metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[diaquastrontium]-bis(μquinoline-3-carboxylato)]

Dong-Liang Miao,^a Shi-Jie Li,^b Wen-Dong Song,^c* Xiao-Tian Ma^a and Xiao-Fei Li^d

^aCollege of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China, ^bSchool of Environmental Science and Engineering, Donghua University, Shanghai 200051, People's Republic of China, ^cCollege of Science, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China, and ^dCollege of Agronomy, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China Correspondence e-mail: songwd60@163.com

Received 29 August 2011; accepted 8 September 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.009 Å; R factor = 0.037; wR factor = 0.112; data-to-parameter ratio = 13.0.

The title compound, $[Sr(C_{10}H_6NO_2)_2(H_2O)_2]_n$, contains an eight-coordinate Sr^{II} ion displaying a distorted square-antiprismatic geometry, two quinoline-3-carboxylate ligands and two terminal water molecules. The Sr^{II} atom is surrounded by six carboxylate O atoms from four separate quinoline-3-carboxylate ligands and two O atoms from two coordinated water molecules. The bridging carboxylate O atoms [Sr-O = 2.498 (3) and 2.495 (3) Å] link Sr^{II} atoms, forming a chain substructure extending along the *c* axis. The chains are linked by $O-H \cdots N$ and $O-H \cdots O$ hydrogen bonds, giving a three-dimensional framework structure

Related literature

For a similar structure, see: Miao *et al.* (2010). For structures with quinoline-3-carboxylate ligands, see: Okabe & Muranishi (2003*a*,*b*); Zevaco *et al.* (1998). For quinoline-3-carboxylate ligands in a range of metal complexes, see: Haendler (1986, 1996); Hu *et al.* (2007); Martell & Smith (1974); Odoko *et al.* (2001); Okabe & Koizumi (1997); Okabe & Makino (1998, 1999); Okabe & Muranishi (2002).

V = 1981.2 (7) Å³

Mo $K\alpha$ radiation

 $0.30 \times 0.28 \times 0.22 \text{ mm}$

15104 measured reflections

3551 independent reflections 2571 reflections with $I > 2\sigma(I)$

 $\mu = 2.76 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int} = 0.047$

Z = 4

Experimental

Crystal data

 $[Sr(C_{10}H_6NO_2)_2(H_2O)_2]$ $M_r = 467.97$ Monoclinic, $P2_1/c$ a = 16.121 (3) Å b = 15.568 (3) Å c = 7.9607 (16) Å $\beta = 97.42$ (3)°

Data collection

Bruker APEXII area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\min} = 0.491, T_{\max} = 0.582$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.037 & \text{H atoms treated by a mixture of} \\ wR(F^2) &= 0.112 & \text{independent and constrained} \\ S &= 1.19 & \text{refinement} \\ 3551 \text{ reflections} & \Delta\rho_{\text{max}} &= 0.79 \text{ e } \text{ Å}^{-3} \\ 274 \text{ parameters} & \Delta\rho_{\text{min}} &= -1.19 \text{ e } \text{ Å}^{-3} \end{split}$$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1W-H2W\cdots O2^{i}$	$\begin{array}{c} 0.84 \ (1) \\ 0.84 \ (1) \\ 0.84 \ (1) \\ 0.84 \ (1) \\ 0.84 \ (1) \end{array}$	1.97 (2)	2.798 (5)	168 (6)
$O1W-H1W\cdots N1^{ii}$		2.01 (1)	2.846 (6)	175 (6)
$O2W-H3W\cdots O3^{iii}$		1.99 (2)	2.810 (5)	166 (5)
$O2W-H4W\cdots N2^{iv}$		2.01 (1)	2.846 (6)	176 (5)

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (iv) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

This work was supported by the Nonprofit Industry Foundation of the National Marine Public Welfare Projects (grant No. 2000905021), the Guangdong Oceanic Fisheries Technology Promotion Project [grant No. A2009003–018(c)], the Guangdong Chinese Academy of Science comprehensive strategic cooperation project (grant No. 2009B091300121), Guangdong Province key project in the field of social development [grant No. A2009011–007(c)], the Science and Technology Department of Guangdong Province Project (grant No. 00087061110314018) and the Guangdong Natural Science Foundation (No. 9252408801000002)

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2325).

References

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
 - Haendler, H. M. (1986). Acta Cryst. C42, 147-149.
 - Haendler, H. M. (1996). Acta Cryst. C52, 801-803.
 - Hu, S., Zhang, S.-H. & Zeng, M.-H. (2007). Acta Cryst. E63, m2565.
 - Martell, A. E. & Smith, R. M. (1974). *Critical Stability Constants*, Vol. 1, pp. 78, 372; Vol. 2, p. 219. New York: Plenum Press.
 - Miao, D.-L., Li, S.-J., Song, W.-D., Liu, J.-H. & Li, X.-F. (2010). Acta Cryst. E66, m1441-m1442.
 - Odoko, M., Muranishi, Y. & Okabe, N. (2001). Acta Cryst. E57, m267-m269.
- Okabe, N. & Koizumi, M. (1997). Acta Cryst. C53, 852-854.
- Okabe, N. & Makino, T. (1998). Acta Cryst. C54, 1279–1280.
- Okabe, N. & Makino, T. (1999). Acta Cryst. C55, 300-302.
- Okabe, N. & Muranishi, Y. (2002). Acta Cryst. E58, m287-m289.
- Okabe, N. & Muranishi, Y. (2003a). Acta Cryst. E59, m220-m222.
- Okabe, N. & Muranishi, Y. (2003b). Acta Cryst. E59, m244-m246.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zevaco, T. A., Gorls, H. & Dinjus, E. (1998). Inorg. Chim. Acta, 269, 283-286.

Acta Cryst. (2011). E67, m1386-m1387 [doi:10.1107/S1600536811036610]

catena-Poly[[diaquastrontium]-bis(*µ*-quinoline-3-carboxylato)]

D.-L. Miao, S.-J. Li, W.-D. Song, X.-T. Ma and X.-F. Li

Comment

Crystal engineering of mental-organic complexes is a very active research field. It is well known that organic ligands play a crucial role in the design and construction of desirable frameworks. Quinoline-2-carboxylic acid is a tryptophan metabolite and it is known to be a chelator of transition metal ions (Martell & Smith, 1974). The crystal structures of its metal complexes have been determined for several metal ions, including Fe^{II} (Okabe & Makino, 1998; Okabe & Muranishi (2003a), Zn^{II} (Zevaco *et al.*, 1998; Okabe & Muranishi (2003b), Ni^{II} (Odoko *et al.*, 2001), V^{IV} (Okabe & Muranishi, 2002), Cu^{II} (Haendler, 1986), Mn^{II} (Haendler, 1986; Okabe & Koizumi, 1997) and Co^{II} (Okabe & Makino, 1999). However, to the best of our knowledge, the complexes based on the quinoline-3-carboxylate ligand are still largely unexplored(Hu *et al.*, 2007), In our previous study, we obtained a new Ca^{II} complex with quinoline-3-carboxylate ligand (Miao *et al.*, 2010). In this paper, we will present the synthesis and crystal structure of a new Sr(II) complex assembled from SrCl₂ and quinoline-3-carboxylate ligand.

As illustrated in Fig. 1, the title complex $[Sr(C_{10}H_6NO_2)_2 (H_2O)_2]_n$, contains a eight-coordinate Sr^{II} ion, two quinoline-3carboxylate ligands and two terminal water molecules. Each Sr^{II} displays a distorted square-antiprismatic geametry defined by six carboxylate O atoms, from four separate quinoline-3-carboxylate ligands and two oxygen atoms from two aqual ligands. It is noted that the quinoline-3-carboxylate only one coordination mode in the title complex: each adopts bidentate chelating and bridging coordination fashion to connect two adjacent Sr^{II} ions. The bridging carboxylate O atoms (O1 and O4) [Sr—O, 2.498 (3), 2.495 (3) Å] link separate Sr^{II} centres, forming a one-dimensional chain substructure extended along *c* (Fig.2). The chains are linked together by O—H…N and O—H…O hydrogen bonds (Table 1) giving a three-dimensional framework structure (Fig.3).

Experimental

A mixture of $SrCl_2$ (0.05 g, 0.2 mmol) and quinoline-3-carboxylic acid (0.04 g, 0.2 mmol) in 12 ml of distilled water was sealed in an autoclave equipped with a Teflon liner (20 ml) and then heated at 394 K for 2 days. Crystals of the title compound were obtained by slow evaporation of the solvent at room temperature.

Refinement

Water H atoms were located in a difference Fourier map and were allowed to ride on the parent atom, with $U_{iso}(H) = 1.5U_{eq}(O)$. Carboxyl H atoms were located in a difference map and refined with distance restraints, $U_{iso}(H) = 1.5U_{eq}(O)$. Other H atoms were placed at calculated positions and were treated as riding on parent atoms with C—H = 0.96 (methyl), 0.97 (methylene) and N—H = 0.86 Å, $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C,N)$. The propyl groups of H₃pimda are disordered over two sites with refined occupancies of 0.768 (6):0.232 (6) and 0.642 (8):0.358 (8). C—C distance restraints of disordered

components were applied. The O3W water molecule is located close to an inversion center, its occupancy factor was refined to 0.49 (1) and was fixed as 0.5 at the final refinements.

Figures

Fig. 1. The structure of the title compound, showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids.

Fig. 2. The one-dimensional chain substructure of (I) extending along the c axis.

Fig. 3. The three-dimensional hydrogen-bonded structure of (I).

catena-Poly[[diaquastrontium]-bis(µ-quinoline-3-carboxylato)]

Crystal data	
$[Sr(C_{10}H_6NO_2)_2(H_2O)_2]$	Z = 4
$M_r = 467.97$	F(000) = 944
Monoclinic, $P2_1/c$	$D_{\rm x} = 1.569 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 2ybc	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 16.121 (3) Å	$\mu = 2.76 \text{ mm}^{-1}$
<i>b</i> = 15.568 (3) Å	T = 293 K
c = 7.9607 (16) Å	Block, colorless
$\beta = 97.42 \ (3)^{\circ}$	$0.30 \times 0.28 \times 0.22 \text{ mm}$
V = 1981.2 (7) Å ³	

Data collection

3551 independent reflections
2571 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.047$
$\theta_{\text{max}} = 25.2^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$
$h = -19 \rightarrow 19$
$k = -18 \rightarrow 18$
$l = -9 \rightarrow 9$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.037$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.112$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.19	$w = 1/[\sigma^2(F_0^2) + (0.0192P)^2 + 6.2168P]$ where $P = (F_0^2 + 2F_c^2)/3$
3551 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
274 parameters	$\Delta \rho_{max} = 0.79 \text{ e } \text{\AA}^{-3}$
6 restraints	$\Delta \rho_{\rm min} = -1.19 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and	l isotropic or	equivalent isotropic	displacement	parameters ($(Å^2)$)
		- <u>1</u>	·····P·····	r	()	

	x	У	z	$U_{\rm iso}*/U_{\rm eq}$
C1	0.3837 (3)	0.4533 (3)	0.1246 (6)	0.0332 (11)
C2	0.3401 (3)	0.5067 (3)	0.0107 (6)	0.0365 (12)
H2	0.2915	0.4874	-0.0540	0.044*
C3	0.3245 (4)	0.6518 (4)	-0.1203 (8)	0.0556 (16)
Н3	0.2742	0.6365	-0.1840	0.067*
C4	0.3558 (5)	0.7327 (4)	-0.1338 (9)	0.0653 (19)
H4	0.3263	0.7728	-0.2047	0.078*
C5	0.4321 (5)	0.7549 (4)	-0.0410 (8)	0.0629 (19)
Н5	0.4537	0.8096	-0.0539	0.076*
C6	0.4753 (4)	0.6996 (4)	0.0668 (7)	0.0506 (15)
Н6	0.5258	0.7164	0.1281	0.061*
C7	0.4575 (3)	0.4845 (3)	0.2190 (7)	0.0390 (13)
H7	0.4861	0.4485	0.3000	0.047*
C8	0.3683 (3)	0.5914 (3)	-0.0099 (7)	0.0388 (13)
C9	0.4441 (3)	0.6161 (3)	0.0865 (7)	0.0378 (13)
C10	0.3537 (3)	0.3649 (3)	0.1549 (6)	0.0281 (11)
C11	0.0395 (3)	0.3680 (3)	0.3787 (6)	0.0351 (12)

C12	0.0123 (3)	0.3445 (4)	0.5246 (7)	0.0441 (14)
H12	0.0446	0.3078	0.5988	0.053*
C13	-0.0952 (4)	0.3567 (5)	0.7191 (9)	0.077 (2)
H13	-0.0651	0.3203	0.7973	0.093*
C14	-0.1681 (5)	0.3917 (6)	0.7537 (11)	0.093 (3)
H14	-0.1873	0.3802	0.8566	0.112*
C15	-0.2145 (5)	0.4451 (5)	0.6353 (10)	0.076 (2)
H15	-0.2649	0.4679	0.6596	0.091*
C16	-0.1873 (4)	0.4638 (4)	0.4872 (9)	0.0564 (17)
H16	-0.2188	0.4995	0.4098	0.068*
C17	-0.0119 (4)	0.4216 (4)	0.2672 (7)	0.0466 (14)
H17	0.0064	0.4359	0.1646	0.056*
C18	-0.0649 (4)	0.3751 (4)	0.5657 (7)	0.0469 (14)
C19	-0.1115 (4)	0.4298 (4)	0.4488 (7)	0.0439 (14)
C20	0.1226 (3)	0.3383 (3)	0.3324 (7)	0.0358 (12)
N1	0.4882 (3)	0.5620 (3)	0.1991 (6)	0.0419 (11)
N2	-0.0843 (3)	0.4528 (3)	0.2993 (6)	0.0518 (13)
01	0.3147 (2)	0.3241 (2)	0.0321 (4)	0.0353 (8)
O2	0.3661 (2)	0.3348 (2)	0.3017 (4)	0.0379 (9)
O3	0.1346 (2)	0.3385 (3)	0.1807 (4)	0.0486 (10)
O4	0.1760 (2)	0.3101 (2)	0.4499 (4)	0.0363 (8)
O1W	0.3523 (2)	0.1106 (3)	0.1318 (5)	0.0446 (10)
H2W	0.355 (3)	0.119 (4)	0.028 (2)	0.067*
H1W	0.3984 (18)	0.093 (4)	0.182 (5)	0.067*
O2W	0.1494 (3)	0.1094 (3)	0.3479 (5)	0.0535 (11)
H3W	0.141 (4)	0.117 (3)	0.448 (3)	0.080*
H4W	0.129 (4)	0.063 (2)	0.308 (6)	0.080*
Sr1	0.25124 (3)	0.21557 (3)	0.23948 (6)	0.02880 (15)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.037 (3)	0.030 (3)	0.033 (3)	-0.003 (2)	0.003 (2)	-0.006 (2)
C2	0.033 (3)	0.044 (3)	0.032 (3)	-0.009 (2)	0.004 (2)	-0.004 (2)
C3	0.062 (4)	0.054 (4)	0.048 (4)	-0.007 (3)	-0.006 (3)	0.010 (3)
C4	0.085 (5)	0.049 (4)	0.062 (4)	-0.004 (3)	0.011 (4)	0.022 (3)
C5	0.085 (5)	0.047 (4)	0.059 (4)	-0.022 (4)	0.020 (4)	0.004 (3)
C6	0.057 (4)	0.048 (4)	0.047 (4)	-0.013 (3)	0.009 (3)	-0.004 (3)
C7	0.037 (3)	0.042 (3)	0.036 (3)	-0.006 (2)	-0.004 (2)	-0.004 (2)
C8	0.040 (3)	0.036 (3)	0.042 (3)	-0.005 (2)	0.010 (3)	0.003 (2)
C9	0.041 (3)	0.034 (3)	0.039 (3)	-0.010 (2)	0.009 (3)	-0.005 (2)
C10	0.021 (3)	0.039 (3)	0.027 (3)	-0.002 (2)	0.014 (2)	-0.008 (2)
C11	0.031 (3)	0.042 (3)	0.031 (3)	0.005 (2)	-0.001 (2)	-0.004 (2)
C12	0.036 (3)	0.058 (4)	0.037 (3)	0.009 (3)	0.001 (2)	0.007 (3)
C13	0.056 (5)	0.120 (6)	0.060 (5)	0.024 (4)	0.023 (4)	0.025 (4)
C14	0.074 (6)	0.140 (8)	0.072 (6)	0.022 (5)	0.035 (5)	0.009 (5)
C15	0.049 (4)	0.095 (6)	0.086 (6)	0.016 (4)	0.024 (4)	-0.005 (5)
C16	0.044 (4)	0.061 (4)	0.067 (4)	0.016 (3)	0.016 (3)	-0.009(3)

C17	0.048 (4)	0.055 (4)	0.037 (3)	0.015 (3)	0.006 (3)	0.009 (3)
C18	0.038 (3)	0.059 (4)	0.044 (4)	0.007 (3)	0.006 (3)	0.005 (3)
C19	0.038 (3)	0.044 (3)	0.051 (4)	0.001 (2)	0.008 (3)	-0.004 (3)
C20	0.037 (3)	0.035 (3)	0.034 (3)	0.004 (2)	0.000 (2)	-0.002 (2)
N1	0.039 (3)	0.046 (3)	0.040 (3)	-0.012 (2)	0.000 (2)	-0.005 (2)
N2	0.044 (3)	0.055 (3)	0.056 (3)	0.019 (2)	0.004 (2)	0.007 (2)
O1	0.042 (2)	0.0345 (19)	0.0281 (19)	-0.0058 (15)	-0.0005 (16)	-0.0059 (14)
O2	0.047 (2)	0.047 (2)	0.0189 (18)	-0.0094 (17)	0.0002 (15)	0.0023 (15)
O3	0.055 (3)	0.068 (3)	0.024 (2)	0.023 (2)	0.0086 (18)	0.0050 (17)
O4	0.033 (2)	0.051 (2)	0.0246 (18)	0.0092 (16)	0.0020 (15)	0.0017 (15)
O1W	0.044 (2)	0.056 (2)	0.033 (2)	0.0159 (19)	0.0027 (18)	0.0034 (18)
O2W	0.066 (3)	0.063 (3)	0.032 (2)	-0.029 (2)	0.009 (2)	-0.0082 (19)
Sr1	0.0294 (3)	0.0317 (2)	0.0244 (3)	-0.0002 (2)	-0.00020 (17)	0.00050 (19)

Geometric parameters (Å, °)

C1—C2	1.357 (7)	C14—C15	1.398 (11)
C1—C7	1.409 (7)	C14—H14	0.9300
C1—C10	1.488 (7)	C15—C16	1.342 (9)
C2—C8	1.412 (7)	С15—Н15	0.9300
С2—Н2	0.9300	C16—C19	1.400 (8)
C3—C4	1.366 (8)	C16—H16	0.9300
C3—C8	1.412 (8)	C17—N2	1.320 (7)
С3—Н3	0.9300	С17—Н17	0.9300
C4—C5	1.394 (9)	C18—C19	1.406 (8)
C4—H4	0.9300	C19—N2	1.368 (7)
C5—C6	1.345 (9)	C20—O3	1.247 (6)
С5—Н5	0.9300	C20—O4	1.265 (6)
С6—С9	1.411 (7)	O1—Sr1 ⁱ	2.498 (3)
С6—Н6	0.9300	O1—Sr1	2.658 (3)
C7—N1	1.322 (6)	O2—Sr1	2.624 (3)
С7—Н7	0.9300	O3—Sr1	2.682 (4)
C8—C9	1.410 (7)	O4—Sr1 ⁱⁱ	2.495 (3)
C9—N1	1.362 (7)	O4—Sr1	2.640 (3)
C10—O2	1.251 (6)	O1W—Sr1	2.534 (4)
C10—O1	1.263 (5)	O1W—H2W	0.840 (10)
C11—C12	1.344 (7)	O1W—H1W	0.841 (10)
C11—C17	1.407 (7)	O2W—Sr1	2.557 (4)
C11—C20	1.508 (7)	O2W—H3W	0.839 (10)
C12—C18	1.410 (8)	O2W—H4W	0.838 (10)
C12—H12	0.9300	Sr1—O4 ⁱ	2.495 (3)
C13—C14	1.356 (10)	Sr1—O1 ⁱⁱ	2.498 (3)
C13—C18	1.402 (8)	Sr1—H2W	2.93 (4)
C13—H13	0.9300		
C2—C1—C7	118.3 (5)	C20—O3—Sr1	91.3 (3)
C2—C1—C10	121.6 (5)	C20—O4—Sr1 ⁱⁱ	160.4 (3)
C7—C1—C10	120.1 (5)	C20—O4—Sr1	92.8 (3)
C1—C2—C8	120.3 (5)	Sr1 ⁱⁱ —O4—Sr1	106.78 (12)

C1—C2—H2	119.9	Sr1—O1W—H2W	110 (4)
C8—C2—H2	119.9	Sr1—O1W—H1W	128 (4)
C4—C3—C8	120.2 (6)	H2W—O1W—H1W	111.6 (14)
С4—С3—Н3	119.9	Sr1—O2W—H3W	115 (4)
С8—С3—Н3	119.9	Sr1—O2W—H4W	132 (3)
C3—C4—C5	119.8 (6)	H3W—O2W—H4W	111.9 (14)
C3—C4—H4	120.1	O4 ⁱ —Sr1—O1 ⁱⁱ	156.08 (11)
C5—C4—H4	120.1	O4 ⁱ —Sr1—O1W	80.89 (12)
C6—C5—C4	121.9 (6)	O1 ⁱⁱ —Sr1—O1W	87.25 (11)
C6—C5—H5	119.1	O4 ⁱ —Sr1—O2W	87.22 (12)
C4—C5—H5	119.1	O1 ⁱⁱ —Sr1—O2W	74.30 (13)
C5—C6—C9	119.9 (6)	O1W—Sr1—O2W	99.57 (14)
С5—С6—Н6	120.1	O4 ⁱ —Sr1—O2	122.32 (11)
С9—С6—Н6	120.1	O1 ⁱⁱ —Sr1—O2	78.73 (11)
N1—C7—C1	123.7 (5)	O1W—Sr1—O2	92.94 (13)
N1—C7—H7	118.2	O2W—Sr1—O2	149.55 (11)
С1—С7—Н7	118.2	O4 ⁱ —Sr1—O4	117.83 (13)
C9—C8—C2	117.4 (5)	O1 ⁱⁱ —Sr1—O4	73.29 (10)
C9—C8—C3	119.1 (5)	O1W—Sr1—O4	160.47 (11)
C2—C8—C3	123.5 (5)	O2W—Sr1—O4	77.18 (13)
N1—C9—C8	122.1 (5)	O2—Sr1—O4	81.79 (11)
N1—C9—C6	118.7 (5)	O4 ⁱ —Sr1—O1	73.02 (10)
C8—C9—C6	119.2 (5)	O1 ⁱⁱ —Sr1—O1	126.30 (13)
O2—C10—O1	122.6 (4)	O1W—Sr1—O1	83.32 (12)
O2—C10—C1	118.7 (4)	O2W—Sr1—O1	159.40 (12)
O1—C10—C1	118.6 (4)	O2—Sr1—O1	49.34 (10)
C12—C11—C17	118.4 (5)	O4—Sr1—O1	106.60 (10)
C12—C11—C20	121.8 (5)	O4 ⁱ —Sr1—O3	72.94 (12)
C17—C11—C20	119.8 (5)	O1 ⁱⁱ —Sr1—O3	122.19 (11)
C11—C12—C18	120.3 (5)	O1W—Sr1—O3	150.27 (11)
C11—C12—H12	119.9	O2W—Sr1—O3	93.09 (14)
C18—C12—H12	119.9	O2—Sr1—O3	89.40 (12)
C14—C13—C18	120.2 (7)	O4—Sr1—O3	48.96 (10)
C14—C13—H13	119.9	O1—Sr1—O3	75.85 (11)
C18—C13—H13	119.9	O4 ⁱ —Sr1—Sr1 ⁱⁱ	150.83 (8)
C13—C14—C15	120.3 (7)	O1 ⁱⁱ —Sr1—Sr1 ⁱⁱ	38.27 (8)
C13—C14—H14	119.8	O1W—Sr1—Sr1 ⁱⁱ	125.06 (9)
C15—C14—H14	119.8	O2W—Sr1—Sr1 ⁱⁱ	76.24 (9)
C16—C15—C14	120.9 (7)	O2—Sr1—Sr1 ⁱⁱ	73.85 (8)
С16—С15—Н15	119.5	O4—Sr1—Sr1 ⁱⁱ	35.41 (7)
С14—С15—Н15	119.5	O1—Sr1—Sr1 ⁱⁱ	118.86 (7)
C15—C16—C19	120.2 (6)	O3—Sr1—Sr1 ⁱⁱ	83.99 (8)
С15—С16—Н16	119.9	$O4^{i}$ —Sr1—Sr1 ⁱ	37.81 (8)
С19—С16—Н16	119.9	Ol ⁱⁱ —Sr1—Sr1 ⁱ	156.01 (8)

124.0 (5)	O1W—Sr1—Sr1 ⁱ	76.17 (9)
118.0	O2W—Sr1—Sr1 ⁱ	125.03 (9)
118.0	O2—Sr1—Sr1 ⁱ	84.84 (7)
118.9 (6)	O4—Sr1—Sr1 ⁱ	121.68 (7)
123.4 (6)	O1—Sr1—Sr1 ⁱ	35.59 (7)
117.6 (5)	O3—Sr1—Sr1 ⁱ	74.54 (8)
118.5 (6)	Sr1 ⁱⁱ —Sr1—Sr1 ⁱ	149.85 (2)
122.0 (5)	O4 ⁱ —Sr1—H2W	68.4 (7)
119.4 (6)	O1 ⁱⁱ —Sr1—H2W	102.4 (5)
122.8 (5)	O1W—Sr1—H2W	15.7 (6)
119.3 (5)	O2W—Sr1—H2W	107.5 (11)
117.8 (5)	O2—Sr1—H2W	91.7 (11)
118.1 (4)	O4—Sr1—H2W	172.8 (10)
117.6 (5)	O1—Sr1—H2W	71.0 (10)
161.6 (3)	O3—Sr1—H2W	134.7 (6)
91.8 (3)	Sr1 ⁱⁱ —Sr1—H2W	139.3 (6)
106.14 (12)	Sr1 ⁱ —Sr1—H2W	60.5 (6)
93.7 (3)		
	124.0 (5) 118.0 118.0 118.9 (6) 123.4 (6) 117.6 (5) 118.5 (6) 122.0 (5) 119.4 (6) 122.8 (5) 119.3 (5) 117.8 (5) 118.1 (4) 117.6 (5) 161.6 (3) 91.8 (3) 106.14 (12) 93.7 (3)	$124.0(5)$ $O1W-Sr1-Sr1^i$ 118.0 $O2W-Sr1-Sr1^i$ 118.0 $O2-Sr1-Sr1^i$ 118.0 $O2-Sr1-Sr1^i$ $118.9(6)$ $O4-Sr1-Sr1^i$ $123.4(6)$ $O1-Sr1-Sr1^i$ $123.4(6)$ $O1-Sr1-Sr1^i$ $117.6(5)$ $O3-Sr1-Sr1^i$ $118.5(6)$ $Sr1^{ii}-Sr1-Sr1^i$ $122.0(5)$ $O4^i-Sr1-H2W$ $119.4(6)$ $O1^{ii}-Sr1-H2W$ $119.4(6)$ $O1W-Sr1-H2W$ $119.3(5)$ $O2W-Sr1-H2W$ $117.8(5)$ $O2-Sr1-H2W$ $117.8(5)$ $O2-Sr1-H2W$ $117.6(5)$ $O1-Sr1-H2W$ $117.6(5)$ $O3-Sr1-H2W$ $161.6(3)$ $O3-Sr1-H2W$ $91.8(3)$ $Sr1^{ii}-Sr1-H2W$ $91.8(3)$ $Sr1^i-Sr1-H2W$ $91.7(3)$ $Sr1^i-Sr1-H2W$

Symmetry codes: (i) x, -y+1/2, z-1/2; (ii) x, -y+1/2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H··· A	D—H	$H \cdots A$	$D \cdots A$	D—H··· A
$O1W$ — $H2W$ ··· $O2^{i}$	0.84 (1)	1.97 (2)	2.798 (5)	168 (6)
O1W—H1W…N1 ⁱⁱⁱ	0.84 (1)	2.01 (1)	2.846 (6)	175 (6)
O2W—H3W…O3 ⁱⁱ	0.84 (1)	1.99 (2)	2.810 (5)	166 (5)
O2W—H4W…N2 ^{iv}	0.84 (1)	2.01 (1)	2.846 (6)	176 (5)

Symmetry codes: (i) x, -y+1/2, z-1/2; (iii) -x+1, y-1/2, -z+1/2; (ii) x, -y+1/2, z+1/2; (iv) -x, y-1/2, -z+1/2.

Fig. 2

