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Abstract
Lithobates warszewitschii is a species of ranid frog distributed from southern Honduras to Panama. This 
species suffered severe population declines at higher elevations (above 500 m a.s.l.) from the 1980s to 
early 1990s, but there is more recent evidence of recovery in parts of its range. Here we advocate for the 
status of Lithobates warszewitschii as a candidate cryptic species complex based on sequence data from 
mitochondrial genes CO1 and 16S. Using concatenated phylogenies, nucleotide diversity (K2P-π), net 
between group mean distance (NBGMD) (πnet) and species delimitation methods, we further elucidate 
cryptic diversity within this species. All phylogenies display polyphyletic lineages within Costa Rica and 
Panama. At both loci, observed genetic polymorphism (K2P-π) is also high within and between geo-
graphic populations, surpassing proposed species threshold values for amphibians. Additionally, patterns 
of phylogeographic structure are complicated for this species, and do not appear to be explained by 
geographic barriers or isolation by distance. These preliminary findings suggest L. warszewitschii is a wide-
ranging species complex. Therefore, we propose further research within its wider range, and recommend 
integrative taxonomic assessment is merited to assess species status.
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Introduction

Cryptic species are poorly defined and highly heterogeneous. Identification of potential 
singular, nominal species may be masked when morphological traits are shared within 
and between sister taxa (Bickford et al. 2007). Evolutionary mechanisms that produce 
cryptic species are also diverse and may best be explained by recent divergence, niche 
conservatism, and morphological convergence (Fišer et al. 2018). Although considered 
evidence of incomplete species inventories, or potential sources of bias within biodi-
versity research (Fišer et al. 2018), cryptic species are evidently common (Adams et 
al. 2014) and extensive among animal phyla (Perez-Ponce de León and Poulin 2016). 
Species concepts have been a topic of debate since Darwin’s Origin of Species (Mallet 
2008), yet most contemporary biologists conceptually envisage separately evolving seg-
ments of metapopulation-level evolutionary lineages (Mayden 1997, de Queiroz 1998, 
1999, Hey et al. 2003, Bock 2004, Hey 2006).

Given that the majority of species remain undescribed, endeavours to explain and 
catalogue biodiversity are inevitable to both understanding and preventing extinctions 
(Pimm et al. 2014). For amphibians especially, being the most threatened group of 
vertebrates (Stuart et al. 2004), identifying cryptic diversity is fundamental to their 
conservation. Habitat loss, fragmentation, climate change and disease epidemics have 
produced a global decline in amphibian populations (Baillie et al. 2004, Stuart et al. 
2004). Losses reflect patterns of ecological preference, range and taxonomic associa-
tion, with montane stream dwelling species most affected (Stuart et al. 2004). It is also 
probable that the number of amphibian species is highly underestimated (Fouquet 
et al. 2007a, Vieites et al. 2009).

Whereas some species are presumed to be widely distributed, those within a cryp-
tic complex may have smaller ranges or different ecological requirements (Stuart et al. 
2006), meaning failure to recognize these taxa can leave them susceptible to misman-
agement. However, when genetic differentiation is established, it can unveil previously 
unknown units of diversity and endemism (Bickford et al. 2007) that may subsequent-
ly warrant protection or species status (Whitfield et al. 2016).

High levels of genetic diversity in Costa Rican and Panamanian frog populations 
are well recognized (Crawford 2003), as are cryptic species (Wang et al. 2008). Litho-
bates warszewitschii (Ranidae) (Schmidt, 1857) is a proposed candidate species – a 
provisional designation pending further systematic investigation (Vieites et al. 2009). 
Crawford et al. (2010) (Suppl. material 1) showed that within the amphibian com-
munity at El Copé (Omar Torrijos National Park), Panama, L. warszewitschii displayed 
14.7% pairwise divergence between conspecifics at the CO1 locus. This is an unusually 
high degree of polymorphism for a single species in sympatry (Crawford 2003, Vences 
et al. 2005), providing additional evidence this taxon likely contains candidate cryptic 
lineages (Mallet 2008). Paz et al. (2015) compared El Copé with allopatric populations 
from Brewster (Chagres National Park), revealing 11% pairwise divergence. Conse-
quently, breeding strategy, dispersal and landscape resistance may help explain this 
variation between both sites.
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Lithobates warszewitschii occurs from Honduras to Panama and has been re-
corded at elevations up to 1740 meters above sea level (m a.s.l.). They are fairly com-
mon, diurnal and generally abundant frogs in forests near streams where they breed 
(Savage 2002). In Costa Rica, population declines occurred in montane areas such as 
Tapantí, Monteverde, and Braulio Carrillo (Bolaños 2002, Puschendorf et al. 2006). 
Post-decline it was found to be rare in San Vito (Santos-Barrera et al. 2007) and 
vanished but found again at San Ramón (IUCN 2015). Lithobates warszewitschii was 
also found to be abundant at mid-elevation sites in Guayacán (Kubicki 2008), Cor-
covado, Ciudad Colón, and Tinamastes (IUCN 2015). A population decline also 
occurred at lowland site La Selva (Whitfield et al. 2007); however, it is not generally 
abundant at lower elevations (IUCN 2015). Pre-decline it was one of the most abun-
dant tadpoles encountered in streams at El Copé, Panama, (Ranvestel et al. 2004), 
but was later extirpated following the emergence of a virulent pathogen (Crawford 
et al. 2010). In Nicaragua, it was found to be abundant in Río San Juan (Sunyer et 
al. 2009) and numbers were increasing at Quebracho (Barquero et al. 2010) post de-
cline, although Nicaragua’s amphibian decline history is much more nebulous than 
Costa Rica’s. No data was found for Honduras, and additional research is needed to 
ascertain population sizes, distributions, trends and threats throughout its full range 
(IUCN 2015).

In this study we expand the research on cryptic diversity within L. warszewitschii, 
based on published sequence data from two localities in Panama (Crawford et al. 2010, 
Paz et al. 2015) and samples collected from the Área de Conservación Guanacaste 
(ACG) in northwestern Costa Rica. Using phylogenetic data, species delimitation 
methods and nucleotide diversity within CO1 and 16S loci we make inferences about 
phylogeographic structure and proposed candidate status across its wider range.

Methods

Field sampling

Lithobates warszewitschii were sampled from five field sites within the Área de Con-
servación Guanacaste (ACG), Costa Rica: Pitilla, San Gerardo, Maritza, Cacao, and 
Caribe (Figure 1; for further detail see https://www.acguanacaste.ac.cr) between June 
2015 – August 2017 (Table 1). Streams and surrounding forest are preferred habitat 
for L. warszewitschii (Savage 2002), and sampling was conducted within these habitats. 
Each individual was captured, housed separately in moist bags (Beaupre et al. 2004), 
identified based on morphology (Savage et al. 2002, Leenders 2016), and toe-clipped 
(Perry et al. 2011). Individuals were then released back at the point of capture.

A total of 34 samples were collected from ACG and obtained from GenBank, but 
only 29 had both CO1 and 16S available and therefore used in this analysis. All data 
for L. warszewitschii samples collected in Panamanian sites El Copé and Brewster were 
obtained from other studies (Crawford et al. 2010, Paz et al. 2015).

https://www.acguanacaste.ac.cr
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Figure 1. Study sites included in phylogenetic analysis of L. warszewitschii. Sites: Cacao, Caribe, Maritza 
and San Gerardo are within the Área de Conservación Guanacaste (ACG), Costa Rica. Sites El Copé and 
Brewster are within Panama.

Table 1. Information on study sites.

Sites Collection dates No. tissue 
samples

Habitat Longitude Latitude Elevation(m) Reference

Pitilla August, 2016 1 Rainforest 10.989 -85.426 650–750 Field data – 
this study

June, 2017 1
San Gerardo August, 2017 2 Rainforest/

pastureland
10.881 -85.389 470–640 Field data – 

this study
Maritza June, 2015 7 Dry/wetforest 10.956 -85.495 570–610 Field data – 

this study
August, 2015 7

November, 2016 6
July, 2017 3

August, 2017 5
Cacao November, 2016 4 Rain/cloud 

forest
10.923 -85.468 980–1130 Field data – 

this study
August, 2017 3

Caribe June, 2015 4 Rainforest 10.902 -85.275 370 Field data – 
this study

El Copé July, 2010 NA Rainforest 8.667 -80.592 700–750 (KRL0823)
Paz et al. 2015

Brewster June, 2015 NA Rainforest 9.265 -79.508 130–810 (CH6868)
Paz et al. 2015

Description of sites where populations of Lithobates warszewitschii were sampled. Habitat type, georeferences, and informa-
tion sources (field data GPS coordinates, or external sources, e.g., other researchers, ACG website, or literature) are included.
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Lab work

In order to extract DNA from tissue samples a standard ammonium acetate protocol 
was used (Nicholls et al. 2000). The Cytochrome c oxidase subunit I (CO1) and 16S 
ribosomal RNA (16S) mitochondrial genes were targeted for amplification by PCR. 
16S primers (16Sar-L +16Sbr-H) and reaction protocols were adapted from Kessing et 
al. (2004). Multiple primers were used in the CO1 reactions to maximize the number 
of successful PCR products. CO1 primers (dgLCO-1490 + dgHCO-2198) and reac-
tion protocols were adapted from Meyer et al. (2005) and CO1 primers (Chmf4 + 
Chmr4; Che et al. 2012) followed reaction protocols by Ivanova et al. (2008).

Extracted DNA from a subset of samples was sent to the Canadian Centre of 
DNA barcoding for PCR amplification and sequencing. These samples used CO1 
primers (C_VF1LFt1 + C_VF1LRt1) in PCR reactions (Ivanova et al. 2007). The 
remaining samples were amplified in-house. Thermocycler (Techne Prime Gradient) 
programmes differed depending on the primer and reaction used. CO1 (dgLCO-1490 
+ dgHCO-2198) and 16S (16Sar-L + 16Sbr-H) reactions were run using the protocol 
outlined by Crawford et al. (2010). Primer set (CO1, Chmf4 + Chmr4) followed ther-
mocycler profiles by (Ivanova et al. 2008). Two percent agar gels were used for electro-
phoresis with 1% TAE (Smith et al. 2008). Gels were visualized using an ImageQuant 
LAS4000 and Nanodrop 2000 quantification was performed on each successful PCR 
product visualized at the correct length, prior to dilution.

Bioinformatics

Concatenated gene alignments were used in the phylogenetic analyses. GENEIOUS 
v11.0.5 (Kearse et al. 2012) bioinformatics software was used to assemble forward and 
reverse sequences from returned CO1 and 16S chromatographs. Forward and reverse 
(compliment) sequences were aligned using Geneious’ alignment (Global alignment 
with free end Gaps; Cost matrix = 65% similarity (5.0/-4.0); Gap open penalty = 
12; Extension penalty = 3). Sequences were trimmed at the 3’ and 5’ ends where low 
quality base calls were present. Consensus sequences were produced for each sample, 
ranging from 609–658 base pairs (bp) in length for CO1 and 578–601bp for 16S. 
For both CO1 and 16S, a BLAST search (Altschul et al. 1990) was conducted using a 
consensus sequence derived from all Costa Rican sequences. Additional Lithobates spe-
cies sequence data were downloaded to represent an ingroup for L. warszewitschii based 
on previous phylogenetic studies (e.g., Hillis and Wilcox 2005, Frost et al. 2006, Che 
et al. 2007, Huang et al. 2016): Lithobates clamitans (Latreille, 1801), Lithobates cates-
beiana (Shaw, 1802), Lithobates maculata (Brocchi, 1877), Lithobates palmipes (Spix, 
1824), Lithobates septentrionalis (Baird,1854), Lithobates sylvaticus (LeConte, 1825), 
Lithobates vaillanti (Brocchi, 1877), Rana maoershanensis (Lu et al., 2007) was used as 
an outgroup (Zhou et al. 2017). All sequences were archived in Genbank (Benson et al. 
2012; Table 2). All relevant sequences for each gene were then Geneious aligned (Mad-
dison 1997). Only individuals which had sequence data for both genes were included 
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Table 2. Genbank (NCBI) Voucher ID & Accession numbers.

Species Study site Voucher ID CO1 Genbank Accession # 16S Genbank Accession #

L. warszewitschii Maritza RP 388 MH559513 MH603380
Maritza RP 389 MH559517 MH603379
Pitilla RP 435 NA MH603378

San Gerardo RP 466 MH559519 MH603377
San Gerardo RP 475 MH559514 MH603376

Maritza RP 496 MH559518 MH603375
Maritza RP 500 MH559515 MH724925
Cacao RP 878 NA MH724926
Cacao RP 885 MH559516 MH724927
Cacao RP 887 NA MH724928
Caribe RP Fw142 MH559500 MH603393
Caribe RP Fw144 MH559501 MH603392
Caribe RP Fw147 MH559502 NA
Maritza RP Fw455 MH559503 MH603391
Maritza RP Fw457 MH559504 MH603390
Pitilla RP Fw570 MH559505 MH603389
Cacao RP Fw591 MH559506 MH603388
Cacao RP Fw597 MH559507 MH603387
Cacao RP Fw601 MH559508 MH603386
Cacao RP Fw616 NA MH603385

Maritza RP Fw618 MH559509 MH603384
Maritza RP Fw619 MH559510 MH603383
Maritza RP Fw620 MH559511 MH603382
Maritza RP Fw635 MH559512 MH603381
Brewster CH6868 KR863019 KR863275
Brewster AJC1794 KR863021 KR863277
Brewster AJC1798 KR863026 KR863282
Brewster CH6658 KR863027 KR863283
Brewster CH6659 KR863028 KR863284
El Copé KRL 0823 FJ766749 FJ84384
El Copé KRL 1540 FJ766751 FJ84552
El Copé KRL 1508 KR911913 KR911916
El Copé KRL 1496 KR911914 KR911917
El Copé KRL 1567 KR911915 KR911918

L. catesbeiana NA – KX686108* KX686108*
L. clamitans NA – EF525879 KY677813
L. maculata NA – NA AY779207
L. palmipes NA CFBHT12435 KU494586 KU495379
L. septentrionalis NA – EF525896 AY779200
L. sylvaticus NA – KP222281* KP222281*
L. vaillanti NA – KY587190 AY779214
R. maoershanensis NA SYNU08030061 KX1397728 KX1397722

Voucher ID and GenBank accession numbers for all individuals and sequences of Lithobates warszewitschii used in this 
study. (*) indicates that gene sequences derived from a whole mitochondrial genome sequence.

http://www.ncbi.nlm.nih.gov/nuccore/MH559513
http://www.ncbi.nlm.nih.gov/nuccore/MH603380
http://www.ncbi.nlm.nih.gov/nuccore/MH559517
http://www.ncbi.nlm.nih.gov/nuccore/MH603379
http://www.ncbi.nlm.nih.gov/nuccore/MH603378
http://www.ncbi.nlm.nih.gov/nuccore/MH559519
http://www.ncbi.nlm.nih.gov/nuccore/MH603377
http://www.ncbi.nlm.nih.gov/nuccore/MH559514
http://www.ncbi.nlm.nih.gov/nuccore/MH603376
http://www.ncbi.nlm.nih.gov/nuccore/MH559518
http://www.ncbi.nlm.nih.gov/nuccore/MH603375
http://www.ncbi.nlm.nih.gov/nuccore/MH559515
http://www.ncbi.nlm.nih.gov/nuccore/MH724925
http://www.ncbi.nlm.nih.gov/nuccore/MH724926
http://www.ncbi.nlm.nih.gov/nuccore/MH559516
http://www.ncbi.nlm.nih.gov/nuccore/MH724927
http://www.ncbi.nlm.nih.gov/nuccore/MH724928
http://www.ncbi.nlm.nih.gov/nuccore/MH559500
http://www.ncbi.nlm.nih.gov/nuccore/MH603393
http://www.ncbi.nlm.nih.gov/nuccore/MH559501
http://www.ncbi.nlm.nih.gov/nuccore/MH603392
http://www.ncbi.nlm.nih.gov/nuccore/MH559502
http://www.ncbi.nlm.nih.gov/nuccore/MH559503
http://www.ncbi.nlm.nih.gov/nuccore/MH603391
http://www.ncbi.nlm.nih.gov/nuccore/MH559504
http://www.ncbi.nlm.nih.gov/nuccore/MH603390
http://www.ncbi.nlm.nih.gov/nuccore/MH559505
http://www.ncbi.nlm.nih.gov/nuccore/MH603389
http://www.ncbi.nlm.nih.gov/nuccore/MH559506
http://www.ncbi.nlm.nih.gov/nuccore/MH603388
http://www.ncbi.nlm.nih.gov/nuccore/MH559507
http://www.ncbi.nlm.nih.gov/nuccore/MH603387
http://www.ncbi.nlm.nih.gov/nuccore/MH559508
http://www.ncbi.nlm.nih.gov/nuccore/MH603386
http://www.ncbi.nlm.nih.gov/nuccore/MH603385
http://www.ncbi.nlm.nih.gov/nuccore/MH559509
http://www.ncbi.nlm.nih.gov/nuccore/MH603384
http://www.ncbi.nlm.nih.gov/nuccore/MH559510
http://www.ncbi.nlm.nih.gov/nuccore/MH603383
http://www.ncbi.nlm.nih.gov/nuccore/MH559511
http://www.ncbi.nlm.nih.gov/nuccore/MH603382
http://www.ncbi.nlm.nih.gov/nuccore/MH559512
http://www.ncbi.nlm.nih.gov/nuccore/MH603381
http://www.ncbi.nlm.nih.gov/nuccore/KR863019
http://www.ncbi.nlm.nih.gov/nuccore/KR863275
http://www.ncbi.nlm.nih.gov/nuccore/KR863021
http://www.ncbi.nlm.nih.gov/nuccore/KR863277
http://www.ncbi.nlm.nih.gov/nuccore/KR863026
http://www.ncbi.nlm.nih.gov/nuccore/KR863282
http://www.ncbi.nlm.nih.gov/nuccore/KR863027
http://www.ncbi.nlm.nih.gov/nuccore/KR863283
http://www.ncbi.nlm.nih.gov/nuccore/KR863028
http://www.ncbi.nlm.nih.gov/nuccore/KR863284
http://www.ncbi.nlm.nih.gov/nuccore/FJ766749
http://www.ncbi.nlm.nih.gov/nuccore/FJ84384
http://www.ncbi.nlm.nih.gov/nuccore/FJ766751
http://www.ncbi.nlm.nih.gov/nuccore/FJ84552
http://www.ncbi.nlm.nih.gov/nuccore/KR911913
http://www.ncbi.nlm.nih.gov/nuccore/KR911916
http://www.ncbi.nlm.nih.gov/nuccore/KR911914
http://www.ncbi.nlm.nih.gov/nuccore/KR911917
http://www.ncbi.nlm.nih.gov/nuccore/KR911915
http://www.ncbi.nlm.nih.gov/nuccore/KR911918
http://www.ncbi.nlm.nih.gov/nuccore/KX686108
http://www.ncbi.nlm.nih.gov/nuccore/KX686108
http://www.ncbi.nlm.nih.gov/nuccore/EF525879
http://www.ncbi.nlm.nih.gov/nuccore/KY677813
http://www.ncbi.nlm.nih.gov/nuccore/AY779207
http://www.ncbi.nlm.nih.gov/nuccore/KU494586
http://www.ncbi.nlm.nih.gov/nuccore/KU495379
http://www.ncbi.nlm.nih.gov/nuccore/EF525896
http://www.ncbi.nlm.nih.gov/nuccore/AY779200
http://www.ncbi.nlm.nih.gov/nuccore/KP222281
http://www.ncbi.nlm.nih.gov/nuccore/KP222281
http://www.ncbi.nlm.nih.gov/nuccore/KY587190
http://www.ncbi.nlm.nih.gov/nuccore/AY779214
http://www.ncbi.nlm.nih.gov/nuccore/KX1397728
http://www.ncbi.nlm.nih.gov/nuccore/KX1397722
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in the concatenated alignment for the phylogenetic analyses. Lithobates clamitans, L. 
maculata, L. septentrionalis and L. vaillanti were represented by different individuals on 
16S and CO1 phylogenetic analyses.

Separate Bayesian consensus trees for the CO1 and 16S alignments were es-
timated independently using MR BAYES v3.2.6 (Ronquist et al. 2013) to ensure 
they did not conflict with each other. After establishing that there were no con-
flicts, columns with gaps were removed from the two individual alignments, which 
were then concatenated end to end with PhyUtility v.2.7.1 (Smith et al. 2008). This 
concatenated alignment was then used to construct trees using a Bayesian frame-
work (Mr. Bayes with default settings used for Markov chain Monte Carlo (MCMC) 
analysis—1,000,000 generations, 4 chains, 2 runs, a sample frequency of 500, and 
a 25% burn-in) and a maximum likelihood framework (RAxML; Stamatakis 2014); 
20 maximum-likelihood trees generated on distinct starting trees, 1000 bootstrap 
replicates calculated and annotated on the best maximum-likelihood tree). The 
alignment was partitioned by gene, meaning model parameters were unlinked across 
the partition, to account for the different evolutionary histories of the CO1 and 16S 
genes. The General Time Reversible (GTR) model of substitution (Tavaré 1986) was 
used for all trees in order to be consistent between the Bayesian and maximum likeli-
hood approaches since GTR is the model implemented in RAxML. Rate variation 
among sites was modelled as a discrete gamma distribution with four rate categories. 
Trees were rooted on the outgroup (R. maoershanensis) and visualised in FigTree 
v1. 4. 2 (Rambaut 2014).

Species boundaries were assessed in two ways. The first using the GENEIOUS 
plugin SPECIES DELIMITATION (Masters et al. 2011), which calculates the 
probability of reciprocal monophylly against the null model of random coales-
cence (Rosenberg 2007) for single panmictic populations (Rodrigo et al. 2008) 
and presents the probability for correct identification for putative species, given 
the data (Ross et al. 2008). Groups with P (Randomly Distinct) values of 0.05 – 1, 
represent branching events that would be expected under a coalescent model in a 
Wright-Fisher population and a strict molecular clock (Rodrigo et al. 2008, Masters 
et al. 2011). The second method used the Automatic Barcode Gap Discovery for 
primary species delimitation (ABGD; Puillandre et al. 2012) via a web interface 
(http://wwwabi.snv.jussieu.fr/public/abgd/). A maximum of ten, and minimum of 
two samples per geographic locality of the focal species were used as required for 
the minimum estimation of genetic divergence (Hickerson et al. 2007), a mini-
mum of one sample was considered adequate for interspecific analysis (Aliabadian 
et al. 2009). Where possible, the same individuals were used in the analyses of both 
genes. Intraspecific and interspecific genetic distances were also calculated and ana-
lysed. Average, K2P-corrected (Kimura 1980) pairwise distance (K2P-π) and net 
between group mean distance (NBGMD) (πnet) (Nei and Li 1979) were calculated 
in MEGA v6 (Tamura et al. 2013) to assess nucleotide diversity (π) and cryptic 
speciation within and between sites.

http://wwwabi.snv.jussieu.fr/public/abgd/
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Results

Phylogenetic comparison

Concatenated phylogenetic trees reconstructed using Bayesian inference and Maxi-
mum likelihood (Figure 2) methods, show similar topology of three major clades 
within the focal species. Geographic samples from ACG and Brewster formed well-
supported independent monophyletic groups. However, samples from El Copé pre-
sented a polyphyletic structure. Four out of five individuals (KRL 1496, KRL 1508, 
KRL 1540, KRL 1567) formed an independent clade, sister to the ACG clade, whereas 
sample KRL 0823 formed a clade with samples from Brewster – revealing the presence 
of two taxa at El Copé. Subsequently, three clades are recognized: ACG and El Copé, 
containing samples exclusively from these areas, and Brewster (including sample KRL 
0823 from El Copé). Single gene trees showed a similar topology to the concatenated 
ones (Suppl. material 1: Figures S1, S2).

CO1 operational taxonomic units (OTUs) delimitation results

CO1 species delimitation in GENEIOUS yielded three OTUs (Table 3). Focal clades 
ACG, Brewster (+KRL 0823), and El Copé (KRL 1496, KRL 1508, KRL 1540, KRL 
1567) had P values <0.05, indicating they are not conforming to the expected Wright-
Fisher criteria. According to this assumption and the data present, all clades were tax-
onomically distinct. ABGD analysis identified four OTUs within L. warszewitschii, 
with KRL 0823 forming its own OTU (p= 0.0359). ABGD also supported the three 
distinct OTUs outlined by species delimitation in GENEIOUS (p= 0.0599, Suppl. 
material 1: Table S1 and Suppl. material 1: Figure S3).

CO1 and 16S nucleotide diversity

K2P-π at the CO1 and 16S loci showed a mean value of 7.2% and 3.4%, respec-
tively, within all L. warszewitschii samples (Table 4). Samples from El Copé had the 
highest intra-group mean distance at 6.3% and 3.2%, respectively, whereas samples 
from ACG had 0.4% and 0.3% and within Brewster 0.1% and 0.2%, respectively. 
Mean intraspecific distances between ACG and Brewster samples (CO1/16S) were 
the highest at 15.7%/7.2% (Suppl. material 1: Tables S2, S3). Samples from ACG 
and El Copé shared the lowest distance at 10.7%/6.2%, and the intermediate distance 
was 13.8%/6.7% between Brewster and El Copé samples. Interspecific comparisons 
within the genus resulted in lower interspecific distances among recognized species 
(COI/16S), such as: L. clamitans and L. catesbeiana (5.7%/2%), L. septentrionalis and 
L. clamitans (8.3%/3.1%), L. septentrionalis and L. catesbeiana (8.6%/2.2%).
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Table 3. CO1 Species delimitation results.
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1: ACG 2: El Copé yes 0.01 0.109 0.08 0.97 (0.91,1.0) 0.99 (0.96,1.0) 0.0076 0.05 8.10E-06
2: El Copé 1: ACG yes 0.01 0.109 0.06 0.83 (0.69,0.97) 0.97 (0.86,1.0) 0.0047 0.05 8.10E-06
3: Brewster & KRL 0823 2: El Copé yes 0.02 0.197 0.08 0.88 (0.75,1.0) 0.97 (0.87,1.0) 0.0211 0.05 1.10E-07
4: L. palmipes 5: L. vaillanti yes 0 0.114 0 0 0.96 (0.83,1.0) 0 NA 1
5: L. vaillanti 4: L. palmipes yes 0 0.114 0 0 0.96 (0.83,1.0) 0 NA 1
6: L. catesbeiana 7: L. clamitans yes 0 0.057 0 0 0.96 (0.83,1.0) 0 NA 1
7: L. clamitans L. catesbeiana yes 0 0.057 0 0 0.96 (0.83,1.0) 0 NA 1
8: L. septentrionalis 7: L. clamitans yes 0 0.092 0 0 0.96 (0.83,1.0) 0 NA 0.33
9: L. sylvaticus 8: L. septentrionalis yes 0 0.238 0 0 0.96 (0.83,1.0) 0 NA 0.17

Species delimitation results of Lithobates warszewitschii in Costa Rica and Panama using partial sequences of the CO1 
gene. Analysis conducted in Geneious using the Species Delimitation plugin (Masters et al. 2011). Clades defined in 
phylogenetic analysis: ACG, Brewster (+ sample KRL 0823) and El Copé are all represented as putative species. The 
table also includes ingroup and outgroup species.

Table 4. Intraspecific nucleotide diversity (π) within geographic groups of L. warszewitschii.

Population Mean(π) Range(π)

CO1

ACG 0.004 0-0.008
El Copé 0.063 0.002-0.154
Brewster 0.001 0-0.002
L.warszewitschii 0.072 0-0.166

16S

ACG 0.003 0-0.009
El Copé 0.032 0-0.076
Brewster 0.002 0-0.006
L.warszewitschii 0.034 0-0.079

Nucleotide diversity (π) within Lithobates warszewitschii for the geographic groups ACG, Brewster and El Copé based 
on pairwise values for CO1 and 16S sequences. Analyses were conducted using the Kimura 2-parameter model (Ki-
mura 1980). The rate variation among sites was modelled with a gamma distribution (shape parameter = 4).

CO1 and 16S Net between group mean distance (NBGMD) (πnet)

At the CO1 and 16S loci the largest NBGMD (πnet) was 15.4% and 6.9%, respec-
tively, between ACG and Brewster samples (Suppl. material 1: Tables S2, S3). Sam-
ples from ACG and El Copé shared the lowest distance at 7.3% and 4.5%, respec-
tively, and the intermediate distance was 10.6% and 5%, respectively, between El 
Copé and Brewster samples. Most intraspecific distances between the geographic 
groups within L. warszewitschii, surpassed the interspecific values between recog-
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nized species within the genus (CO1/16S), such as: L. catesbeiana and L. clamitans 
(5.7%/2%), L. clamitans and L. septentrionalis (8.3%/3.1%), L. catesbeiana and L. 
septentrionalis (8.6%/2.2%).

Discussion

The concatenated phylogenetic trees consistently outlined three distinct clades within 
Lithobates warszewitschii supported by high posterior probabilities, bootstrap values, 
and taxonomic distinctness at the CO1 locus. No field sites within the ACG exhibited 
any well-defined cladistic structure, indicating it is a larger panmictic population. The 
individuals from El Copé were polyphyletic, revealing the presence of two OTUs at 
this site. Geographic groups within L. warszewitschii also exhibited greater genetic dis-
tances than many other recognized species pairs within the genus, suggesting cryptic 
species may be present.

In the analyses of nucleotide diversity and NBGMD, isolation by distance (IBD) 
(Wright 1943) does not explain all patterns of genetic variation, as samples from ACG 
and El Copé are most closely related in all scenarios. Additionally, the range of 16S 
(K2P- π) distance values within El Copé reached the highest for any geographic group 
at both loci. Thus, there is evidence that IBD contributes towards greater polymor-
phism in the most isolated allopatric populations, but other intrinsic (dispersal capa-
bility) and extrinsic (environmental and ecological) factors may explain large variation 
within and between finer geographic scales.

Isolation by distance may be the main driver of divergence or speciation among 
conspecific populations (Slatkin 1993) in allopatry (Vences and Wake 2007), other 
drivers include, low vagility due to limitations of physiology (Balinsky 1981, Navas 
and Otani 2007) and dispersal (Blaustein et al. 1994). However, recurrent hybridiza-
tion, secondary contact, or overlap with sister species can decrease this genetic distance 
correlation (Fouquet et al. 2007b). If populations follow a simple pattern of IBD, they 
may be considered with some probability, conspecific (Fouquet et al. 2007a). Con-
versely, where large variations in genetic distance cannot be explained by this concept, 
it is likely that cryptic speciation is present.

Lithobates warszewitschii is widely distributed throughout Central America, and 
the possibility of vicariance may explain mechanisms for genetic divergence. The 
Talamanca mountain range divides the Pacific and Atlantic versants at ~2000m al-
titude (Savage 1982). Many of the Isthmian fauna disperse through the Caribbean 
lowlands but have disjunct distribution along Costa Rica’s Pacific southwest (McDi-
armid and Savage 2005) that historically contained more dry forest. Crawford et al. 
(2007) hypothesized that the presence of a filter barrier (Remington 1968), caused 
by extreme topography and narrowing of the rainforest corridor in Panama’s Bo-
cas del Toro province induced the deepest phylogeographical split between northern 
and southern populations of Craugastor rainforest species. For Craugastor fitzingeri 
(Schmidt, 1857), a generalist species, these effects were much less accentuated and 
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its phylogenetic structure may be attributed to a more recent range expansion. For L. 
warszewitschii, gene flow is still possible, even if regional dry forests were transformed 
into savannah during the Pleistocene glacial maxima (Piperno and Pearsall 1998), 
patches of gallery forest that allowed reproduction in freshwater could permit disper-
sal westward into Costa Rica.

Although vicariance does divide sister species (Avise et al. 1987), it fails to form 
a general explanation for divergence in the tropics (Antonelli et al. 2010). Barriers 
such as mountains do not impede gene flow directly, but promote ecological gradients 
(Janzen 1967). An alternative explanation for the phylogeographic structure within L. 
warszewitschii could be peripatric (Mayr 1954) or dichopatric (Bush 1994) speciation 
– a common mode of evolution in amphibians (Vences and Wake 2007).

Paz et al. (2015) used a trait-based phylogeographic approach to model environ-
mental and ecological variables in Panamanian frog populations. Indirect develop-
ment encouraged greater dispersal and species with large ranges had lower genetic di-
vergence – a characteristic associated with generalists (Duminil et al. 2007). Despite 
being oviparous and wide-ranging, L. warszewitschii scored highest when modelling 
landscape resistance (resistance to dispersal caused by environmental conditions) and 
was highly divergent between Brewster and El Copé, with large genetic distances in 
proportion to their geographical distance. A possible explanation for this pattern 
could be a secondary contact during the post-glacial maxima (Schneider 1993) or 
selection for different ecological roles, such as within habitat or resource use (Alizon 
et al. 2008). It is true that L. warszewitschii’s colouration, habitat use, elevation 
range, and distribution vary (Savage 2002, Leenders 2016). Thus, high intraspecific 
diversity may be attributed to ecological specialization (Schluter 2000) in allopatry 
or coexistence of sister species in sympatry, such as in El Copé. For example, even 
if broad colouration of this species is genuine, frogs use non-morphological signals 
such as advertisement calls, cuticular hydrocarbons and other pheromones in mating 
systems and species recognition (Bickford et al. 2007), meaning they often remain 
inconspicuous. Divergent or cryptic species should therefore be considered a hy-
pothesis of separately evolving entities (Hey et al. 2003, de Quieroz 2007, Fiser et al. 
2018) and species status further scrutinized through integrative taxonomic methods 
(Padial et al. 2010).

Polyphyly can be used as indication of undescribed species in a lineage (Fouquet 
et al. 2007a). However, its presence complicates the classification of species in phy-
logenies as it may represent transitional stages in the evolution of taxa (Hörandl and 
Stuessy 2010, Xiang et al. 2012). Cryptic species often show morphological, ecological 
or genetic differentiation and usually a degree of reproductive isolation, which may 
occur through phenotypic plasticity or single locus polymorphisms. Hybridization 
may persist, leaving traces of introgression, speciation or hybrid vigour. Alternatively, 
fusion may be resisted by disruptive/divergent selection or postzygotic isolation (Sasa 
et al. 1998). This continuum is evident across large geographic ranges to highly local-
ized areas, providing explanations for the evolutionary transitions of ecological races 
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to species (Mallet 2008). Consequently, in L. warszewitschii, patterns of polyphyly, 
relatedness between ACG and El Copé samples, or large pairwise ranges in sympatry 
may reflect occasional or historical gene flow from migrants, hybridization, introgres-
sion, retention of ancestral polymorphisms or incomplete lineage sorting when using 
mitochondrial genes (Moritz and Cicero 2004). Alternatively, the presence of two 
sympatric OTUs at El Copé, may reflect human-induced introduction. Because of 
these scenarios, nuclear DNA is also recommended in subsequent evolutionary and 
taxonomic studies (Vences et al. 2005).

At both CO1 and 16S loci, K2P-π mean (Meyer and Paulay 2005) intraspecific 
ingroup values overlapped with interspecific species values, surpassing proposed gen-
eral thresholds: 8% at CO1 and 2% 16S (Crawford et al. 2010), 10% CO1, 5% 16S 
(Vences et al. 2005) and for neotropical amphibians at 16S (>3%) (Fouquet et al. 
2007a). This indicates a wider ranging cryptic complex is present, and advocates for 
the use of both genes in comparative amphibian phylogenetics (Vences et al. 2005). 
Ultimately, concatenated genes may yield the best phylogenies (Gadagkar et al. 2005), 
however, interspecific comparisons are limited in this study due to having one indi-
vidual representing each congeneric species, and an incomplete taxonomy that can 
hamper results (Meyer and Paulay 2005).

Conclusions

The type specimen of Lithobates warszewitschii originated from Volcán Chiriqui, west-
ern Panama (Schmidt 1857, Savage 1970), a locality near the Costa Rican border at al-
most equal distance between ACG and Brewster. Whilst the topotype locality was not 
sampled, all clades in this study may represent cryptic species. We have extended the 
research on cryptic diversity within L. warszewitschii by revealing an additional clade 
from ACG, and propose this clade is a candidate cryptic species that warrants further 
taxonomic investigation. Determination of evolutionary mechanisms are beyond the 
scope of this study, but an additional paraphyletic lineage from Costa Rica suggests 
it is probably a wide-ranging species complex, a likely scenario for many neotropical 
amphibians. Population trends in Costa Rica and Panama reflect both historical fac-
tors and recent habitat destruction, declines and introduced disease. Further sampling 
within Costa Rica, Nicaragua, and Honduras is likely to yield more cryptic diversity, 
and extirpation of a candidate lineage within El Copé (Crawford et al. 2010) high-
lights the importance of DNA barcoding in rapid, preliminary species identification. 
Such assessments are necessary to inform biodiversity estimates, taxonomic progress, 
and conservation of amphibian species. Phylogeographic structure in L. warszewitschii 
highlights the difficulty in explaining mechanisms of speciation in Mesoamerican am-
phibian fauna. Evolutionary theory, supported by morphological, ecological, physi-
ological and multiple genetic methods are necessary to evaluate divergent processes in 
this group, and in achieving species status of sister taxa in this complex.
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