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The ability to respond rapidly to invading patho-
gens is a prerequisite for eff ective immunity to 
infection. Many immune and nonimmune cells 
are equipped with specialized pattern-recogni-
tion receptors (PRRs), such as the vertebrate 
Toll-like receptors (TLRs), which allow them 
to sense a large variety of pathogen-associated 
molecular patterns (PAMPs) and initiate an in-
fl ammatory response (1, 2). In all organisms, the 
innate infl ammatory response initiated by PRRs 
is essential to contain immediate pathogen spread 
and to promote tissue repair (3). But, in verte-
brates, PRRs can additionally act to promote DC 
activation and translation of innate into adaptive 
immunity (4–6). DCs are bone marrow–derived 
cells scattered throughout lymphoid and non-
lymphoid organs, where they act as immune 
sentinels by responding to invading pathogens 
(4–6). Direct stimulation of DCs via TLRs and 
some other classes of PRRs induces their transi-

tion from resting cells into an “activated” eff ec-
tor state in which they can direct the expansion 
and diff erentiation of naive T cells into eff ectors 
(4–7). This process is accompanied by processing 
and presentation of pathogen-derived material, 
up-regulation of co-stimulatory molecules, mi-
gration of DCs to the T cell areas of secondary 
lymphoid organs, and production of cytokines 
and chemokines, all of which are important for 
selecting and priming rare naive, pathogen-specifi c 
T cells (7). Thus, stimulation of DCs through their 
PRRs allows the coupling of an immediate, pro-
tective innate response to an antigen-specifi c and 
long-lasting adaptive response.

Infl ammation can also be triggered in sterile 
conditions, arguing for the existence of PAMP-
independent pathways of innate response. Some 
triggers, such as genomic DNA or self-RNA–
protein complexes, appear to act only in patho-
logical conditions, by mimicking viral PAMPs 
and triggering PRRs involved in antiviral de-
fense (8). They may, therefore, not be representa-
tive of DC responsiveness to infection. However, 
other endogenous triggers have been proposed 
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to have an important role in initiating self-defense. This has 
been most eloquently argued by Matzinger in the “danger” 
model, which suggests that aberrant exposure of normal cell 
constituents during necrotic cell death signifi es a potentially 
hazardous situation that requires intervention by the adaptive 
immune system (9–12). Such danger signals and their puta-
tive receptors remain largely unidentifi ed but may include 
heat shock proteins, high-mobility group box 1, hyaluronan 
fragments, or uric acid (13).

Although it is clear that endogenous triggers of infl amma-
tion can promote processes such as tissue repair (14), it is 
controversial whether they also trigger adaptive immunity. 
Indeed, attempts to demonstrate adjuvant eff ects or DC acti-
vation by putative danger signals such as heat shock proteins 
have been marred by the issue of possible contamination with 
PAMPs and by the fact that danger receptors remain largely 
unidentifi ed and, therefore, loss-of-function experiments have 
yet to be performed (13). A more productive area has been the 
study of the products of the innate response itself and their 
eff ect on DCs. Proinfl ammatory cytokines such as TNF-α 
and type I IFNs induce many features of DC activation in vitro 
(10, 15–19), suggesting that they could substitute for PAMPs 
or signals from dying cells in DC activation and T cell prim-
ing. This has been ingeniously incorporated into the danger 
model by suggesting that tissues act as important controllers 
of DC activation, not only by releasing “constitutive” danger 
signals upon necrotic cell death but also by producing an ad-
ditional class of “inducible” danger signals such as TNF-α and 
IFN-α/β, which eff ectively relay danger at a distance (9–12).

These inducible danger signals are known to be synthe-
sized in response to PRR signaling by a variety of hemato-
poietic and nonhematopoietic cells. Best characterized in this 
respect is the response to LPS from the outer envelope of 
Gram-negative bacteria that is recognized by TLR4 (20–22). 
LPS can induce proinfl ammatory cytokine production in a 
large variety of cell types, including epithelial cells (23, 24), 
endothelial cells (25), adipocytes (26), keratinocytes (27), and 
smooth muscle cells (28). Epithelial cells, in particular, have 
been regarded as sensors of infection because of their strategic 
localization lining the outside world (29, 30). Their contribu-
tion has been shown to be important for resolving a bacterial 
infection with uropathogenic Escherichia coli (31) and for pul-
monary responses to inhaled endotoxin (32). Furthermore, 
stromal cells are also able to respond to viral PAMPs and are 
essential for adequate protection from some viral infections 
(33). However, an important issue that remains to be ad-
dressed is whether nonhematopoietic tissue cells are suffi  cient 
to initiate an immune response by transmitting inducible 
danger signals to DCs or, rather, whether they amplify the 
response that has been initiated by direct DC activation via 
PRRs. We tested this by monitoring LPS-driven DC activa-
tion in chimeric mice in which either the radioresistant or the 
radiosensitive compartment was defi cient in TLR4 signaling. 
We show that although radioresistant cells throughout the 
body react strongly to LPS and initiate a local and systemic 
infl ammatory response, this is neither suffi  cient nor necessary 

to lead to changes in DC localization, phenotype, or T cell 
stimulatory function. We conclude that inducible signals from 
nonhematopoietic tissues and radioresistant hematopoietic cells 
do not play an essential role in DC activation.

RESULTS

In vivo response of radioresistant tissue cells to LPS

To address the extent to which stromal cells can drive an 
infl ammatory response in vivo, we generated chimeric mice 
in which most hematopoietic cells cannot respond to LPS 
because of either a spontaneous mutation (TLR40/0 [20, 21]) or 
a deletion (TLR4−/− [22]) in the TLR4 gene, but nonhemato-
poietic tissues (and radioresistant leukocytes such as Langer-
hans cells [34]) are of WT origin and remain LPS responsive 
(Fig. 1 A). We initially examined the systemic response to 
LPS in the TLR4−/−®WT chimeras versus WT®WT con-
trol mice by analyzing expression of proinfl ammatory genes 
in diff erent organs. 1 h after i.v. injection of the stimulus, 
TLR40/0®WT mice showed strong induction of GM-CSF, 
IL-1β, and TNF-α mRNA in the heart and kidney, similar 
to that seen in WT®WT mice (Fig. 1 B). LPS also induced 
substantial up-regulation of IL-1β and TNF-α in the liver 
and spleen of TLR40/0®WT mice (Fig. 1 B). Levels were 
lower than in WT®WT controls (Fig. 1 B), suggesting that 
radiosensitive cells contribute more signifi cantly to infl am-
matory responses in the spleen and liver than in the heart and 
kidney, as might be expected from the relative leukocyte 
content of those organs. IFN-β was not induced in the heart 
and liver of TLR40/0®WT mice and only modestly in the 
kidney and spleen, which suggests that radiosensitive cells are 
the main in vivo source of this cytokine in response to LPS. 
CC chemokine ligand (CCL) 2 and CXC chemokine ligand 
(CXCL) 10, two infl ammatory chemokines, were induced to 
equivalent levels in the two sets of chimeras (Fig. 1 B).

The activation of radioresistant cells by LPS also led to a 
marked systemic response, as indicated by the fact that high lev-
els of proinfl ammatory mediators such as TNF-α, IL-6, IL-1β, 
and CCL2 could be detected in the serum of TLR40/0®WT 
mice 6 h after LPS injection (Fig. 2 A). These levels were 
not as high as in WT®WT mice, consistent with the fact 
that these cytokines are also produced by LPS-activated he-
matopoietic cells. This was evident in the serum from reci-
procal chimeric mice in which the radiosensitive cells were of 
WT and the radioresistant cells of TLR40/0 origin: in such 
WT®TLR40/0 mice, LPS strongly induced TNF-α, IL-6, 
IL-1β, and CCL2 but, notably, without the participation of 
the radioresistant compartment, levels were also lower than in 
WT®WT mice (Fig. 2 A). No cytokine induction was de-
tected in the serum of TLR40/0®TLR40/0 mice, which con-
fi rms the TLR4-restricted bioactivity of the LPS used in these 
experiments (Fig. 2 A).

As LPS is known to elicit a very rapid cytokine response, 
in particular of TNF-α (35), we also examined the serum of 
chimeric mice at earlier time points. At 1 h after LPS injec-
tion, TNF-α reached very high levels in both WT®WT and 
TLR40/0®WT mice (up to 1 ng/ml in the latter). Levels of 
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CCL2 and IL-6 were also high (Fig. 2 B), whereas IFN-β could 
be detected at only low levels (<100 pg/ml) in WT®WT 
mice but not in TLR40/0®WT mice (not depicted), in agree-
ment with Fig. 1 B showing that it largely originates from 
radiosensitive cells. Collectively, these data indicate that radio-
resistant stromal cells throughout the body are rapidly activated 
by LPS and respond with the production of proinfl ammatory 
cytokines and chemokines, greatly contributing to both local 
and systemic infl ammation.

Gene expression profi le of stroma-stimulated DCs

To investigate the infl uence of systemic infl ammation induced 
by radioresistant cells on the activation status of DCs, we analyzed 
the gene expression profi le of DCs isolated from the spleen. 
Splenic DCs are strategically localized in close contact with the 
bloodstream and, therefore, are exposed to both local and sys-
temic infl ammatory mediators. Conventional CD11chiB220− 
DCs (i.e., excluding B220+ plasmacytoid DCs) were sorted 
from spleens of WT®WT and TLR40/0®WT mice 6 h 

Figure 1. TLR4 stimulation of radioresistant cells induces local 

organ infl ammation. (A) Experimental design. (B) Relative mRNA expres-

sion of GM-CSF, IL-1β, IFN-β, TNF-α, CCL2, and CXCL10 in the kidney, 

heart, liver, and spleen of WT®WT mice or TLR40/0®WT mice 1 h after 

intravenous injection of 10 μg PBS or LPS per mouse. Expression of each 

gene was normalized to the expression of 18S rRNA and is shown as the 

fold induction of LPS over PBS. Data are the means ± SD of triplicate 

determinations. Expression of all genes was signifi cantly up-regulated by 

LPS compared with PBS (P < 0.05 using the Student’s t test), except for 

IFN-β in the liver of TLR40/0®WT mice (signifi cant down-regulation) and 

for IFN-β in the hearts of TLR40/0®WT mice (not signifi cant). Signifi cant 

differences between WT®WT and TLR40/0®WT mice are indicated. * and 

**, P < 0.05 and 0.01, respectively, using the Student’s t test.
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after i.v. injection of either PBS or LPS, and the expression of 
several genes was analyzed by quantitative PCR. As shown in 
Table I, LPS induced the up-regulation of many activation-
related genes in DCs from WT®WT mice but only few such 
genes were induced in DCs from TLR40/0®WT mice. DCs 
from TLR40/0®WT mice did not up-regulate expression of 
co-stimulatory molecules and proinfl ammatory cytokines upon 
LPS injection but, rather, expressed genes involved in down-
modulating immune responses, such as IL-10 and suppressor 
of cytokine signaling (SOCS) 1 and 3 (Table I). In addition, 
they expressed mRNAs for a select set of chemokines (i.e., 
CCL17, CCL22, CXCL2, and CCL12), whereas those encod-
ing several proinfl ammatory proteins, such as cyclooxygenase 
2 (COX-2), TNF-α, and IL-12 p40, were signifi cantly down-
regulated (Table I). Expression of TGF-β and the mannose 
receptor (MRC-1) remained unaltered in TLR40/0®WT 
DCs, whereas these genes were strongly down-regulated in 
WT®WT DCs (Table I). Whether the observed diff erences 
in gene expression profi le refl ect the diff erential responsiveness 
of all DCs or is confounded by eff ects on particular subsets 

remains to be determined. Nevertheless, these data clearly show 
that LPS has very distinct eff ects on the conventional DC rep-
ertoire of TLR40/0®WT compared with WT®WT mice and 
that only a restricted and distinct set of genes is induced in DCs 
exposed to stromal-driven infl ammation in vivo.

LPS-activated stromal cells do not induce phenotypic 

DC maturation

A major component of DC activation is the acquisition 
of “maturation markers” (7). To determine to what extent 
stromal-driven infl ammation leads to phenotypic maturation, we 
examined DC surface marker expression by fl ow cytometry. 
6 h after LPS injection, splenic DCs from WT®WT control 
mice had increased their expression of CD40, CD80, CD86, 
CD95, and MHC class II when compared with PBS-injected 
controls (Fig. 3, A and B). Notably, no diff erence was seen 
in WT®TLR40/0 mice, which indicates that the activation 
of stromal cells is not required for DC maturation in vivo 
(Fig. 3, A and B). In contrast, no DC maturation was seen in 
TLR40/0®WT mice (Fig. 3, A and B) or TLR40/0®TLR40/0 

Figure 2. Both hematopoietic and nonhematopoietic cells contrib-

ute to LPS-induced systemic infl ammation. (A) The concentration of 

TNF-α, IL-6, IL-1β, and CCL2 was determined in sera of WT®WT, 

TLR40/0®WT, WT®TLR40/0, and TLR40/0®TLR40/0 chimeric mice 6 h after 

injection of either PBS or LPS. (B) Similar analysis of TNF-α, IL-6, and CCL2 

in serum from WT®WT and TLR40/0®WT at 1 h after injection. Data in A 

are the means ± SD of two to three mice. Each point in B represents an 

individual mouse, and the mean ± SD is also shown. Signifi cant differences 

between groups are indicated. * and **, P < 0.05 and 0.01, respectively, 

using the Student’s t test.
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control mice (Fig. 3 B). Even at 14 h after LPS injection, DCs 
from TLR40/0®WT mice displayed little sign of increased 
expression of maturation markers (Fig. 3 C). In addition, 
when DCs were sorted and cultured overnight in vitro, only 
DCs from LPS-injected WT®WT mice produced IL-6, 
another parameter associated with DC activation (Fig. 3 D). 
Control WT®WT and TLR40/0®TLR40/0 chimeric mice 

had comparable responses to WT and TLR40/0 mice, indicat-
ing that transplantation had no eff ect on responsiveness to 
LPS (Fig. S1, available at http://www.jem.org/cgi/content/
full/jem.20070325/DC1). Moreover, bone-marrow chimeras 
on a C57BL/6 background (TLR4−/−®WT) behaved simi-
larly to those on the BALB/c background (TLR40/0®WT), 
as in both cases LPS induced high levels of proinfl ammatory 

Table I. Expression profi le of genes induced by LPS in splenic DCs from WT®WT and TLR40/0®WT mice

CD11c+B220− DCs were sorted from spleens from WT®WT and TLR40/0®WT mice 6 h after injection of PBS or LPS. cDNA was generated, and the expression of 35 different 

genes was analyzed by quantitative real-time PCR. Expression of each gene was normalized for the expression of 18S rRNA and expressed as the fold induction of LPS over 

PBS. These data are represented as the means ± SD of triplicate wells and are color-coded by the level of induction. *, P < 0.01 as induced by LPS using the Student’s t test.
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Figure 3. LPS stimulation of radioresistant cells does not lead to 

DC activation. (A) Surface expression of CD40, CD80, CD86, CD95, and 

MHC class II (I-Ad) was determined on gated CD11chi cells from spleens 

isolated from WT®WT (top), WT®TLR40/0 (middle), and TLR40/0®WT (bot-

tom) mice 6 h after injection with PBS (shaded histogram) or LPS (con-

tinuous line). (B) Geometric mean fl uorescence intensity (GeoMFI) values 

were determined at 6 h after injection and expressed as a ratio of LPS/PBS 

for WT®WT, WT®TLR40/0, TLR40/0®WT, and TLR40/0®TLR40/0 mice. 

(C) Induction of surface expression of co-stimulatory molecules by LPS 

compared with PBS, gated on CD11chi cells from spleens isolated 6 or 

14 h after injection into WT®WT (closed squares) or TLR40/0®WT (open 

squares) mice. (D) Concentration of IL-6 in overnight culture supernatant 

of CD11chiB220− DCs sorted from spleens of WT®WT or TLR40/0®WT 

mice 6 h after injection of PBS or LPS. Results indicate means ± SD of 

triplicate wells. (E) 1 μg PBS or LPS was injected into the hind footpads 

(left vs. right, respectively) of WT®WT or TLR4−/−®WT mice, and drain-

ing (popliteal) and nondraining (axillary) lymph nodes were isolated 6 h 

later. Surface expression of co-stimulatory molecules was determined on 

CD11chi cells and expressed as a ratio of LPS/PBS within one mouse. Re-

sults indicate means ± SD of two (WT®WT) or three (TLR4−/−®WT) mice. 

*, P < 0.05 between the indicated groups using the Student’s t test.



JEM VOL. 204, June 11, 2007 1493

ARTICLE

cytokines without causing the activation of splenic DCs (see 
Fig. 6 and not depicted). This indicates that the observed non-
responsiveness of the DCs was not caused by the genetic 
background nor the nature of the TLR4 defect (spontaneous 
point mutation vs. induced deletion).

To determine if the nonresponsiveness to stroma-derived 
infl ammatory mediators was true outside the spleen, we also 
tested DCs in other lymphoid organs. Systemic LPS administra-
tion did not promote phenotypic changes in DCs from axillary, 
brachial, or mesenteric lymph nodes in TLR40/0®WT mice 
(unpublished data). Moreover, local administration of LPS gave 
the same results as systemic delivery, because LPS injection into 
the footpads of TLR4−/−®WT C57BL/6 mice did not acti-
vate DCs in draining popliteal lymph nodes (Fig. 3 E) even 
though it induced substantial paw infl ammation, as determined 
by quantitative PCR analysis of proinfl ammatory mediators 
(not depicted). Collectively, these data indicate that stromal-
derived infl ammatory mediators alone are neither suffi  cient nor 
required for DC maturation in response to LPS administration.

LPS-activated stromal cells do not induce functional 

DC maturation

The phenotypic changes conventionally used as indicators 
of DC maturation correlate with an increased ability of the 
cells to stimulate T cell proliferation (7). To ask whether such 
functional maturation had occurred, splenic DCs were iso-
lated from spleens of WT®WT or TLR40/0®WT mice 6 h 
after LPS injection, fi xed in paraformaldehyde to prevent fur-
ther changes, and used as stimulators for CFSE-labeled TCR-
transgenic naive T cells in the presence of cognate peptide. DCs 
from LPS-injected WT®WT mice were 10-fold better T cell 
stimulators than DCs from TLR40/0®WT mice (Fig. 4 A), as 
confi rmed by quantifi cation of the CFSE profi les (Fig. 4, B 
and C) and by assessing IL-2 accumulation in culture super-
natants (Fig. 4 D). In contrast, DCs from LPS-injected 
TLR40/0®WT mice were equivalent to DCs from PBS-
injected control mice at stimulating T cell proliferation (Fig. 4, 
B–D). Furthermore, T cells primed by DCs from PBS-injected 
WT®WT or from PBS- or LPS-injected TLR40/0®WT 
mice all displayed a comparable cytokine production pro-
fi le upon restimulation, which was markedly diff erent from 
that of T cells primed by DCs from LPS-injected WT®WT 
mice (Fig. S2, available at http://www.jem.org/cgi/content/
full/jem.20070325/DC1). We therefore conclude that stromal 
recognition of LPS is not suffi  cient to induce functional mat-
uration of DCs, despite creating a local and systemic infl am-
matory milieu.

Activation of stromal cells is insuffi cient to induce splenic 

DC migration

Upon activation, splenic DCs migrate from the red pulp 
into the T cell area of the white pulp (also known as the peri-
arteriolar lymphatic sheath [PALS]) (36, 37). Up-regulation 
of CC chemokine receptor (CCR) 7 and down-regulation of 
CCR6 correlates with DC migration (38, 39) and, consistent 
with this notion, considerably decreased levels of CCR6 and 

Figure 4. LPS activation of radioresistant cells does not result in 

functional DC maturation. CFSE-labeled DO11.10 T cells were stimulated 

with pOVA and paraformaldehyde-fi xed CD11c-enriched cells from 

spleens isolated from chimeric mice 6 h after injection of PBS or LPS. 

CFSE profi les were analyzed after 96 h and gated for DAPI−CD4+KJ1-26+ 

cells. (A) CFSE profi le of DO11.10 T cells stimulated with 10 nM pOVA and 

DCs from WT®WT mice (left) or TLR40/0®WT mice (right) that had been 

injected with PBS or LPS. (B) Percentage of T cells that divided expressed 

as a function of pOVA concentration. (C) Proliferation index (mean num-

ber of divisions undergone by dividing cells) expressed as a function of 

pOVA concentration. (D) IL-2 levels in culture supernatants after 96 h, 

expressed as a function of pOVA concentration. Data are the means ± SD 

of triplicate wells. *, P < 0.01 between groups using the Student’s t test.
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increased levels of CCR7 were seen in DCs from WT®WT 
mice after LPS injection. In contrast, no chemokine recep-
tor usage switch was seen in DCs from TLR40/0®WT mice 
(Fig. 5 A), suggesting that signals from LPS-activated stromal 
cells might not be suffi  cient to induce migration of DCs into 
the T cell zone. To test this directly, we measured DC re-
localization to the PALS. Marked relocalization was observed 
in WT®WT mice upon LPS injection (Fig. 5, B–D), as ex-
pected (36). In contrast, DC localization in TLR40/0®WT 
mice remained unaltered (Fig. 5, B–D). Notably, injection of 
LPS into the reciprocal WT®TLR40/0 mice was suffi  cient to 

induce DC migration to the T cell area in spleens (Fig. 5, B–D). 
These data indicate that the response of radioresistant stromal 
cells to LPS is neither suffi  cient nor required to induce migra-
tion of splenic DCs into the PALS.

Infl ammatory cytokines induce limited DC 

maturation in vivo

Our experiments clearly indicate that DCs in  secondary lym-
phoid organs do not become activated by local or systemic 
infl ammatory signals produced naturally by stromal cells in 
response to LPS, even though these include cytokines such 

Figure 5. Activation of nonhematopoietic cells by LPS is not suffi -

cient or required for migration of splenic DCs to the PALS. (A) Ex-

pression of mRNA for CCR6 and CCR7 in sorted splenic DCs from 

WT®WT mice or TLR40/0®WT mice at 6 h after injection of PBS or LPS. 

Values were normalized to the expression of 18S rRNA and expressed as 

the fold induction of LPS over PBS. Results indicate the means ± SD 

of triplicate wells. *, P < 0.01 for the expression level induced by LPS 

using the Student’s t test. (B) Localization of CD11c+ cells (green) was 

determined in spleens of chimeric mice 6 h after injection of PBS (top) or 

LPS (bottom). White pulp area was delineated by MAdCAM-1+ sinus-lining 

cells in the marginal zone (red), while B cells areas were visualized by 

staining for B220 (blue). Bar, 100 μm. The percentage of CD11c+ staining 

present in the PALS (C) or in the red pulp (D) was determined in all four 

chimera groups after injection with PBS or LPS. Results indicate means ± 

SD from three to six analyzed wide-fi eld images. *, P < 0.001 between 

PBS- and LPS-injected mice using the Student’s t test.
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as TNF-α, known to provoke DC maturation in vitro 
(15, 40). However, TNF-α levels in the serum of LPS-treated 
TLR40/0®WT mice were still 	10-fold lower than those in 
WT®WT mice (1 vs. 10 ng/ml; Fig. 2). To examine if this 
quantitative diff erence could explain the lack of responsiveness 
of DCs in TLR40/0®WT mice, we coinjected TNF-α with 
LPS into TLR4−/−®WT mice and examined the activation 
status of splenic DCs. Coinjection of 0.25 μg TNF-α with 
LPS into TLR4−/−®WT mice increased TNF-α and IL-6 se-
rum levels to the level obtained with LPS alone in WT®WT 
mice (Fig. 6 A) and was accompanied by partial up-regulation 
of CD80, CD86, and MHC class II, but not CD40, in splenic 
DCs (Fig. 6 B). Injection of larger doses of TNF-α ± IFN-
α/β induced very high levels of circulating TNF-α and led 
to greater up-regulation of maturation markers, although 
the degree of maturation was still markedly inferior to that 
achieved with LPS in WT®WT mice (Fig. 6, A and B; and 
Fig. S3, available at http://www.jem.org/cgi/content/full/
jem.20070325/DC1). To determine if DCs in the spleen were 
actually exposed to the serum cytokines, membrane TNF re-
ceptor I (TNF-RI) expression was analyzed. We found that ar-
tifi cially increasing the levels of TNF-α in TLR4−/−®WT 
chimeras induced down-regulation of TNF-RI expression by 
splenic DCs, indicating receptor engagement (Fig. 6 C and 
Fig. S3). TNF-RI down-regulation in this setting was equiva-
lent to that in LPS-treated WT®WT mice, yet it was not ac-
companied by an equivalent degree of DC maturation. It can 
therefore be concluded that resting DCs can respond to the 
presence of TNF-α in vivo and that, at high enough levels, this 
can induce some degree of maturation, albeit lower than that 
which is induced with LPS.

Finally, to determine whether chronic rather than acute ex-
posure to TNF-α resulted in a diff erent phenotype, we examined 
TNF∆ARE mice, which have increased serum TNF-α levels 
caused by the deletion of regulatory AU-rich elements (ARE) in 
the TNF mRNA (41). DCs from these mice showed down-
regulation of TNF-RI expression, indicating that they were 
sensitive to the increased levels of  TNF-α (Fig. S4 A, available 
at http://www.jem.org/cgi/content/full/jem.20070325/DC1). 
However, expression of co-stimulatory molecules on DCs from 
TNF∆ARE mice was comparable to that of control cells (Fig. 
S4 B). Thus, even chronic exposure to TNF-α does not induce 
substantial maturation of DCs in vivo.

Stroma-stimulated DCs respond normally to subsequent 

TLR stimulation

Further evidence that the unresponsiveness of DCs in LPS-
injected TLR4−/−®WT mice did not simply refl ect DC 
“ignorance” of the proinfl ammatory milieu comes from the fact 
that they up-regulated a select set of genes (Table I). Notably, 
many of these genes are associated with dampening of im-
munity, perhaps indicating a regulatory function (42–45). To 
examine whether this expression pattern could therefore re-
fl ect induction of an unresponsive state, we tested the ability 
of DCs to respond to subsequent direct TLR stimulation in 
vivo. TLR40/0®WT mice were initially injected with either 

PBS or LPS and 6 h later with CpG DNA, an agonist for 
TLR9, and were analyzed 16 h after the last injection (Fig. 
7 A). CpG strongly induced TNF-α, IL-12p70, and CCL2, 
and the serum levels of these mediators were not substantially 
diff erent when CpG challenge was preceded by LPS (Fig. 7 B). 

Figure 6. Increasing serum TNF-𝛂 levels is not suffi cient to induce 

complete DC activation. (A) Serum concentration of TNF-α and IL-6 

was determined in the sera of WT®WT and TLR4−/−®WT chimeric mice 

1 h after injection with either PBS (open circles), LPS (closed circles), LPS 

plus 0.25 μg TNF-α (closed triangles), or LPS plus 1 μg TNF-α (closed 

squares). (B) Surface expression of co-stimulatory molecules on CD11chi 

cells from spleens isolated 6 h after injection of LPS ± TNF-α into 

WT®WT or TLR4−/−®WT mice. Data are expressed as a ratio of LPS/PBS. 

*, P < 0.05 using the Student’s t test for LPS-injected WT®WT mice. 

(C) Surface expression of TNF-RI on the same DCs described in B, expressed 

as GeoMFI. Results (A–C) are means ± SD from two to three mice per 

group. *, P < 0.05 shows signifi cantly lower TNF-RI expression compared 

with PBS injection.
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Figure 7. DCs exposed to stromal-driven infl ammation respond 

normally to subsequent direct TLR stimulation. (A) Experimental 

setup. (B) Levels of TNF-α, IL-12 p70, and CCL2 in sera of PBS/PBS-, PBS/

CpG-, and LPS/CpG-injected TLR40/0®WT mice. Results indicate means ± 

SD from four individual mice. (C) Surface expression profi les for CD40, 

CD80, CD86, and MHC class II (I-Ad) on CD11chi-gated splenocytes from 

PBS/PBS-injected mice (shaded histograms) overlaid with the profi les of 

PBS/CpG-injected mice (continuous line, top) or LPS/CpG-injected mice 

(continuous line, bottom). (D) As in C, but expressed as the ratio of 

GeoMFI values for PBS/CpG-injected mice or LPS/CpG-injected mice to 

PBS/PBS-injected mice. Results indicate means ± SD from two mice per 

group. Expression of all molecules was signifi cantly up-regulated com-

pared with PBS/PBS-injected mice (P < 0.05 using the Student’s t test), 

except for MHC class II in PBS/CpG injected mice. (E) Intracellular IL-12 p40 

staining on CD11c-enriched splenocytes from PBS/PBS- (left), PBS/CpG- 

(middle), and LPS/CpG-injected (right) mice. Numbers in boxes indicate 

the percentage of all cells shown that produce IL-12 p40. (F) Proliferation 

index (average number of divisions undergone by dividing cells) of 
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Analysis of splenic DCs showed that initial injection with LPS 
also did not aff ect CpG-induced maturation, as CD80, CD86, 
and MHC class II were expressed at similar levels on DCs from 
PBS/CpG and LPS/CpG mice (Fig. 7, C and D). LPS pretreat-
ment did slightly decrease the CpG-induced up-regulation of 
CD40 expression on DCs (Fig. 7, C and D), but induction of 
IL-12 was identical in both groups, as determined by intracel-
lular staining (Fig. 7 E). Finally, LPS/CpG DCs were compa-
rable to PBS/CpG DCs at inducing naive T cell proliferation 
(Fig. 7 F) and IL-2 production (Fig. 7 G). It can therefore 
be concluded that systemic and local infl ammation driven by 
LPS-induced activation of radioresistant cells does not render 
splenic DCs unresponsive to subsequent TLR stimulation.

D I S C U S S I O N 

The widespread distribution of many TLRs on nonhemato-
poietic cells is important to allow tissue-resident cells to rap-
idly respond to early signs of infection and initiate a protective 
innate response. By secreting proinfl ammatory mediators, tis-
sues have additionally been suggested to induce adaptive re-
sponses, transmitting inducible danger signals that promote 
DC activation (9–12, 46–48). The data presented in this paper 
show that signals from nonhematopoietic tissues and radio-
resistant hematopoietic cells such as Langerhans cells are not 
suffi  cient to perform this function in an endotoxemia model. 
Using chimeric mice in which only radioresistant cells respond 
to LPS, we found that DCs in the spleen, as well as in lymph 
nodes, remained immature with respect to their phenotype, 
function, and distribution. This is particularly surprising, be-
cause LPS induced high systemic levels of proinfl ammatory 
cytokines and chemokines in these mice, some of which act as 
stimuli for DC maturation in vitro. In particular, TNF-α and IL-1 
have been described to activate DCs (15, 40, 49), and TNF-α 
is one of the most important cytokines driving the proinfl am-
matory response during sepsis and endotoxemia (50, 51). Yet, 
we found that hematopoietic cells are also a major source of 
TNF-α, IL-1β, and even IFN-β (Fig. 1 and Fig. 2), which 
would suggest that activation of both hematopoietic and non-
hematopoietic cells is required for optimal induction of these 
cytokines. Consistent with this notion, “spiking” LPS with 
TNF-α caused some up-regulation of co-stimulatory molecules 
on splenic DCs in TLR4−/−®WT chimeras (Fig. 6 and Fig. S3). 
This was further augmented by additional spiking with IFN-
α/β consistent with reports that injection of IFN-α/β into 
mice can activate DCs in vivo (10, 18, 52). However, it is nota-
ble that the extent of maturation achieved in this setting was 
marginal compared with that achieved with LPS stimulation 
and out of proportion with the amount of circulating TNF- 
α and consequent down-regulation of the TNF-RI on DCs 
(Fig. 6 and Fig. S3). This leaves open the question of whether 
the observed lack of DC activation in TLR4−/−®WT 

chimeras is a quantitative eff ect, refl ecting the fact that radio-
resistant cells can only provide suboptimal levels of infl amma-
tory mediators, or a qualitative eff ect in which there is a 
requirement for a maturational signal uniquely originating 
from radiosensitive cells. Whichever the case, it does not alter 
the empirical conclusion that signals emanating from resident 
tissue cells are not suffi  cient to activate DCs in vivo, even in 
situations of massive systemic infl ammation.

Apart from the enhanced ability to present antigen to and 
stimulate T cells, activated DCs also acquire the capacity to 
migrate to the T cell areas of secondary lymphoid organs. This 
migration is driven by the stroma-derived chemokine CCL21 
and its cognate receptor CCR7 (for review see reference 53). 
DC maturation is characterized by a switch in chemokine 
receptor profi le, and it has been suggested that the up-regula-
tion of CCR7 and the down-regulation of chemokine recep-
tors such as CCR1, CCR5, and CCR6 are required for the 
entry of maturing DCs into the T cell area (38, 39). Consis-
tent with the fact that DCs exposed to stromal-driven infl am-
mation remain immature, no chemokine receptor switch or 
DC relocalization to the PALS could be seen in LPS-injected 
TLR40/0®WT chimeras. Notably, a recent study has shown 
that maturation and migration of DCs can sometimes be un-
coupled, as injection of CpG DNA in MyD88−/− mice and 
LPS in TRIF−/− mice induces migration of immature DCs 
into the PALS (54). As this indicates that DC activation is not 
a prerequisite for entry into the PALS, one possibility is that 
DC migration is also regulated at the stromal level, consis-
tent with the fact that LPS or TNF-α increase expression of 
CCL21 on lymphatic endothelium and boost DC migration 
to draining lymph nodes (55). However, our experiments argue 
that activation of stromal cells is not required for the migration 
of splenic DCs, as LPS injection in WT®TLR40/0 mice was 
suffi  cient to induce entry of splenic DCs into the PALS (Fig. 5). 
Similarly, signals from radioresistant cells are dispensable for sup-
porting direct DC activation, at least under optimal stimulatory 
conditions (Fig. 3, A and B).

We have previously shown in a mixed bone marrow chi-
mera system that the presence of leukocytes responding to 
PAMPs in vivo causes bystander DC maturation, whether 
measured by phenotypic (expression of maturation markers) 
or functional (ability to stimulate T cell proliferation) criteria, 
whereas it fails to induce complete DC activation (produc-
tion of IL-12), as well as priming of CD4+ Th eff ector cells 
(56). The data reported in this paper demonstrate that the 
ability to promote DC activation in trans is restricted to leu-
kocytes and that there is no necessary role for radioresistant 
cells. This raises the question of whether nonhematopoietic 
tissues simply lack the operational ability to drive DC acti-
vation or are actively able to suppress it. The gene expres-
sion profi le of DCs from LPS-injected TLR40/0®WT mice 

CFSE-labeled DO11.10 T cells analyzed after 96 h of co-culture with pOVA 

and paraformaldehyde-fi xed, CD11c-enriched cells from PBS/PBS-, PBS/

CpG-, or LPS/CpG-injected mice. (G) IL-2 concentration in the culture 

supernatants from F, depicted as the mean ± SD of triplicate wells. 

*, P < 0.05 between indicated groups (B and D) or between PBS/PBS-injected 

mice and either PBS/CpG- or LPS/CpG-injected mice (F and G), using the 

Student’s t test.
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revealed a set of diff erentially expressed genes that could be 
linked to immune down-regulation. Indeed, IL-10 and SOCS-1 
and -3 are involved in dampening the infl ammatory response 
(43, 44), whereas CCL17 and CCL22 can attract regulatory 
T cells through the receptor CCR4 (42). Expression of these 
genes may be an indirect eff ect of the infl ammatory milieu, as 
SOCS-3 can be induced by IL-6 and TNF-α (57, 58), CCL17 
can be induced by CCL2 (59), and both CCL17 and CCL22 
can be induced by TNF-α (60, 61). It has also been shown that 
TNF-α–conditioned “semimature” DCs can induce tolerance 
in vivo and protect from autoimmunity (62), whereas spleen-
derived stromal cells are able to generate IL-10–producing 
regulatory DCs in vitro (63, 64). In addition, direct DC stim-
ulation by TLR agonists leads to a state of “exhaustion” or 
“paralysis” characterized by the inability to respond to further 
stimulation (65, 66). However, we found little evidence to 
suggest that DCs from LPS-injected TLR40/0®WT mice had 
become unresponsive or suppressive, as they reacted normally 
to subsequent direct stimulation with CpG DNA (Fig. 7). We 
also found no altered cytokine profi le in T cells stimulated by 
these DCs, which might have been noticed if the DCs had 
acquired a regulatory function (Fig. S2). Collectively, these data 
rather suggest that LPS-induced activation of nonhematopoi-
etic cells is without major functional implications for DCs and 
does not lead to paralysis, although we cannot rule out a subtle 
modulatory eff ect that is not apparent in our assays.

In contrast to our data, several groups have shown that 
stromal cells are capable of inducing DC activation. Using a 
co-culture system, Rimoldi et al. described how gut epithe-
lial cells exposed to bacteria could indirectly activate mono-
cyte-derived DCs in a “noninfl ammatory” manner, whereas 
direct recognition of the bacteria by the DCs made them 
more infl ammatory (67, 68). In another study, TLR signaling 
in both hematopoietic and stromal cells was shown to be re-
quired for adequate activation of mucosal DCs and antiviral 
immunity during vaginal infection with herpes simplex virus, 
although the stromal contribution in that instance may have 
been to sustain and amplify direct DC activation by the virus 
(33). Nevertheless, these studies focused on mucosal immu-
nity, and it could well be that such interplay of epithelial cells 
with local DCs is unique for the mucosa. The ability of tissue-
resident cells to convey inducible danger signals to DCs may 
thus be restricted to local responses.

The biology of DCs at the infl ammatory site is an impor-
tant issue for further investigation. The concentration of in-
ducible tissue-derived signals in the microenvironment may 
reach levels high enough to surmount DC unresponsiveness 
or to activate DCs diff erentiated in situ from monocytes re-
cruited to the infl amed tissue. Alternatively, tissue-resident 
DCs may respond to tissue-derived infl ammatory signals in a 
qualitatively diff erent manner from the secondary lymphoid 
tissue DCs studied in this paper. For example, skin Langerhans 
cells and dermal DCs may be especially tuned to infl ammatory 
signals produced by surrounding keratinocytes (19). Unfortu-
nately, we are unable to study the response of those DCs in 
our bone marrow chimera system because Langerhans cells are 

maintained by radioresistant precursors and are therefore not 
replenished by TLR4−/− donor bone marrow (34). Similarly, 
dermal DCs are only partially replaced by donor bone mar-
row–derived cells upon lethal mouse irradiation (69), which 
means that in our approach a substantial number are still able to 
respond directly to LPS (as it takes 12–24 h before dermal DCs 
reach the local draining lymph node, they do not aff ect our 
analysis of secondary lymphoid tissue DCs). Moreover, even 
if we were able to identify the subpopulation of dermal DCs 
that arises from radiosensitive precursors, any local activation 
of these cells in response to LPS could not be unequivocally 
ascribed to the eff ect of tissue-derived signals. It could have 
resulted from signals from other (radioresistant) DCs, consis-
tent with our previous fi nding that directly activated DCs are 
able to indirectly activate other DCs (56). For all these reasons, 
the chimera system is not suitable for analyzing the response 
of locally resident DCs to tissue-derived infl ammatory signals. 
Nevertheless, it allows us to conclusively demonstrate that 
DCs in secondary lymphoid organs cannot be stimulated by 
infl ammatory signals from stromal cells in vivo but only by 
direct pathogen activation or, partially, by signals from cells of 
hematopoietic origin. This type of ignorant behavior might 
be relevant in situations where the pathogen has eff ectively 
been contained, but newly generated DCs become exposed to 
a residual proinfl ammatory environment. Finally, it could also 
explain clinical data indicating that autoinfl ammatory diseases 
do not necessarily lead to self- directed lymphocyte responses 
and are therefore quite distinct from autoimmunity (70).

MATERIALS AND METHODS
Mice. C.C3-TLR4Lps-d/J BALB/c (TLR40/0) mice were obtained from the 

Jackson Laboratory. These mice carry the spontaneous mutation in the 

TLR4 gene found in the C3H/HeJ strain and have been backcrossed 20× 

onto BALB/c mice. Normal BALB/c mice were used as controls and as re-

cipients for bone marrow transplantation experiments. DO11.10 mice on a 

BALB/c-SCID background carrying a transgenic Vα2/Vβ8 TCR specifi c 

for chicken ovalbumin (residues 323–339; pOVA) presented on I-Ad were 

originally a gift from P. Garside (University of Glasgow, Glasgow, UK). Bone 

marrow from C57BL/6 mice genetically defi cient for the TLR4 gene 

(TLR4−/− mice [22]) was provided by J. Langhorne (National Institute for 

Medical Research, London, UK). Normal C57BL/6 mice were used as sources 

of control bone marrow, and congenic B6.SJL mice served as recipients, which 

allowed us to determine the degree of chimerism by staining cells for CD45.2 

versus CD45.1. TNF∆ARE mice (41) were made available by G. Kollias (Bio-

medical Sciences Research Center Alexander Fleming, Vari, Greece) and pro-

vided by J. Caamano (Institute for Biomedical Research, Birmingham, UK). All 

mice were bred and maintained at Cancer Research UK in specifi c pathogen-

free conditions.

For the generation of chimeras, recipient mice were γ irradiated twice 

with 5 Gy and were reconstituted with 2 × 106 nucleated bone marrow 

cells of the relevant donor strain. Mice were sex- and age-matched within 

experiments. Importantly, all data reported in this paper were obtained with 

chimeras reconstituted no less than 4 mo before LPS challenge, when the 

hematopoietic system was completely donor derived (unpublished data); when 

younger chimeras were used, trans-DC maturation was sometimes observed, 

which correlated with the presence of donor-derived LPS-responsive he-

matopoietic cells (unpublished data).

All animal procedures and husbandry were performed under the author-

ity of a project license in accordance with UK governmental regulations 

(Animals (Scientifi c Procedures) Act 1986).
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Reagents. A pure preparation of LPS from Salmonella abortus equi that selec-

tively activates TLR4 was obtained from Qbiogene and used intravenously at a 

dose of 10 μg per mouse or subcutaneously at 1 μg per footpad. CpG oligonu-

cleotide 1668 (CpG) was obtained from Sigma-Aldrich and used intravenously 

at a dose of 100 μg per mouse. Peptide derived from pOVA was synthesized and 

purifi ed by high-performance liquid chromatography at Cancer Research UK. 

Mouse TNF-α (Sigma-Aldrich) was a gift from A. McDowall (Cancer Research 

UK, London, UK) and used at a dose of 0.25 or 1 μg per mouse in 1% FCS/

PBS. IFNA/D, a hybrid human IFN-α active on mouse cells (71), was a gift 

from I. Kerr (Cancer Research UK, London, UK) and used at a dose of 105 U 

per mouse in 1% FCS/PBS. All reagents, except LPS, were free of endotoxin.

Cell purifi cation. DCs were purifi ed from freshly isolated spleens after 

Liberase CI/DNase digestion (Roche Diagnostics) by preincubation with anti-

CD11c MACS beads (Miltenyi Biotec) and subsequent immunomagnetic sort-

ing using an autoMACS (Miltenyi Biotec). If required, splenic DCs were 

further purifi ed by fl ow cytometric sorting (CD11chiCD45R/B220−) with a 

MoFlo cytometer (DakoCytomation) or a FACSAria (Becton Dickinson). 

Sorted cell preparations were routinely >99% pure and viable. To measure 

cytokine production, 5 × 105 sorted DCs/ml were cultured overnight in 

complete medium (RPMI 1640 with 10% heat-inactivated FCS, 100 U/ml 

penicillin, 100 μg/ml streptomycin sulfate, 0.292 mg/ml l-glutamine, and 

50 μM 2-mercaptoethanol; Invitrogen).

Naive CD4+ T cells from spleens and lymph nodes of DO11.10 donor 

mice were purifi ed by negative selection with MACS beads (Miltenyi Biotec). 

The resulting cell preparations were routinely 80–90% pure and free of APCs. 

Purifi ed T cells were subsequently labeled with 2 μM CFSE (Invitrogen) for 

12 min at 37°C.

RNA isolation and quantitative real-time PCR. Upon isolation, mouse 

organs were stored in RNAlater RNA stabilization reagent (QIAGEN) at 

4°C. Stabilized tissue was homogenized in RNA lysis buff er (QIAGEN) using 

a rotor-stator homogenizer, whereas sorted DCs were homogenized in RNA 

lysis buff er using a QIAshredder spin column (QIAGEN). Total RNA was 

isolated using the RNeasy mini kit (QIAGEN) with on-column DNase di-

gestion. Single-stranded cDNA was synthesized from total RNA with ran-

dom hexamers and Superscript II reverse transcriptase (Invitrogen). Real-time 

PCR was performed in triplicate wells using the ABI PRISM 7700 sequence 

detection system (Applied Biosystems). Primers (Table S1, available at http://

www.jem.org/cgi/content/full/jem.20070325/DC1) were obtained from 

Sigma-Aldrich and tested for quality by serial dilution of template cDNA and 

melt-curve analysis. Data normalization was performed using 18S rRNA as a 

reference gene. Quantifi cation of IL-12 p35 and IL-12 p40 was done by Taqman 

PCR, using primer-probe combinations from Applied Biosystems.

Ex vivo DC stimulatory capacity assay. CD11c-enriched cells from 

chimeric mice were fi xed with 1% paraformaldehyde for 15 min at room tem-

perature. After washing with PBS, residual paraformaldehyde was quenched by 

incubation in 0.1 mM glycine for 30 min at room temperature. 5 × 104 fi xed 

and washed DCs were cultured in duplicate in complete medium in round-

bottom 96-well plates together with 5 × 104 CFSE-labeled DO11.10 CD4+ 

T cells plus graded doses of pOVA. The CFSE profi le of DO11.10 T cells 

was assessed by fl ow cytometry after 96 h of culture.

Flow cytometry. Cell suspensions were stained in ice-cold FACS buff er 

(PBS supplemented with 2 mM EDTA, 1% heat-inactivated FCS, and 0.02% 

sodium azide). Monoclonal antibodies (conjugated to various fl uorochromes 

or biotin) and fl uorescence-labeled streptavidin were obtained from BD 

Biosciences or Caltag. Purifi ed 2.4G2 (anti-FcγRIII/II; produced at Cancer 

Research UK) was used to block unspecifi c antibody binding. Where applica-

ble, DAPI was used as a DNA-binding dye for live versus dead discrimination 

(Invitrogen). Intracellular staining for IL-12 was performed on CD11c-enriched 

cells using the Fix & Perm kit (Caltag) and allophycocyanin-labeled anti-IL12 

p40/p70 (BD Biosciences). Data were collected on FACSCalibur or LSR II 

cytometers (Becton Dickinson) and were analyzed with FlowJo software 

(Treestar, Inc.). For analysis of cytokines in serum or culture supernatants, the 

Cytometric Bead Array (CBA) Mouse Infl ammation kit (Becton Dickinson) 

was used according to the manufacturer’s instructions. Data were analyzed 

using the CBA software (Becton Dickinson).

ELISA. Levels of IL-1β in serum and culture supernatants were analyzed by 

a standard sandwich ELISA using a monoclonal rat anti–mouse IL-1β capture 

antibody (clone 30311; R&D Systems) and polyclonal biotinylated rabbit 

anti–mouse IL-1β detection antibody (R&D Systems). A serial dilution of 

purifi ed mouse IL-1β (R&D Systems) was included to calculate the absolute 

concentration in the test samples. Levels of IFN-β were determined using a 

commercial IFN-β ELISA (PBL Biomedical Laboratories).

Immunohistochemistry. For immunohistochemical analysis, isolated 

spleens were frozen in Tissue-Tek (Sakura Finetek), and 6-μm cryostat 

sections were prepared. Splenic sections were fi xed in 100% acetone for 

10 min, air dried, and rehydrated with 2.5% FCS in PBS plus 0.02% NaN3 

(staining buff er). The sections were incubated with biotinylated hamster 

anti–mouse CD11c (clone HL3; BD Biosciences) and unconjugated rat anti–

mouse MAdCAM-1 (hybridoma supernatant of clone MECA-367; a gift 

from R. Mebius, Free University Medical Centre, Amsterdam, Netherlands). 

The primary antibodies were detected using Alexa Fluor 546–conjugated 

streptavidin and Alexa Fluor 488–conjugated anti–rat IgG, respectively (Invi-

trogen). Next, sections were blocked for 5 min with 25 μg/ml rat IgG and 

subsequently incubated with allophycocyanin-labeled rat anti–mouse CD45R/

B220 (clone RA3-6B2; BD Biosciences). All antibodies were diluted in stain-

ing buff er to the appropriate concentration, and stainings were performed for 

45 min at room temperature. Slides were mounted in Mowiol and analyzed 

using a laser scanning confocal microscope (Axioplan 2; Carl Zeiss Micro-

Imaging, Inc.), using a 10× Plan-Apochromat NA 0.45 objective. Image 

analysis was performed using LSM 510 software (Carl Zeiss MicroImaging, 

Inc.), and quantifi cation of DC distribution in the spleen was performed using 

ImageJ software (National Institutes of Health).

Online supplemental material. Fig. S1 shows the extent of maturation 

induced in splenic DCs by LPS in WT®WT and TLR40/0®TLR40/0 chi-

meric mice compared with WT and TLR40/0 mice. Fig. S2 shows the cyto-

kine production potential of T cells co-cultured for 7 d with fi xed DCs 

isolated from spleens of PBS- or LPS-injected WT®WT or TLR40/0®WT 

mice. Fig. S3 shows serum cytokine levels in TLR40/0®WT or WT®WT 

mice injected with PBS or LPS ± TNF-α and IFN and shows the extent of 

maturation and level of TNFRI expression in DCs taken from the spleens of the 

same mice. Fig. S4 shows the extent of maturation and the expression of 

TNFRI in DCs from the spleens and lymph nodes of WT or TNF∆ARE 

mice. Table S1 lists the primers used in this study for quantitative PCR 

(SYBR Green). Online supplemental material is available at http://www

.jem.org/cgi/content/full/jem.20070325/DC1.
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