-dependent categorical feature changes that impact an 

outcome variable. For example, the drugs amiodarone and quinidine for heart arrhythmia treatment have 

an interaction that could lead to a dangerously rapid heartbeat,24 but an interaction risk is higher if 

amiodarone precedes quinidine since amiodarone has a much longer elimination half-life (days25 vs 

hours26). This example highlights how calculating order-dependent categorical s might uncover 

relationships that have differential impact if introduced in opposite order, such as in crossover study 

designs (AB/BA designs). This led us to the hypothesis that unique features dependent on different 

contexts of change could be identified, including novel order-dependent categorical features by tracking 

text changes as an engineered feature value (e.g., “amiodarone__quinidine”). 

Finally, another key challenge is performing complex LMS analytics in a reproducible way that 

facilitates communication about results. These workflows can involve inputs of diverse data types, 

calculation of s with different reference points, feature selection using mixed-effects ML methods, and 

methods for explaining why features were selected, in addition to their importance ranks. Although there 

are tools for feature selection in microbiome data,16,27–31 none provide the combination of methods 

described here. For example, timeOmics31 is useful for multi-omic integration with an emphasis on time 

as the outcome, while other goals are to identify features related to different outcome variables over time. 

QIIME 2 longitudinal feature-volatility,16 a feature selection tool provided as part of a very popular 

microbiome analytics platform, allows for looking at different outcomes, but does not incorporate metrics 

that explain the selected feature’s impact on an outcome. Both tools, although useful for longitudinal 

analytics, do not incorporate categorical s. Although individual tools for data-pre-processing, application 

of RFs or MERFs, and downstream interpretation of results also exist, it is cumbersome for scientists to 

research and implement this complex array of tools. 
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For these reasons, we developed EXPLANA (EXPLoratory ANAlysis), a data-driven feature 

selection workflow that streamlines hypothesis generation, accommodating longitudinal and cross-

sectional data, as well as both numerical and categorical variables. EXPLANA can identify unique 

features important in different contexts of change, including order-dependent categorical features related 

to changes in outcomes. The combination of novel and existing methods to address analytic challenges 

provides broad applicability for scientific discovery. 

 

Results 

Software Workflow Summary 

EXPLANA was developed to create a comprehensive feature selection report. The workflow is guided by 

directions from a configuration file where the user provides dataset paths, selects optional preprocessing 

steps per dataset, and defines inputs and the outcome of interest (Figure 1). The input datasets are 

merged to form the comprehensive Original dataset. If more than one timepoint is sampled per subject, 

feature changes are calculated using different reference points to uncover important features in different 

contexts of change. Thus, the Original dataset is used to compute three  datasets, First, Previous, and 

Pairwise (Figure 2). Differences are calculated as follows: For First, compared to baseline/first measures. 

For Previous, compared to the immediately previous timepoint. For Pairwise, all pairwise comparisons 

between timepoints. Notation throughout is as follows: Timepoints 1, 2, 3, etc. are referred to as T1, T2, 

T3, etc., respectively. Accordingly, the difference between T1 and T2 is T1_T2, and labeled in 

chronological order. For T1_T2, T1 is the reference and is subtracted from T2 (Figure 2). 

EXPLANA accommodates numerical and categorical predictor and outcome variables, including 

novel functionality to track categorical feature changes over time. Microbiome-specific challenges 

addressed include the option to use a center-log-ratio (CLR) transformation for compositional data,32 as 

well as incorporating distance matrices during  calculations, allowing users to evaluate differences 

between microbiome samples, such as those calculated with UniFrac or other beta diversity measures.33 

For feature selection, MERFs are used as the ML method for independent, repeated measures data, 

otherwise RFs are used. The Boruta34 method combined with SHAP35 (BorutaSHAP36) is used to rank 

features by their importance for model performance, identify which contribute to a more accurate 

prediction of the outcome than expected by random chance, and produce plots to assess whether 

features have a positive or negative impact on an outcome, thereby improving results interpretation.  

Upon workflow completion, a report is generated that contains a description of the analysis, as 

well as tables and figures that explain why features were selected (Figure 3). The ease of running 

different datasets through the EXPLANA workflow enables easier exploratory analyses of datasets, such  
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Figure 1. Feature selection workflow diagram. Individual datasets can be preprocessed separately to reduce dimensionality 
using a variety of methods, including principal components analysis (PCA), center-log-ratio (CLR) transformation or filters. 

Datasets are merged to form the Original dataset prior to creation of  datasets for longitudinal studies. First, Previous, and 

Pairwise  datasets, as shown in blue, are created as explained in Figure 2. During  dataset creation, distance matrices can be 
incorporated. Feature selection is performed for up to four models built from each dataset (Original, First, Previous, and 
Pairwise). An .html report is created which summarizes features selected per model. 
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Figure 2. Example calculations of First, Previous and Pairwise  datasets for numerical and categorical features in a 

four timepoint study. The Original dataset includes original feature values (without change analysis) and  datasets contain 

differences/changes in features, per subject, between timepoints. Different reference points are used for each  dataset. For 
categorical features (e.g. pill color), text is used to track the order of categorical changes and for numerical features (e.g. 
microbe count), the reference is subtracted from the later timepoint. The comparison between two timepoints is indicated before 

each colon (e.g., a  between timepoint 1 and 2 is indicated as T1_T2). For a four timepoint study: First s: T1_T2, T1_T3, 

T1_T4; Previous s: T1_T2, T2_T3, and T3_T4; and Pairwise s: T1_T2, T2_T3, T3_T4, T1_T3, T1_T4, and T2_T4.  
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Figure 3. Screenshots from a feature selection report. The report is in an interactive .html format to facilitate interpretation of 
complex machine-learning method results through figures and written explanations. The report includes a written summary of 
methods containing arguments and information from the configuration file about the analytic decisions. The dynamic methods 
can be copy/pasted into manuscripts for efficiency; tables and figures summarize feature selection results for models built from 
Original and, if longitudinal, First, Previous and Pairwise Δ datasets. Figures include SHAP summary plots and SHAP 
dependence plots. Links are provided to directories containing files used for report generation to facilitate exploration of data 
and results.  
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as performing stratified analyses. For example, to do stratified analyses, the user simply needs to use 

small R scripts inside the configuration file which will be documented in the report. 

Workflow evaluation and feature selection using a simulation study 

The workflow was evaluated using simulation studies and published datasets (both detailed in Methods). 

A simulation study on longitudinal happiness, called SimFeatures, was created for performance 

evaluation and modeled as an intervention including 100 individuals treated with one of two therapies to 

improve happiness over five timepoints. Happiness is based on a numerical score where higher values 

indicate better mental health. For interpretability, features are recognizable as factors that could affect 

real-life happiness such as relaxation, sunshine, salary, medication, etc. Categorical and numerical 

features were included with and without relationships to happiness, thus representing predictive and not 

predictive engineered features (Supplemental Table 1). Some features were designed to be important 

only in some of the four models (Figure 2; Original, First, Previous or Pairwise) to validate whether the 

tool could select unique features dependent on different contexts of change. 

A simulated microbiome feature table (compositional data) was also created using 

MicrobiomeDASim37 with 25 differentially abundant microbes linearly correlated to happiness changes 

over time and 175 that are not related. The dataset with the outcome variable and simulated microbes 

was called SimMicrobiome. The dataset with SimFeatures and SimMicrobiome combined was called 

SimFeaturesMicrobiome0. To evaluate the effects of including many features without a relationship to the 

outcome, an increasing number of random variables from a variety of data distributions were added to 

the SimFeaturesMicrobiome dataset. The number of random variables is indicated in the dataset names. 

Thus, the five simulation studies used for workflow evaluation are SimFeatures, SimMicrobiome, 

SimFeaturesMicrobiome0, SimFeaturesMicrobiome500, and SimFeaturesMicrobiome1000. 

(Supplemental Table 1). 

Workflow evaluation was performed by appropriate selection or rejection of engineered features. 

True positives (selected predictive features; TPs) and true negatives (rejected not-predictive features; 

TNs) were considered correctly classified, while false positives (selected not-predictive features; FPs) 

and false negatives (rejected predictive features; FNs) were considered incorrectly classified 

(Supplemental Figure 1). These datasets allowed us to: 1) evaluate workflow performance from 

classification accuracy of engineered features and 2) to test the hypothesis that unique features 

dependent on different contexts of change could be identified, including novel order-dependent 

categorical changes related to an outcome. 

EXPLANA was used to select and rank features related to happiness for the five simulation 

studies for all models (Original, First, Previous or Pairwise) to evaluate performance (Figure 4, Table 1, 

Supplemental Figure 2). Area under the curve (AUC) and F1-score (a metric that accounts for both 

precision and recall; (Supplemental Figure 1) respective ranges for Original, First, Previous and Pairwise 
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Figure 4. Feature selection report excerpts for one analysis using SimFeatures dataset. The SimFeatures dataset is a 
simulated longitudinal intervention with 100 individuals sampled over five timepoints (see Methods for detailed description). (a) 
Feature occurrence figure with selected features organized by model (Original, First, Previous and Pairwise) and ranked with 
one being the highest importance. For presence (yes/1) of a categorical variable, SHAP values are indicated following the colon. 
SHAP summary beeswarm plots for ranked selected features are shown for (b) Original and (c) Previous models. Each point 
represents one sample, and the horizontal position indicates impact on the outcome as indicated on the x-axis. Points to the left 
indicate a negative impact, and points to the right indicate a positive impact. The colors represent the selected feature values, 
where red is larger, and blue is smaller. For binary encoded features (‘ENC’) red is yes/1 and blue is no/0. Note that scales differ 
between the top and bottom SHAP plots, as they are grouped by a maximum of ten features per SHAP plot. Some features were 
designed to be identified in only certain models. Green arrows draw attention to key findings explained in Results. Interesting 
results include: ENC_medicine_is_green_blue (pill color), a categorical feature important in Previous and Pairwise models; 
“relaxation”, a numerical feature important in Previous and Pairwise and undetectable in First as described in the Discussion; 
and “sunshine” which was unable to be detected in Previous but a high rank in other models. Multiple analyses create a more 
comprehensive picture for longitudinal studies. 300 trees were used, with a feature fraction of 0.3, max depth of 7, with 10 
iterations of mixed-effects Random Forests (MERFs), and 100 BorutaSHAP trials (100% importance threshold; p=0.05). 
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Table 1. Performance Results from Classification Accuracy of Engineered Predictive and Not Predictive 
Features in Five Simulation Studies 
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were: 0.79-1.00 and 0.83-1.00 SimFeatures; 0.80-0.96, and 0.73-0.87 for SimMicrobiome; 0.88-0.94 and 

0.78-0.91 for SimFeaturesMicrobiome0; 0.87-0.95 and 0.69-0.91 for SimFeaturesMicrobiome500; and 

0.90-0.95 and 0.66-0.92 for SimFeaturesMicrobiome1000. Original yielded the highest F1-scores and 

AUCs. The average workflow ability to recall predictive features was good/excellent (average 0.87, SD = 

0.09) and good for precision (avg 0.82, SD = 0.14), with some  datasets having lower precision or 

recall. Of the four models analyzed with EXPLANA for SimMicrobiome, Previous had the lowest percent 

variation explained (65.4%), a low recall (0.60), and failed to correctly classify some predictive features 

(Table 1). For simulated datasets with not-predictive microbes or random variables, Pairwise had the 

poorest precision. The lowest F1-score was for SimFeaturesMicrobiome1000 using Pairwise (0.66), 

which had 30 FPs out of 1000 random variable that affected precision (0.55). However, the proportion of 

selected predictive features (recall) was good (0.81), and the AUC was 0.91 (see confusion matrix in 

Table 1). 

The features selected from the smallest dataset containing a variety of input feature types, 

SimFeatures, are shown in Figure 4a. Details about features and their motivation for workflow 

demonstration are explained in Supplemental Table 1. One feature that emphasizes the advantage of 

calculating s using the previous values or pairwise values rather than only first/baseline values is pill 

color, a categorical feature engineered to have a negative impact on happiness when blue pills were 

taken after green (“green_blue”), and not conversely. The feature green_blue had relatively high ranks 

and a negative impact on the outcome using Pairwise and Previous (respective rank:impact: Pairwise = 

6/19:-5.3, and Previous 4/13: -10.7; Figure 4a and Figure 4c). Green was not a possible value at 

baseline/T1, therefore green_blue could not be identified with First. Green alone was selected with 

Original at a lower importance rank and a small positive impact (rank and impact: 11/13; +1.6) and blue 

was selected with a small negative impact (rank and impact: 10/13; -1.5). Green occurred at later 

timepoints, while happiness was also increasing, so selection of green with a small positive impact on 

happiness was appropriate in the Original despite being designed without independent effects. However, 

without the additional information provided by s, an assumption about positive impact on happiness 

when consuming green pills could have been made. 

A numerical example that emphasizes the benefit of using different methods for calculating s in 

longitudinal analysis is “relaxation,” which was selected in Original, Previous and Pairwise models but not 

First. Relaxation had one value for baseline/T1 and a different equivalent value at all later timepoints, 

resulting in T1 comparisons to T2, T3, T4 and T5 having identical values (e.g., T1=1, T2-T5 = 5; 

differences compared to baseline would be 4 in First). The lack of change in First makes it ineffective for 

discrimination and pattern recognition for “relaxation” despite its relationship to happiness. Another 

numerical feature only important in some contexts of change is “sunshine,” which was selected using 

Original, First, and Pairwise, but not Previous. Sunshine has a linear relationship to happiness over time 
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which can sometimes be less impactful upon calculating s using differences between adjacent 

timepoints only. 

EXPLANA can be used with cross-sectional data, which does not include s. To illustrate this, 

EXPLANA was applied to SimFeatures at timepoint 1. Perfect precision and recall were obtained, with six 

features selected: high and low salary, fish and dog as pets, healthy and unhealthy individuals 

(Supplemental Figure 3). 

EXPLANA performance was then compared to an existing feature selection tool for LMS, called 

QIIME 238 longitudinal16 feature-volatility. Because feature-volatility does not create  datasets (although 

other tools in q2-longitudinal can create  datasets) and does not automatically include categorical 

variables like EXPLANA, SimMicrobiome (the simulated microbiome, with no other study input variables) 

was analyzed using feature-volatility and EXPLANA (Table 1; Supplemental Figure 2). Default analyses 

for feature-volatility is on Original, and for EXPLANA on Original, First, Previous and Pairwise. All 

performance measures were substantially better for EXPLANA compared to feature-volatility, except for 

recall, which was 0.92 for EXPLANA Original and 1.00 for feature-volatility (Table 1). Of the 25 predictive 

microbes, 23 were selected by EXPLANA and 25 by feature-volatility. Of 175 not-predictive microbes, 

EXPLANA selected 5 FPs, while feature-volatility selected 155 FPs. 

Feature selection using a published study 

EXPLANA was next applied to identify bacteria related to month-of-life in babies from the Early 

Childhood Antibiotics and Microbiome (ECAM) study39 which was also used to compare results to QIIME 

2 longitudinal feature-volatility feature selection tool.16,38 The ECAM study generated 16S rRNA targeted 

sequencing data from monthly fecal samples collected from 43 babies over their first 2 years. Of 455 

genera, 61 were selected by feature-volatility Original, and for EXPLANA, 37 for Original, 46 for First, 26 

for Previous, and 96 for Pairwise (Figure 5). Of the 61 genera identified with feature-volatility, 25 were 

rejected by EXPLANA with Original. In total, there were 37 genera unique to EXPLANA analyses, with 

one identified using Original, which is an unidentified genus from the family Methylobacteriaceae. 36 

unique genera were identified using First, Previous and Pairwise  datasets including Paracoccus, 

Allobaculum, Anaerostipes, and Lactococcus, which were each identified in two of the three  datasets. 

To demonstrate the versatility for EXPLANA to work with categorical variables using the ECAM 

dataset we identified categorical features related to month-of-life, while excluding the numerical 

microbiome data. Variables included delivery type (cesarean/vaginal), diet during first three months 

(breast/formula milk), sex (male/female), and antibiotic exposure (yes/no). Change in antibiotic use from 

no to yes (n_y) at later timepoints was positively related to month-of-life, indicating that babies are more 

likely to have an antibiotic treatment event as they age. (Supplemental Figure 4). 
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Discussion 

To address challenges with LMS analytics, we developed a feature selection tool for longitudinal data to 

expedite discovery. Supervised ML methods were implemented to identify features that relate to outcome 

values. For meaningful results, it was essential to use methods that not only identified features that were 

important for regression, but also implement tools such as Boruta, that evaluate whether they are more 

important than by chance, and SHAP, that provide evaluation of direction of change. These tools improve 

confidence that relevant features were selected, and facilitate hypothesis generation by explaining 

feature impact on dependent outcome variables. 

EXPLANA had good performance with simulated data, as determined by selection or rejection of 

engineered features. The  datasets highlighted that change analyses can produce unique insights 

compared to Original longitudinal data without  calculations. Several studies have applied MERFs for 

feature selection,40,41 as used in EXPLANA, however, they did not use s, which could lead to a loss of 

valuable insights. 

The four models (Original, First, Previous and Pairwise) can have strengths and limitations with 

feature selection. For example, Previous failed to select “sunshine” with SimFeatures, which had an 

engineered linear relationship to happiness over time, while the other three models selected it with a high 

importance rank. This finding is related to our observation that Previous had a low percent variation 

explained and recall for SimMicrobiome because the simulated predictive microbes and sunshine had a 

linear trend over time. Other temporal trends include quadratic, hockey stick, etc.37 Previous can miss 

predictive features when changes are minimized such as when the reference time is closer and predictor 

variables linearly relate to the outcome. This contrasts with First, where changes would be emphasized 

compared to baseline. A limitation of Pairwise, is that more comparisons are made and comparisons from 

overlapping time spans are not independent, so it is important to consider a higher chance of FPs, which 

we did observe. Therefore, stringent statistical parameters should be considered. For all simulations, 

First and Original had the best overall percent variation explained as expected for this study design 

consisting of engineered features with known changes from a baseline value.  

Despite model limitations in particular instances, engineered features emphasized the importance 

in building models using Original and  datasets. Pill color “green_blue” was only able to be found in 

Previous and Pairwise, and demonstrated the ability for EXPLANA to use  datasets to find order-

dependent categorical variables that impact an outcome (also seen with “no_yes” for antibiotics in the 

ECAM data), which are impossible to detect using Original. “Relaxation” is impossible to select in First, 

and was not selected, because it lacked variation compared to baseline values, it was selected by all 

other models. These features provide examples that demonstrate how different models, for different 

contexts of change, are needed to uncover time-dependent effects. The inclusion of ordered variables  
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Figure 5. Bacterial genera related to month-of-life in newborns from the Early Childhood Antibiotics and Microbiome 
(ECAM) dataset selected using EXPLANA and QIIME 2 longitudinal feature-volatility.16,38,39 Features are ranked with one 
being the most important. Feature-volatility results are in first column (Original model), followed by EXPLANA for Original, First, 
Previous and Pairwise. Software tool, model and percent variation explained using R2 is shown on the X-axis. Both tools used 
500 trees. EXPLANA had a feature fraction of 0.3, max depth of 7, 10 iterations of mixed-effects Random Forests (MERFs), and 
100 BorutaSHAP trials (100% threshold; p=0.05). For feature-volatility, the feature fraction is a fixed parameter at 1.0 and uses 
Random Forest (RF) without mixed-effects. Top ten features per model are emphasized using a sequential multi-hue color 
palette from light to dark, and features after 10 are in grayscale from light to dark. Paracoccus, Allobaculum, Anaerostipes and 

Lactococcus genera were uniquely identified with EXPLANA using  datasets. Blautia had a much higher importance rank with 
EXPLANA compared to feature-volatility.  
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allows for modeling statistical interactions with time, which are often difficult to interpret, especially with 

non-linear approaches like Random Forests. By incorporating ordered variables in the automated change 

calculation step, and providing visualizations in the report, the workflow enhances interpretation of 

findings from longitudinal studies. 

Dissimilarities between data included in each of the four models can create complications with 

interpreting feature selection results, such as dropping samples from  datasets due to missing 

timepoints. Another challenge with interpreting results from multiple models arises from including 

distance matrices, which can only be included in  datasets because they represent changes between 

samples. Thus, care should be taken with interpreting results obtained by different models within one 

report. 

A total of 43 babies were included in the ECAM data reanalysis, which is a relatively small n. 

Other studies have demonstrated that RFs are useful for feature selection with sample sizes in the range 

of 25-35 samples. 42–44 The higher number of important genera selected using feature-volatility is likely 

due to a lack of statistical testing to reduce FPs as done with BorutaSHAP in EXPLANA. Indeed, many 

FPs were identified using feature-volatility with simulated microbiome data (SimMicrobiome) which 

contained a known amount of predictive and not predictive microbes. For the ECAM dataset, importance 

ranks differ for many genera between EXPLANA and feature-volatility leading to different conclusions 

about the degree of importance regarding developmental microbiome changes. Notably, the genera 

Roseburia, Ruminococcus and Blautia were ranked higher with EXPLANA compared to feature-volatility, 

and Bifidobacterium and Veillonella ranked lower using all four models (Figure 5). There were 37 unique 

genera found by EXPLANA, and not feature-volatility.  

The tools first-differences and first-distances (for distance matrices) from q2-longitudinal1 can 

create s from continuous data, which can be used with feature-volatility. However, creation of s is not 

part of the feature-volatility feature-selection process, and comparing results from different models is 

cumbersome without comparative figures, such as the feature occurrences figure provided with 

EXPLANA (e.g., Figure 4a). Additionally, the incorporation of categorical s is a novel method not 

performed by other feature selection tools. The ML model used in feature-volatility is RF, which is not 

designed for repeated measures like MERFs used in EXPLANA. The importance score used in feature-

volatility is Gini, which is biased when categorical and numerical variables are combined,45 while 

EXPLANA uses SHAP, which works well for this combination of feature types. Additionally, SHAP 

provides feature impact on the outcome, in addition to rank, as well as statistical testing from 

BorutaSHAP. Overall, analyzing the ECAM data with the mixed-effects models and statistical testing 

used in EXPLANA yielded a more meaningful set of bacterial genera and unique genera using  

datasets. 

There is no one-size-fits all model and it is challenging to understand which parameter 

adjustments will lead to optimal results. However, tuning of the algorithm can address some issues, 
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especially the number of features available per decision tree split (a parameter that cannot be modified in 

feature-volatility), which is affected by the proportion of meaningful and collinear input variables. This 

workflow simplifies the process of comparing and testing different models using different arguments to 

identify which is the most effective model. Interpretation of exploratory analysis should be done with care, 

and post-hoc testing should be considered. 

The barrier to performing data-driven feature selection for cross-sectional and LMS has been 

lessened by EXPLANA. Different applications are possible including focusing analysis on specific 

timepoints or segments of time within a longer study period, such as during plateau or active time 

periods. Additionally, stratifying by factors such as sex, geography, disease symptom, or a combination of 

factors could be worthwhile. EXPLANA also provides the opportunity to investigate different variables as 

inputs, sets of inputs, or as outcomes from prior hypotheses or from results of another exploratory 

analysis. 

Overall, EXPLANA addresses many challenges of high-dimensional exploratory data analysis by 

combining existing tools and novel methods, and facilitates data-driven hypothesis generation. 

 

Methods 

Workflow overview 

EXPLANA was developed using Snakemake46 to facilitate piping inputs and outputs from scripts written 

in different software languages, primarily R and Python (Figure 1). The workflow is executed from user-

input arguments from a configuration file which pipes files to different scripts concluding with an .html 

report. The configuration file includes a list of datasets (microbiome, surveys, etc.) in long format (rows 

are samples; columns are features). First, individual datasets can be preprocessed through filters, 

dimensionality reduction, or transformation. If multiple files exist, they are merged to create the Original 

dataset. For longitudinal data,  datasets are computed (Figure 2). Finally, a feature selection algorithm 

is implemented by building a model from each of the four datasets (Original, First Previous and 

Pairwise): First, RFs13 or MERFs15 (for multiple samples per subject), are trained; Next, BorutaSHAP36 is 

used to rank features by importance if they perform better than expected by random chance, and 

determine feature impact on response. The final report includes figures, tables, and a written analytic 

summary. 

Analyses were completed locally to ensure reasonable compute time for typical academic 

microbiome studies or those without server access. For 1000 features, 5 timepoints and 100 individuals, 

run time is less than 30 minutes using a MacBook Pro (Memory: 32 GB 2400 MHz DDR4; Processor: 2.9 

GHz; 6-Core Intel Core i9). 
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Software and data availability 

Software is free for academic use. Workflow implementation and documentation can be found at 

www.explana.io and software, sample datasets and licensing at https://github.com/JTFouquier/explana. 

Configuration file 

Each configuration file is associated with one analysis. Users modify a configuration file that specifies 

datasets, a response/outcome variable, sample identifier column, timepoint column, distance matrices (if 

applicable), optional dimensionality reduction steps prior to feature selection, and ML method 

decisions/arguments. Feature values as well as feature columns can be kept or dropped for individual 

datasets or for the merged Original dataset using small scripts within the configuration file. 

Preprocessing datasets 

For each feature selection analysis, one or more dataset files can be used as needed. Each dataset can 

be preprocessed, which may include dropping features or feature values, on a per dataset basis. 

Dimensionality reduction can be performed prior to feature selection using principal components analysis 

(PCA), transformation or filters. PCA is used on a set of related variables to capture the maximum 

variance using fewer variables. Short scripts can be added to the configuration file to modify each 

dataset or the complete dataset after merging individual datasets. 

Dataset integration 

After preprocessing, individual datasets are merged using sample identifier column to create the 

"Original” dataset. The Original dataset is named accordingly because it contains original values of 

features that may have been sampled over time (i.e., Original does not include intra-individual 

changes/differences between timepoints like the  datasets). Data integration prioritizes samples in the 

top/first dataset. This means additional samples in other datasets will not be included. For some 

analyses, merging data prior to implementation may be simpler. 

Delta () dataset creation 

For longitudinal analyses, the Original dataset is used to compute three  datasets, First, Previous, and 

Pairwise by calculating feature changes over time, per subject, using different reference points (Figure 

2).  dataset calculations: For First, compared to baseline/first; for Previous, compared to previous 
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timepoint; for Pairwise, all pairwise comparisons between timepoints. For two timepoint studies, only 

Original and First are needed. 

For categorical variables, the order of categorical values for each subject at both timepoints per 

comparison is tracked (e.g., for pill color, if T2 is green and T3 is blue, T2_T3 is green_blue). For 

numerical variables, reference values are subtracted from the later timepoint (e.g., if T2 is 3 and T3 is 7, 

 = 4). 

Timepoint is numerical for Original to provide information about order of events, and categorical 

for  datasets due to overlap in timepoints (i.e., T1_T2 and T1_T3 overlap each other at T1_T2). This 

overlap can be thought of as though time were categorical rather than an abstract concept. In other 

words, if T1, T2 and T3 were recoded as A, B, and C, respectively, the comparisons A_B, A_C and B_C 

are potentially interesting. 

Feature selection algorithm 

Feature selection is performed using all four models, as needed. For categorical features, unique 

values/classes per feature are encoded to binary features (labeled as “ENC”), where feature presence in 

a sample is 1 and absence is 0. This enables selection of uncommon feature values that influence an 

outcome variable. 

Next, RF regression is performed to select features related to the outcome. When more than one 

measurement per subject exists, MERF is used. Both use Scikit-Learn47 RandomForestRegressor as the 

fixed effects forest. Boruta34 is a method that uses shuffled versions of input features to assess whether 

importance scores are better than random chance. Features are categorized as accepted, tentative or 

rejected. BorutaSHAP36 is implemented because it works with the unique properties of SHAP (SHapley 

Additive exPlanations),35 which provides feature ranks and estimated impact on the outcome. 

Rejected features are dropped, RF (or MERF) is re-run, and visualizations are generated without 

irrelevant features that might hide true signal from important features. Final percent variation explained 

comes from OOB out-of-bag (OOB) scores from the complete-feature forest. For additional context, the 

percent variation explained by the reduced-feature forest is also provided. OOB scores are used for 

internal validation and created from leaving out some samples for each decision tree in the forest during 

training and comparing the tree’s results to the real outcome values for the samples left out. 

Report Details 

The result of each analysis is an interactive .html report that includes figures, tables, links to directories 

for data exploration, links to PubMed for researching findings, and written descriptions of the analytic 

process (Figure 3). A methods section is dynamically created based on user inputs or defaults, which can 

be included in manuscripts. A feature occurrence figure summarizes feature ranks for all models, 
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followed by model-specific sections and impact on outcome is provided for categorical features because 

positive instances per sample are clear, while numerical feature relationships are more complex (e.g., a 

hockey curve pattern). Figures include SHAP plots that explain feature impact on outcome. 

Simulation study design 

A simulation study on happiness was designed to facilitate performance testing using variables that are 

either predictive or not predictive of happiness. Variables and their effects on the outcome are in Table 1. 

All individuals started with the same happiness score and effects from all features were used to update 

each subject’s happiness score at each timepoint. Predictive features had effect values stored in a 

different column labeled with the suffix “_effect”. For example, the “salary” column contained values 

“high” or “low” and had a corresponding “salary_effect” column with numerical values reflecting effects on 

happiness. All effect column values were added to original happiness scores and columns labeled 

“effect” were removed before feature selection. This way, engineered effects were contained in the 

happiness value, and predictive features can be identified if they corresponded to the effect. 

R package faux48 was used to add subject random effects, five timepoints, and a control and test 

group. The test group was simulated to linearly increase with a positive slope of 30 (correlation 

coefficient of 0.7 and SD = 5) to simulate a treatment effect that improved happiness. 

To create longitudinal microbiome simulations containing differentially abundant and not 

differentially abundant microbes, microbiomeDASim37 was used with a first-order autoregressive 

correlation structure that linearly increased with slope 30 to correlate with happiness (Correlation 

coefficient = 0.7; standard deviation = 5). 

Eight data distributions were used with random, not predictive variables. Normal, Bernoulli, 

Binomial, Poisson, Exponential, Gamma, Weibull49 and Dirichlet. The number of random variables is 

indicated in the dataset name. Accordingly, for SimFeaturesMicrobiome0, SimFeaturesMicrobiome500 

and SimFeaturesMicrobiome1000, the number of random variables is 0, 500, and 1000, respectively. 

When using EXPLANA, arguments were set based on recommendations of the underlying tools 

or from previous studies on hyperparameter tuning,50,51 which included for MERF, 300 trees, 0.3 feature 

fraction for decision tree splits with a max depth of 7 and 10 MERF iterations and 100 BorutaSHAP trials 

were run (100% importance threshold; p = 0.05). 

Performance evaluation 

Performance was assessed using simulation studies and F1-scores and AUC metrics (Supplemental 

Figure 1). Recall (TP rate): proportion of predictive features correctly selected (Recall = TP/(TP+FN)). 

Precision: proportion of all selected features that are truly predictive (Precision = TP/(TP+FP) An F1-
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score is calculated using precision and recall 2*(Precision * Recall) / (Precision + Recall), as well as 

AUC, which plots the TP rate against the FP rate. 

Early Childhood Antibiotics and Microbiome (ECAM) dataset analysis 

To explore feature selection results using published data, 455 genera from the ECAM dataset were used 

because it was also used to demonstrate QIIME238 longitudinal feature-volatility16 functionality. Metadata 

was filtered to remove duplicate months to facilitate  calculations performed by EXPLANA. 500 trees 

were used for both tools. EXPLANA arguments: Feature fraction of 0.3, max depth = 7, with 10 MERF 

iterations and 100 BorutaSHAP trials (100% threshold; p = 0.05). Q2 feature-volatility arguments: 

Feature fraction of 1.0 (cannot modify) and 5 k-fold cross-validations. 
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Supplemental Figures 

 

Supplemental Figure 1. Classification diagram for engineered predictive and not predictive features used 
for model performance evaluation. The simulation study contains features with a relationship to the outcome variable 
(predictive features) and without (not-predictive features). Dashed lines and stars indicate the correct classification paths for 
engineered features. Recall (TP rate) is the proportion of predictive features correctly selected (Recall = TP/(TP+FN)). Precision 
is the proportion of all selected features that are truly predictive (Precision = TP/(TP+FP)). An F1-score is calculated using 
precision and recall (2*(Precision * Recall) / (Precision + Recall)). TP = true positive, FP = false positive. 
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Supplemental Figure 2. Features related to happiness selected using EXPLANA with five variations of simulated 
longitudinal microbiome datasets. The SimFeatures dataset is a simulated longitudinal intervention with 100 individuals 
sampled over five timepoints. SimMicrobiome is a simulated longitudinal microbiome dataset created using MicrobiomeDASim37 
with a ratio of 25 differentially abundant microbes to 175 not differentially abundant. See Methods and Supplemental Table 1 for 
detailed description of the simulation study design. SimFeaturesMicrobiome0, SimFeaturesMicrobiome500, and 
SimFeaturesMicrobiome1000 are dataset variations that include a simulated microbiome, study variables and random variables 
from a variety of data distributions with no relationship to the outcome. The number in the dataset name represents the number 
of random variables included. 300 trees were used, with a feature fraction of 0.3, max depth of 7, with 10 iterations of mixed-
effects Random Forests (MERFs), and 100 BorutaSHAP trials (100% importance threshold at p=0.05). Top ten features per 
model are emphasized using a sequential multi-hue color palette from light to dark, and features after 10 are in grayscale from 
light to dark. Notable features include “sunshine,” which was selected in Original, First and Pairwise, but not selected in 
Previous; “relaxation” which was not selected in First but was selected in Original, Previous and Pairwise; and “green_blue,” an 

order-dependent categorical feature that impacted the response and is only able to be found using delta  datasets. 
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Supplemental Figure 3. Cross-sectional feature-selection results using EXPLANA with baseline values only 
from simulated happiness dataset. SimFeatures dataset was used at timepoint 1 and cohort, salary and pet were 
selected as important. (a) Feature occurrence diagram displaying rank and SHAP value. Unhealthy individuals are 
ranked 1 and have a -5.4 impact on “happiness” and healthy individuals are ranked 2 and have a 5.2 impact. (b) 
SHAP summary beeswarm plot where each point represents one sample, and the horizontal position indicates 
impact on the outcome as indicated on the x-axis. Points to the left indicate a negative impact, and points to the 
right indicate a positive impact. The colors represent the selected feature values, where red is larger, and blue is 
smaller. For binary encoded features (‘ENC’) red is yes/1 and blue is no/0. Features are ordered by largest to 
smallest impact on the response. As shown, low salary negatively impacts happiness and having a dog positively 
impacts happiness. 
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Supplemental Figure 4. Heatmap of bacterial genera predictive of month-of-life in newborns selected by 
EXPLANA using only categorical features from the Early Childhood and Microbiome (ECAM) dataset. RF 
was used with 500 trees, a feature fraction of 0.2, max depth of 7, and 100 BorutaSHAP trials (100% threshold; 
p=0.05). Each point represents one sample, and the horizontal position indicates impact on the outcome as 
indicated on the x-axis. Points to the left indicate a negative impact, and points to the right indicate a positive 
impact. The colors represent the selected feature values, where red is larger, and blue is smaller. For binary 
encoded features (‘ENC’) red is yes/1 and blue is no/0. 
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Supplemental Tables 

Supplemental Table 1. Engineered predictive and not-predictive input features used in 
happiness simulation studies. 
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