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Abstract
Introduction: An increasing shortage of donor blood is ex-
pected, considering the demographic change in Germany. 
Due to the short shelf life and varying daily fluctuations in 
consumption, the storage of platelet concentrates (PCs) be-
comes challenging. This emphasizes the need for reliable 
prediction of needed PCs for the blood bank inventories. 
Therefore, the objective of this study was to evaluate multi-
modal data from multiple source systems within a hospital 
to predict the number of platelet transfusions in 3 days on a 
per-patient level. Methods: Data were collected from 25,190 
(42% female and 58% male) patients between 2017 and 
2021. For each patient, the number of received PCs, platelet 
count blood tests, drugs causing thrombocytopenia, acute 
platelet diseases, procedures, age, gender, and the period of 
a patient’s hospital stay were collected. Two models were 
trained on samples using a sliding window of 7 days as input 
and a day 3 target. The model predicts whether a patient will 
be transfused 3 days in the future. The model was trained 
with an excessive hyperparameter search using patient-level 
repeated 5-fold cross-validation to optimize the average 
macro F2-score. Results: The trained models were tested on 
5,022 unique patients. The best-performing model has a 

specificity of 0.99, a sensitivity of 0.37, an area under the pre-
cision-recall curve score of 0.45, an MCC score of 0.43, and an 
F1-score of 0.43. However, the model does not generalize 
well for cases when the need for a platelet transfusion is rec-
ognized. Conclusion: A patient AI-based platelet forecast 
could improve logistics management and reduce blood 
product waste. In this study, we build the first model to pre-
dict patient individual platelet demand. To the best of our 
knowledge, we are the first to introduce this approach. Our 
model predicts the need for platelet units for 3 days in the 
future. While sensitivity underperforms, specificity performs 
reliably. The model may be of clinical use as a pretest for po-
tential patients needing a platelet transfusion within the 
next 3 days. As sensitivity needs to be improved, further 
studies should introduce deep learning and wider patient 
characterization to the methodological multimodal, multi-
source data approach. Furthermore, a hospital-wide con-
sumption of PCs could be derived from individual predic-
tions. © 2023 The Author(s).

Published by S. Karger AG, Basel

Introduction

It is an ever-increasing worldwide challenge to supply 
blood products to patients. In Germany, around 15,000 
blood cell units are required every day, and about 45,000 
blood products are transfused annually at our clinic, of 
which approximately 30,000 are red blood cell concen-
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trates, 10,000 are platelet concentrates (PCs), and 5,000 
are fresh frozen plasmas [1]. Furthermore, the ongoing 
demographic change is expected to increase the relative 
shortage of blood donors and thus increase the shortage 
of stored blood products [2–4]. Therefore, optimal use of 
this valuable resource is becoming increasingly impor-
tant from a medical, ethical, and economic point of view. 
To solve these problems, improving logistics manage-
ment in transfusion medicine is crucial.

Thus, coordinating the inventory, expiry, and con-
sumption of PCs plays a vital role. A PC typically has a 
shelf life of 4 days after testing and screening procedures 
on the production day [5]. The transfusion of different 
patient collectives treated in a university hospital for he-
matology and oncology, transplantation, cardiac, and 
thoracic surgery leads to dramatic fluctuations in the con-
sumption of PCs [6–8]. Therefore, storing PCs in line 
with requirements is challenging: on the one hand, a PC 
shortage is unacceptable, while on the other hand, it is 
necessary to minimize the wasteful disposal of blood do-
nations.

According to the Paul Ehrlich Institute, 575,608 PCs 
were produced in Germany in 2020 [1]. From a total of 
255,722 pool PCs, 48,467 PCs (19%) expired at the pro-
ducer. From a total of 319,886 apheresis PCs, 22,411 (7%) 
expired at the producer [1]. Taking their market value 
into account, the disposal of unused PCs results in an eco-
nomic loss of more than 30 million Euros per year. Thus, 
reducing the forfeiture rate by just two percent would 
save more than 5.5 million Euros annually [9].

The high expiration rates indicate that a patient-spe-
cific prediction of PC consumption is required to opti-
mize logistics management. At present, however, the pa-
tient- and hospital-specific data already available in most 
hospitals in Germany are not sufficiently utilized for this 
purpose.

This retrospective study aimed to develop a novel AI-
based approach to improve the prediction of individual 
PC demand. Because donation appointments must be 
scheduled and the donation products tested and screened, 
predictions for patient transfusion needs at the end of 3 
days are critical. The objective of this study was, therefore, 
to create a machine learning-based model which predicts 
whether a patient requires a platelet transfusion 3 days 
into the future. This is achieved by extracting, transform-
ing, and loading multimodal data from multiple source 
systems within the hospital.

Materials and Methods

Data Sources
The retrospective data were obtained from a hospital’s internal 

Health Level Seven International (HL7) Fast Healthcare Interoper-
ability Resources (FHIR) (https://www.hl7.org/fhir) server. The 
server is a data repository that stores information generated during 
the clinical routine at all hospital departments. It was queried for 
clinical and demographic information such as patient stay, labora-
tory testing, conditions, transfusions, medications, procedures, 
gender, and age. In addition, manual spot checks were performed 
to ensure data validity and quality between source systems and the 
extracted data set. At first, the completeness of extracted data be-

Fig. 1. Data source to patient data pipeline (taking multiple hospital systems into account) followed by the HL7 
FHIR server, which extracts and stores the data, then the extraction process, and, finally, the per-patient storing 
of all relevant patients.
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tween the FHIR server and training data was ensured by compar-
ing the total number of extracted elements for each resource. Sec-
ond, each FHIR resource’s data importers were checked for data 
completeness. Finally, to ensure end-to-end completeness, data 
mappings, as seen in Figure 3, were generated on a set of patients. 
Figure 1 exemplifies the data pipeline applied to extract the patient 
cohort. The following two subsections explain the data source in 
detail.

Subjects Identification and Preprocessing
The need for a PC donation is determined by the platelet count 

in the patient’s blood and specified in the hemotherapeutic guide-
lines [10, 11]. Our study included all patients, independent of the 
main or first diagnosis, who had platelet count observation be-
tween January 2017 and June 2022 and are in total 282,225 pa-
tients. A flow diagram visualizing the patient selection process in 
a schematic overview is represented in Figure 2.

First, a time scope filter was applied as only patients with ob-
servations between 2017 and 2021 were considered. While the nor-
mal laboratory range for PCs may vary slightly, the usual reference 
range is between 150 platelet/nL and 400 platelet/nL [12]. There-
fore, patients with thrombocyte counts exclusively above the max-
imum reference range of 400 platelet/nL were excluded. Because 
each hospitalization had to pass another set of requirements to be 
included in the analysis, this stage of the identification process re-
duced the cohort size to 254,887 patients.

First, the hospital stay had to last at least 10 days. Patients with 
a shorter stay were considered out of scope as these patients had a 
very low upfront probability of needing a PC and typically had only 
very few data points. We found the probability for a patient to re-
ceive a PC during a stay between 0 and 9 days to be 0.34%. Second, 
patients with a single observation were considered out of scope 
because, according to transfusion guidelines, the platelet count 
should be measured before and after a patient receives a donation 
[11]. Finally, the minimum platelet count for one observation dur-
ing a stationary stay had to be less than or equal to 150 platelet/nL, 
in accordance with the reference range for PC transfusions [12]. 
This filtering step yielded a final cohort size of 25,190 patients with 
valid hospitalizations to include in this study. For patients in the 
final cohort, we collected additional features such as procedures 
that may impact platelet function (e.g., extracorporeal circulation, 
hemodialysis), medications that frequently cause thrombocytope-
nia (e.g., chemotherapeutics such as cytarabine and gemcitabine), 
conditions that are known to cause thrombocytopenia either di-
rectly or through drug-based interference (e.g., leukemic and lym-
phoid malignancies), the number of received PC transfusions, and 
time scope of hospital stays. Figure 3 exemplifies the data map for 
one of the 25,190 patients, with all the occurring features from dif-
ferent resources. A detailed overview of the selected features from 
medications, procedures, and conditions can be found in Appen-
dix A, available at www.karger.com/doi/10.1159/000528428.

Fig. 2. Cohort identification process, which 
can be interpreted as a top-down flow dia-
gram within the patient identification pro-
cess. The entire cohort began with a total of 
282,225 patients based on in-house platelet 
count observations between January 2017 
and June 2022. The patient identification 
process can be divided into three filtering 
steps. The first filters the time scope of 
2017–2022. The second filter excludes pa-
tients with platelet counts exclusively above 
400 platelet/nL. The final filter ensures that 
a patient’s hospital stay is greater than 9 
days, the number of blood observations is 
greater than one, and at least one platelet 
count observation needs to be below 150 
platelet/nL. After the above-described fil-
ter, 25,190 patients are left for the scope of 
this study.
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Sliding Window Sampling
The data needed to be transformed into equally dimensional 

samples to attain equally shaped data for machine learning models. 
Figure 4 shows a schematic overview of how each training sample’s 
sliding window was generated. The following criteria define a val-
id training sample: One platelet count observation needs to be 
present, and the minimum platelet count needs to be below 150 
platelets/nL within the 7-day window.

Each input vector had a time scope of 7 days and a frequency 
of 12 h, thus 14 time slots. The window sampling was based on time 
logs of the patient encounters. Consequently, features for the re-
spective time scope were collected using an aggregation function 
for each valid patient stay at the hospital.

The aggregation function mapped each feature data event with-
in each valid patient stay to one of the 14 time slots. Medications, 
conditions, and procedures were saved in a list per time slot. The 
most recent platelet count observation within a 12-h window was 
preserved, and subsequent empty spaces were linearly interpolated 
to the next platelet count observation. Additionally, it was record-
ed whether a platelet count value was interpolated if needed. Fi-
nally, each PC unit within a time slot was transformed into the sum 
of units within a day.

Time slot-independent metadata, such as age and gender, were 
stored for each patient. Finally, each target vector had a time scope 
of 1 day and a frequency of 24 h, which contained a list of con-
sumed PC units 3 days into the future. Once preprocessing steps 
for one input and target vector were calculated, the sliding win-
dow algorithm stepped 1 day ahead, and the preprocessing re-
started.

Platelet Binary Classification
Classification algorithms were used as the decision of whether 

a patient should receive a PC can be translated into a binary prob-
lem. The first class (0) represented the case of no transfusion, and 
the second class (1) represented one or more transfusions. The 
data set was split on the patient level into training and test data us-
ing an 80/20 ratio. The data were highly zero-inflated as most sam-
ples did not receive any PC transfusion. To address the class imbal-
ance (3.42%), all models were also trained using Gaussian noise 
up-sampling [13] and the kmeans_SMOTE (synthetic minority 
over-sampling technique) [14] using default parameters. As the 
objective was to predict the third day, a single-output classifier was 
sufficient. For the model training and optimization, scikit-learn 
[15] [https://scikit-learn.org], eXtreme Gradient Boosting (XG-
Boost) [16] [https://xgboost.readthedocs.io], Random Forest [17], 
Dummy Classifier [18], and Optuna [19] [https://optuna.org] 
were used. Optuna was configured to run 1,000 trials for each 
model using a tree-structured Parzen estimator sampler [20] for 
hyperparameter sampling. Random sampling was used on the first 
50 trials of each model as warm-up iterations for the tree-struc-
tured Parzen estimator algorithm. Samplers decrease the search 
time, and calculation cost of finding the best-performing hyperpa-
rameters for the chosen algorithm compared to a full grid search.

A median pruner (24) was used on top of the iterative process 
to stop the training process once the improvement plateaued. 
Pruning was disabled for the first 100 trials of each model run. All 
models were trained using fivefold stratified-group cross-valida-
tion, to ensure that cohorts within a split are not overlapping and 
the percentage of samples for each class is almost equal. An F2-
score was used as an optimization metric to weigh sensitivity/recall 

Fig. 3. Exemplary data map of a cohort patient suffering from mantle cell lymphoma, which is represented on 
multiple occasions as a “diagnosed condition” with the ICD code “C83.1.” The patient was therefore subjected 
to a chemotherapeutic treatment plan with cytarabine (represented in four instances both as “received medica-
tion” and “received procedure” with the respective OPS codes “8-542-21” and “8-544”). This led to two occur-
rences of secondary thrombocytopenia (“D69.58”) with a minimal platelet count of 6/nL (November 1, 2017) and 
24/nL (November 28, 2017) that were each treated with a PC transfusion (“received platelets”).



Predicting Individual Patient Platelet 
Demand Using Machine Learning

281Transfus Med Hemother 2023;50:277–285
DOI: 10.1159/000528428

higher than precision. Figure 5 depicts the training process for the 
machine learning models in a schematic overview.

A dummy classifier with a stratified strategy was used as a base-
line model to compare against the above-described classifiers. 
Dummy classifiers disregard the input features and solely depend 
on the output values. The stratified method considered the a prio-
ri probability and was, therefore, a valid baseline classifier. Subse-
quently, an XGBoost and a Random Forest model were trained 
excessively with the hyperparameter search spaces seen in Table 1 
using the ML workflow described in Figure 5.

Results

Patient Characteristics
After the processing steps seen in Figures 2 and 4, the 

cohort consisted of 25,190 patients with a hospital stay of 
at least 10 days between 2017 and 2021. The cohort data 
were randomly split on the patient level into 80/20 subsets 
for training and test data sets. In the training set, the pa-
tient’s ages ranged from 0 to 101 years, and the mean pa-

Fig. 4. Generation of the sliding window from raw data for training and labeling schematically. The sliding win-
dow frequency of x is one (day) with a frequency of 12 h and 7 days for each training sample and a frequency of 
24 h and 3 days for each labeled sample.

Fig. 5. ML workflow using Optuna. First, 
the patient data samples were split into 
training and test data (1). The Optuna run 
was then initialized (2), which initialized 
the first algorithm and prepared the data 
for a cross-validated run (3). In cross-vali-
dation, the data were further split into the 
desired amount of data sets (which consist 
of training and validation data sets) to fur-
ther prevent overfitting and selection bias. 
Each set was then trained, and overall folds 
were averaged to calculate the model’s pre-
dictive performance on the validation set 
(4). The model was then logged with its 
performance scores and hyperparameter 
(5). If the pruner decided to train another 
model, the process would start again at the 
hyperparameter tuning within the given 
search space (6). Once the evaluation was 
finished, the parameters of the best-per-
forming model could be loaded and evalu-
ated on the test data (7–9).
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tient age was 56.5 ± 21.8 years. 42% of the patients were 
female, and 58% were male. In the test set, the patient age 
ranged from 0 to 99 years, and the mean patient age was 
56.9 ± 22 years. The gender distribution was the same as 
in the training set. Figure 6 illustrates the data set distri-
bution from different perspectives.

Model Performance
During the observed period of 5 years, 25,190 patients 

were transfused, with a total of 54,473 PC units. Optuna 
was configured to run for 1,000 trials for the XGBoost and 
Random Forest models. The performance of the best-per-
forming classification models on the training data is 
shown in Table 2. All metrics (area under the precision-
recall curve [AUCPR] score, F1 score, MCC score, preci-
sion, specificity, and sensitivity) could be improved com-
pared to the dummy classifier. However, all models lack 
sensitivity.

Figure 7 shows the AUCPR curve across all trained 
models. The Dummy Classifier is displayed as an almost 
horizontal line with a score of 0.03, suggesting that the 
model has no discriminative ability to diagnose patients 
with and without needing a PC transfusion. The slope of 
the AUCPR curve on the Random Forest and XGBoost 
models indicates that the model performs better than the 
Dummy Classifier.

Table 1. Hyperparameter spaces for XGBoost and Random Forest

Parameter Search space

XGBoost with gbtree booster
Objective Binary: logistic
Eval_metric AUCPRa

Lambda 10−8–1.0
Alpha 10−8–1.0
Max_depth 10–30
Eta 10−8–1.0
Gamma 10−8–1.0
Grow_policy Depthwise, lossguide

XGBoost with gbtree dart
Objective Binary: logistic
Eval_metric AUCPRa

Lambda 10−8–1.0
Alpha 10−8–1.0
Max_depth 10–30
Eta 10−8–1.0
Gamma 10−8–1.0
Grow_policy Depthwise, lossguide
Sample_type Uniform, weighted
Normalize_type Tree, forest
Rate_drop 10−8–1.0
Skip_drop 10−8–1.0
Criterion Gini, entropy

Random Forest
N_estimators 100–1,000
Splitter Best, random
Max_depth 10–30
Max_depth 10–30

a AUCPR, area under the precision-recall curve.

Fig. 6. Patient characteristics by training and test sets. The figure on the left-hand side shows the distribution of 
platelets by data class. The left-hand figure indicates that patients in the first label class have, in most cases, a 
platelet count below 50/nL. The center figure shows the age distribution by gender. At the lower end of the dis-
tribution, the boxplot has an outlier cutoff for the male cohort below 19 years. However, this does not mean that 
there are no male patients younger than 19 years. The figure on the right-hand side illustrates the relative received 
platelets by weekday. It can be observed that most patients receive transfusions between Monday and Friday.
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Discussion/Conclusion

In the present study, we evaluated multimodal data 
from multiple source systems in a hospital to form a pre-
diction of PC transfusions in 3 days on a per-patient lev-
el. To the best of our knowledge, this is the first study to 
extract individual patient data to decide whether a patient 
needs a PC transfusion in 3 days for a cohort of more than 
25,000 patients on a per-patient level.

XGBoost was the best-performing model with the 
highest score. However, the recall was too low to inte-
grate the model into a live system as many true positives 
were misclassified. Yet, specific detection of true nega-
tives was achieved. Therefore, clinical implementation of 
the trained models could be considered a pretest. The 
model could run in the background of the clinical routine 
and filter out all patients who do not need a PC transfu-
sion.

Table 2. Models performance on cross-validation and test data for the Dummy Classifier, XGBoost, and Random Forest

Model

AUCPR MCC F1-score Precision Specificity Sensitivity

Cross-validation
Dummy Classifier 0.0339 0.0006 0.0352 0.0354 0.9671 0.0351
XGBoost 0.4100 0.3939 0.4044 0.4906 0.9875 0.3441
XGBoost with GNUS 0.2618 0.3507 0.3688 0.4083 0.9830 0.3364
XGBoost with SMOTE 0.4435 0.4036 0.4067 0.5348 0.99 0.3284
Random Forest 0.5131 0.3968 0.3596 0.6809 0.9960 0.2445
Random Forest with GNUS 0.51 0.3947 0.3558 0.6843 0.9961 0.241
Random Forest with SMOTE 0.5166 0.3966 0.3565 0.6908 0.9963 0.2407

Test set
Dummy Classifier 0.0344 0.0018 0.0422 0.0433 0.9662 0.0413
XGBoost 0.4497 0.4247 0.4335 0.5342 0.9882 0.3648
XGBoost with GNUS 0.2916 0.3762 0.3939 0.4407 0.9833 0.3563
XGBoost with SMOTE 0.4786 0.4252 0.4261 0.5715 0.9905 0.3397
Random Forest 0.5467 0.4281 0.3890 0.7267 0.9963 0.2656
Random Forest with GNUS 0.5499 0.4223 0.3824 0.7228 0.9963 0.2600
Random Forest with SMOTE 0.5497 0.4232 0.3824 0.7270 0.9964 0.2594

GNUS, Gaussian noise up-sampling; SMOTE, synthetic minority over-sampling technique.

Fig. 7. Area under the precision-recall curve (AUCPR) with cross-validation for each of the five folds. The steep-
ness and roundness toward the right upper corner represent good performance as it is the ideal maximum true-
positive-to-false-negative ratio. Furthermore, it clearly shows that the AUCPR scores are almost equal as the data 
are evenly distributed across every data set created from K-fold cross-validation.
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Other studies have investigated the prediction of the 
blood product requirements for clinic-wide consump-
tion. These studies have already examined the impact of 
machine learning models on hospital-wide platelet de-
mand [21–24] and have found that it can be predicted 
with high accuracy [21, 23, 24]. Schilling et al. [21] found 
that their models could reduce both the shortage and 
waste of PCs within their institution at RWTH Aachen 
University Hospital. One limitation of previous studies in 
this field was the insufficient sensitivity to outliers. Outli-
ers are days of extremely high or low demand for PCs. A 
patient-specific model, on the other hand, could identify 
days with outliers of PC demand and react prospectively 
toward days with a PC shortage.

The current high expiration rates of platelets are the 
driving factor behind the potential use in clinical routine. 
Usually, PCs are bought from a third party, supplied by 
an in-house institution, or both. However, PC demand is 
determined by the transfusing physicians and often – as 
is the case at our institution – not reported back to the 
provider. Digitalization of hospital infrastructure is a po-
tential resource investment in patient care. Concerning 
PC demand, a system for predicting patient PC transfu-
sion needs could lead to reduced PC expiry, and a doctor-
independent decision process could consequently result 
in widespread economic benefits.

Furthermore, a model that predicts demand at the in-
dividual patient level would be an essential step toward 
improving patient blood management. Patient blood 
management is a central hemotherapeutic concept for 
improving patient safety that aims at reducing the need 
for blood transfusions and takes hospital-wide blood 
product management into account [25]. By improving 
the prediction of individual PC supply through our mod-
el, potential PC shortages could be prevented.

The most significant limitation of our model is its low 
sensitivity, which might partly be the result of missing 
data, particularly regarding future events such as crucial 
planned medical interventions (e.g., stem cell transplan-
tation). Furthermore, data on medical appliances booked 
for surgery, especially heart and lung support devices, are 
currently not stored digitally in our institution. Thus, a 
new framework for integrating these data into our system 
will have to be constructed. In addition, the machine 
learning models used in our study could be considered 
relatively trivial from a technical perspective. However, a 
deep learning-based model may improve the model’s per-
formance and should be tested in further studies. A recur-
rent neural network or transformer network with a multi-
input, multi-output architecture will be designed. Fur-
thermore, diagnoses and procedures are not permanently 
recorded for each patient in a timely manner and also 
only for accounting purposes, so the integration in a live 
scenario of the data extraction process has to be adapted 

to using an identifier that merely extracts data of future 
events in FHIR.

In this study, we built the first model to predict patient 
individual PC demand. We have shown that an individu-
al patient prediction of patients’ PC transfusion needs can 
be ascertained using various data sources within the FHIR 
ecosystem and by applying traditional classification algo-
rithms. However, further studies should apply this meth-
odological data approach and adapt the machine learning 
models to more sophisticated methods, like deep neural 
networks, to improve sensitivity scores. In particular, 
however, the validity of a machine learning model de-
pends on the scope and quality of the available data used 
as input.

In the future, great improvements in the predictive va-
lidity of corresponding models can be expected through 
a consistent, timely, and structured collection of all rele-
vant healthcare data in the clinical routine. Once imple-
mented, predictions for clinic-wide consumption may be 
derived, laying the groundwork for more efficient, ethi-
cal, and economical PC management.
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