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Over the past decades, the relationship between the immune system and metabolism has
become a major research focus. In this arena of immunometabolism the capacity of
adipose tissue to secrete immunomodulatory molecules, including adipokines, within the
underlying low-grade inflammation during obesity brought attention to the impact obesity
has on the immune system. Adipokines, such as leptin and adiponectin, influence T cell
differentiation into different T helper subsets and their activation during immune responses.
Furthermore, within the cellular milieu of adipose tissue nutrient availability regulates
differentiation and activation of T cells and changes in cellular metabolic pathways. Upon
activation, T cells shift from oxidative phosphorylation to oxidative glycolysis, while the
differential signaling of the kinase mammalian target of rapamycin (mTOR) and the nuclear
receptor PPARg, amongst others, drive the subsequent T cell differentiation. While the
mechanisms leading to a shift from the typical type 2-dominated milieu in lean people to a
Th1-biased pro-inflammatory environment during obesity are the subject of extensive
research, insights on its impact on peripheral Th2-dominated immune responses become
more evident. In this review, we will summarize recent findings of how Th2 cells are
metabolically regulated during obesity and malnutrition, and how these states affect local
and systemic Th2-biased immune responses.

Keywords: obesity, Th2 (type-2) immune responses, T helper cell 2, metabolism, helminth, malnutrition,
adipokine cytokines
INTRODUCTION

Obesity has become a major health problem, especially in first world countries, affecting about one third
of the population worldwide (1). Individuals with a body-mass-index (BMI) >30 kg/m2 are classified as
obese, and develop an immune response that, as part of the metabolic syndrome, increases the risk of
non-communicable diseases such as type 2 diabetes, hypertension, cardiovascular disease, asthma and
cancer (2). Reasons for the development of obesity are multifactorial. By far the most important factor is
a chronically dysregulated energy balance – with more energy being taken up than being burnt and thus
stored as triglycerides in adipocytes. This leads to the accumulation of triglycerides in adipocytes,
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increasing the fat mass, which ultimately causes decreased blood
flow and oxygen availability in the adipose tissue, cell death, and
mechanical stress on the connective tissue. Together with the
increased permeability of the gut and disseminated bacterial
products, a low grade chronic inflammatory response develops,
which leads to local and peripheral dysregulation of T
cell polarization.

The impact of the inflammatory state that obesity elicits
throughout the body was recently highlighted by the greater
severity and poorer outcome following infection with severe
acute respiratory syndrome coronavirus 2 (SARS−CoV−2) in
individuals with obesity relative to lean counterparts (3). In the
past decade, due to the increasing recognition of obesity and the
resulting altered metabolism, research has increasingly focused
on the influence of the individual’s metabolism as well as cellular
metabolism on the immune system and vice versa.

Cellular metabolism is a complex, dynamic process of
consuming available nutrients in the cellular environment and
producing new metabolites ensuring the proper function of the
cell. Depending on the activation status of a cell, their metabolic
requirements change. Quiescent cells generate energy using
mitochondrial pathways, such as fatty acid oxidation or the
tricarboxylic acid (TCA) cycle. These pathways are highly efficient
in adenosine triphosphate (ATP) generation and allow for a
constant energy production in long-lived cells. Upon cell
activation, metabolic reprogramming occurs to adjust to the
metabolic requirements. Immune responses evolved to be
energetically costly even affecting maintenance programs, such as
homeothermy, resulting in physiologic trade-offs (4). Activated cells
rapidly produce high amounts of ATP using glycolytic pathways to
energize the differentiation and proliferation of cells. With a
production of two mole ATP per unit glucose, glycolysis is less
efficient in energy production in comparison to mitochondrial
catabolic pathways (5). However, this inefficiency is offset as
glycolysis can be upregulated faster than mitochondrial metabolic
pathways since it does not require mitochondrial growth.
Additionally, glycolysis provides biosynthetic intermediates that
can further be utilized for ribose synthesis and other essential
pathways and therefore represents a dominant metabolic pathway
in activated cells (6). Naïve immune cells in the steady state are
characterized by a quiescent metabolic profile. Antigen contact or
stimulating signals, such as inflammatory cytokines, lead to the
activation and subsequent metabolic reprogramming of these cells.
For example, type 1 inflammatory macrophages are characterized
by energy production via glycolytic pathways, while the anti-
inflammatory M2 macrophages (M2) predominantly utilize fatty
acid oxidation and oxidative phosphorylation. For fatty acid
oxidation, fatty acids are first activated to fatty acid acyl-CoA in
the cytosol, and then degraded via b-oxidation in the mitochondria
producing acyl-CoA, NADH and FADH2 that can then be used for
ATP generation (5). Additionally, it was shown that inhibition of
fatty acid oxidation promotes antimicrobial macrophage
functions (7).

Cellular functions and metabolism are not only dependent on
cell-intrinsic factors, such as activation status, but also on their local
environment as well. A change in the composition or quantity of
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nutrients available within a cellular milieu can lead to differences in
the type and magnitude of cellular pathways activated and thereby
consequently changes the cell’s function (8). Therefore, changes in
the metabolic status of an organism, such as the development of
obesity or underweight due to over- or undernutrition, respectively,
can influence the metabolism of single cells. An oversupply of
nutrients leads to the expansion of adipose tissue (AT) and the
progression to overweight and obesity. Based on their distinct
functions, AT can be divided into brown (BAT) and white
(WAT) adipose tissue, as reviewed by Frigolet et al. (9). BAT is a
thermogenic tissue characterized by a high number of
mitochondria, while WAT functions as lipid storage. In recent
years, adipose tissue has gained a new reputation beyond the
previous view as a site of fat deposition for energy storage. AT is
now considered a secondary immune organ, with an abundance of
leukocytes that populate the tissue, which may act as a reservoir of
immune cells and mediators during immune responses. Indeed,
novel single-cell sequencing data of cells present in human and
mouse adipose tissue underpin the differences of immune cells
between the AT of lean and obese individuals (10, 11). These
findings led to the conclusion that the immune system and the
metabolic state of the organism are closely linked and regulate each
other – making the AT one of the most important
immunometabolic modulators within the body.

This dynamics of the prevailing immune cell repertoires
within the AT is exemplified by the marked differences in the
cell composition of AT in persons with or without obesity. In
individuals with a lean bodyweight, populations of anti-
inflammatory cells such as regulatory T cells (Treg), T helper
(Th) type 2 cells, group 2 innate lymphoid cells (ILC2), M2, and
eosinophils dominate the AT milieu and may serve to counteract
inflammation (12). Th2 cells are classically regarded as
important effector cells that produce the hallmark cytokines
IL-4 and IL-13, but also IL-3 and IL-5 that promote basophilia
and eosinophilia, respectively. Following activation via the TCR
and co-stimulation, in the presence of type 2 polarizing
cytokines, naïve T cells differentiate into Th2 cells expressing
the master transcription factor GATA3. These type 2 polarizing
factors include the presence of IL-4, which activates the STAT6-
signaling pathway; activation of STAT5-signaling through
cytokines, such as IL-2, IL-7 and TSLP; weak TCR signaling
strength; certain costimulatory molecules and activation of Jag1/
Notch-interaction (reviewed in (13)). Downstream effects of Th2
cell activation and release of type 2 cytokines include the
differentiation of M2 macrophages, basophilia, eosinophilia, B
cell antibody isotype class-switching to IgG1 and IgE. This
spectrum of type 2 responses is associated primarily with
parasitic infections and allergies. Th2 responses also inhibit
Th1 responses and vice versa. During obesity on the other
hand, infiltration and/or expansion of pro-inflammatory
immune cells, such as inflammatory macrophages, cytotoxic
CD8+ T cells and Th1 cells in white adipose tissue leads to a
constant low-grade inflammation and consequently to metabolic
dysfunctions underpinning the obesity-related metabolic
syndrome. Mucosal associated invariant T (MAIT) cells are
another subset of T cells implicated in obesity related
June 2022 | Volume 13 | Article 932893
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dysfunction (14–19). In people with obesity, MAIT cell
frequencies are reduced and biased towards a Th17 phenotype
and can directly disrupt metabolic processes such as insulin-
mediated glucose uptake (14, 16). Their contribution to obesity-
related metabolic dysfunction is further supported by data from
murine models, where MAIT cell deficiency protects against
metabolic dysfunction (17). MAIT cells from persons
with obesity (PWO) display an exhausted phenotype (elevated
PD-1) and elevated rates of apoptosis (14, 15). Interestingly,
chronically stimulated MAIT cells increase their expression of
GATA3 and production of Th2 cytokines such as IL-13 (20). But
whether chronic activation in obesity drives Th2 like MAIT cells
has not been investigated to date.

Moreover, obesity, and indeed malnutrition, not only affect
adipose tissue inflammation but extend to peripheral tissues,
where they interfere with systemic immune cell activation and
functions. While obesity is often associated with a metabolically
diseased state, metabolically healthy PWO constitute up to 50% of
PWO (21). However, only few studies have addressed the
differences in metabolically healthy and unhealthy PWO with
regard to immune cell function. Generally, metabolically healthy
PWO still harbor less pro-inflammatory cells within the
AT, including M1 macrophages as well as Th17 and Th22 cells
(22–24), while Th2 cells correlated with insulin sensitivity (25). The
mechanisms causing progression from ametabolically healthy obese
state to metabolic disease are still under investigation. Remarkably,
mitochondria from type 2 diabetes patients appear altered in their
function to promote Th17 cytokine production (26). Although
much progress has been made over the past decade (27, 28),
further studies stratifying metabolically healthy and diseased
PWO are still required to elucidate the underlying processes.

The mutual influence of the immune system and metabolism
is an important topic and immunometabolism is an arena of
current active research. Here, we will review the current
understanding of the metabolic regulation of T helper cells
and, in particular, Th2 cells in obesity in contrast to expansion
of pro-inflammatory Th subsets. Furthermore, we will
summarize recent findings on the dysregulation of Th2-biased
immune responses during obesity and malnutrition.
T CELL METABOLISM

T cell metabolism is, as in other immune cells, dependent on the
activation status of the cell. As quiescent cells with little need for the
de novo synthesis of DNA, proteins and lipids, naïve T cells as well
as memory T cells produce energy using oxidative phosphorylation
(OXPHOS). Effector T cells, on the other hand, switch from
mitochondrial pathways to glycolysis due to the rapidly increasing
energy consumption following activation. After T cell receptor
(TCR) stimulation, expression of genes involved in glycolysis and
glutaminolysis are upregulated (29–31). Initially, glycolysis is the
dominant metabolic pathway in effector T cells. Transcription
factors including c-myc and the hypoxia inducible factor 1 alpha
(HIF-1a) control upregulation of glucose. Recently, it was shown
that the switch from the quiescent state in CD4+ T cells is mediated
Frontiers in Immunology | www.frontiersin.org 3
intracellularly via Akt and STAT5 signaling that increased both
glycolysis and OXPHOS (32). Upon CD28 ligation, expression
of the glucose transporter (Glut) 1 and glucose uptake of CD4+

and CD8+ effector T cells are increased via the PI3K-AKT axis
(8, 33, 34). Downstream of PI3K, the kinases mTOR and AMPK as
well as the nuclear hormone receptor PPARg regulate the cell
metabolism and differentially influence T cell differentiation.
Importantly, Glut1 is essential for CD4+ but not CD8+ T cells
(35). Without the co-stimulatory signal received through CD28-
signaling, T cells enter the anergic state (8). Following activation of
tumor necrosis factor receptor-associated factor 6 (TRAF6), effector
T cells again start utilizing fatty acid oxidation over glycolysis for
energy generation and develop into memory T cells (36).

In essence, glycolysis primarily supports the rapid generation
of Th1 and Th17 inflammation and promotes IL-2 and IFNg
production. While Th2 cells initially utilize glycolysis, lipid
metabolism pathways, such as fatty acid oxidation, synthesis
and uptake are upregulated and play an important role in late
activation and tissue adaptation (37). Similar to Th2 cells, Tregs
mainly generate energy using OXPHOS (38). Importantly,
studies investigating differentiation into effector, memory or
regulatory T cells, often focused on the use of etomoxir, a
drug supposed to inhibit the central enzyme responsible for
limitation of long chain fatty acid oxidation, Cpt1a (39–41).
However, Raud and colleagues showed that Cpt1a is largely
dispensable in this context, implying that etomoxir may exert its
functions by alternative mechanisms involving mitochondrial
respiration (42).

Environmental factors, such as nutrient availability or
adipokines, signal molecules secreted by adipocytes, shape not
only macrophage function but also the T cell response via
modulation of metabolic pathways. The most abundant
adipokines secreted by the adipose tissue are leptin and
adiponectin. While the plasma concentration of leptin, which
dampens hunger, increases proportionally with adipose tissue
mass and promotes inflammation, adiponectin counters
inflammation and supports the Th2 response (Figure 1). After
we summarize intrinsic regulation of Th2 cell metabolism, we
will discuss extrinsic factors that modulate Th2 cell metabolism
and hence, function.

Intrinsic Regulation
mTOR
The serine/threonine kinase mechanistic target of rapamycin
(mTOR) forms two distinct complexes depending on the
scaffolding protein it associates with. The mTOR complex
(mTORC) 1 associates with the regulatory-associated protein of
mTOR (RAPTOR), while mTORC2 is associated with the
rapamycin-insensitive companion of mTOR (RICTOR). The
capability to form two distinct complexes allows mTOR to act as
a metabolic switch that can exert different functions. mTORC1
integrates primarily signals that indicate favorable conditions for cell
growth. In contrast to the sensing of nutrient-availability by
mTORC1, mTORC2 can be stimulated by growth factors and
cytokines (43). First evidence that mTOR affects T cell
differentiation came from studies, which observed that rapamycin
June 2022 | Volume 13 | Article 932893
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treatment inhibited T effector cell differentiation, while allowing
expansion of Tregs (44–46). mTOR is a downstream target of PI3K
and acts as a crucial global regulator of cellular metabolism (47).
PI3K is a kinase activated by factors involved in cell proliferation,
such as the epidermal growth factor (48), and cellular metabolism,
such as leptin (49). This enables T cells to meet the high energy
demand of effector responses following activation (29) and
upregulate catabolic pathways, such as glycolysis and lipolysis.
mTOR coordinates T cell growth, proliferation, metabolism, and
Frontiers in Immunology | www.frontiersin.org 4
differentiation upon shifts in growth factor and nutrient availability.
Activation of mTOR is an important condition for the
differentiation of naïve T cells into Th1, Th2 or Th17 cells, while
inhibition of mTOR results in primary differentiation into Tregs.
Absence of mTOR signaling also leads to a decreased proliferation
capacity of T cells (44). Activation of mTORC1 induces lipid
synthesis pathways and glycolysis (50) and limits autophagy.
mTORC2 regulates cytoskeleton organization in addition to
induction of glycolysis (51) and lipolysis. Interestingly, during
FIGURE 1 | Regulation of Th2 metabolism. Top: Schematic representation of intracellular mechanisms affecting T helper cell polarization. Central elements influencing cellular
polarization include mTORC1 and mTORC2, which are regulated by PI3K/Akt and AMPK, PPARg and HIF-1a. These pathways regulate utilization of glycolysis, which promotes
pro-inflammatory subset differentiation, or fatty acid oxidation and lipolysis that promote anti-inflammatory Th2 and Treg differentiation. Bottom: Schematic representation how the
adipokines leptin (left) and adiponectin (right) promote T helper cell subset polarization via regulation of metabolic pathways.
June 2022 | Volume 13 | Article 932893
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obesity defective mTOR is observed in NK cells and mucosal-
associated invariant T (MAIT) cells: O’Brien and colleagues
described an inhibition of mTORC1 in MAIT cells dysregulating
their cytokine profile during obesity (18). In contrast, Tobin et al.
found an increase of mTORC1 activity in natural killer cells in the
adipose tissue of obese children (52). However, these NK cells were
reduced in numbers and – despite their increased expression of
activation markers – less effective in cell lysis (52). Both, mTORC1
and mTORC2 activate the nuclear hormone receptor PPARg
and are activated by IL-4 (53, 54). Signaling of mTORC1 is
enhanced by insulin and influences Th1, Th2 and Th17 cell
differentiation (44, 55). Hyperactivation of mTORC1 has been
shown to limit invariant natural killer T cells (iNKT) (44, 56).
NKT cells are a subset of innate-like T lymphocytes and share
characteristics of T and natural killer cells. Once activated, NKT
cells can release type 1 or type 2 inflammatory cytokines but the
mechanisms of recruitment are not well elucidated yet. The role of
NKT cells, which can also be potent producers of IL-4, in the
context of immune modulation due to metabolic changes of the
individual requires further investigation as these cells are often
overlooked (57, 58). Th2 differentiation is more sensitive to graded
reductions in mTORC1 activity and can develop in the absence of
mTORC1 but not in the absence of mTORC2 (59, 60). While
mTORC1 responds to signals including growth factors, oxygen and
amino acid availability, mTORC2 primarily reacts to other stimuli.
However, it has been shown that signaling of mTORC2 responds to
nutrient fluctuations and only promotes Th2 but not Th1 or Th17
cell differentiation (59). These observations lead to the hypothesis
that Th2 differentiation is subject to a more dynamic regulation
through both nutrients and cytokines/growth factors and is less
dependent on nutrient-sensing mTORC1 signaling. Upstream of
the mTOR-signaling, activation of the PI3K pathway increases
mTORC1 activity via AKT, while mTORC2 regulates AKT
concentrations and thereby modulates mTORC1 function. Due to
the increased nutrient uptake, glucose availability in obesity is
increased and subsequently leads to an upregulation of glycolysis
and promotion of Th1 differentiation of T cells.

AMPK
The AMP activated protein kinase AMPK reacts to the energy
level of the cell by sensing the ATP : ADP ratio, regulates
glycolysis accordingly and plays a regulating role in energy
homeostasis of the cell and T cell activation (61). In a low
energy state of the cell, characterized by low ATP levels, AMPK is
activated and subsequently inhibits mTORC1 and downregulates
glycolytic pathways and Th1 and Th17 inflammation (62, 63). In
contrast, AMPK activates mTORC2 and thereby promotes fatty
acid catabolism and Th2 and Treg responses (64). In order to
generate energy, Th1 cells predominantly upregulate glycolysis,
supported by mTORC1 signaling that can directly phosphorylate
the Th1 transcription factor Tbet (65), while Th17 cells favor
glutaminolysis and regulatory T cells oxidative phosphorylation.
The mechanisms of regulation of Treg metabolism are less well
elucidated. Compared to naïve T cells, the steady-state activity of
mTORC1 is increased and thereby supports the suppressive Treg
function partly by inhibiting the mTORC2 pathway in these cells
(66). Nevertheless, the predominant metabolic pathways in
Frontiers in Immunology | www.frontiersin.org 5
regulatory T cells are fatty acid oxidation pathways. HIF1a
reacts to oxygen stress and decreases Glut1 expression in Th17
cells and regulates c-Myc, a transcription factor that is essential
for the metabolic reprogramming early after activation, leading
to a decreased activation of the cells. HIF1a signaling is
controlled by mTOR. By regulating the Th1 transcription
factor Tbet and Eomesodermin (67), a transcription factor
amongst others responsible for steering effector T cells into
memory T cells, mTOR also determines the T cell fate.
Interestingly, Xiong and colleagues found that HIF1a supports
Th2 polarization via dendritic cells (DC) priming of naïve T cells
(68). Taken together, AMPK inhibits type 1 inflammatory
responses by inhibiting mTORC1 and supports type 2
inflammatory responses via mTORC2.

PPARs
The peroxisome proliferator activated receptors (PPAR) are
nuclear hormone receptors acting as inducible transcription
factors that play a pivotal role in glucose and lipid metabolism.
The different isoforms PPARa, PPARb/d and PPARg are
primarily activated by fatty acids and predominantly expressed
in different tissues, with PPARa being found especially in tissues
with increased fatty acid oxidation, such as hepatocytes (69), and
PPARb/d in the gastrointestinal tract (70). PPARg is considered
the master regulator of adipogenesis and highly expressed by
adipocytes as well as macrophages and CD4+ T cells within the
adipose tissue (71, 72). PPARg acts as a sensor of the metabolic
status of the cell and regulates glucose metabolism and lipid
storage, as well as adipocyte differentiation (73). PPARg is
prominently expressed in Th2 cells and has been shown to
have an inhibiting effect on Th17 inflammation while strongly
supporting Th2 and Treg responses in the adipose tissue (74, 75).
Activation of PPARg by mTOR leads to an increase of fatty acid
uptake, increased plasma concentrations of adiponectin (76) and
an induction of adipogenesis, reviewed in (77). PPARg function
is supported by the adipokine adiponectin, that is found in
higher concentrations in individuals with a lean bodyweight
compared to those with obesity. Consequently, a correlation
between PPARg activation and weight loss can be observed (78).
Importantly, in mice on HFD, IL-4 promoted lipolysis and
weight loss through PPARg downregulation in adipocytes (79).
PPARg has also been described as an important inducer of
regulatory T cell generation (80).

Kopf and coworkers found that PPARg plays a pro-
inflammatory role in type 2 immunity and is an important
mediator for DC-T cell interactions (81). While PPARg is largely
dispensable for the induction of IL-4 production, IL-4 and IL-33
promote the up-regulation of PPARg in lung resident CD11b+ DCs,
which leads to an enhanced migration to the draining lymph nodes
and Th2 priming capacity (81). Micossé et al. defined a
phenotypically and functionally distinct Th9 phenotype of T cells
that could be a subtype of Th2 cells that are defined by PPARg
expression (82). The cytokines IL-4 and TGFb both induce PPARg
and leads to IL-9 production in Th2 cells. Meta-analytic approaches
identified a possible contribution of PPARg to a decreased
susceptibility for type two diabetes mellitus in different
ancestries (83).
June 2022 | Volume 13 | Article 932893
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Taken together, these results suggest that a metabolic profile
characteristic of activated CD4+ T cells leads to differentiation
into type 1 inflammatory Th1 cells, while the expansion towards
Th2 and Treg cells is supported by a metabolic profile
characteristic of quiescent cells (Figure 1). As type 1
inflammatory responses are mostly directed to respond to
acute viral or bacterial infections a rapid cell proliferation is
necessary so that the host can react quickly to the pathogen.
Consequently, metabolic pathways that can be upregulated
quickly, such as glycolysis, are important in this context. In
contrast, type 2 inflammatory responses are directed against
continuous inflammatory insults, such as helminth parasite
infections or exposure to allergens. In such chronic infections
or prolonged exposure and allergen sensitization, no rapid
response is necessary and mitochondrial pathways, such as the
TCA cycle and oxidative phosphorylation, can be utilized.
Additionally, oxidative phosphorylation produces reactive
oxygen species that may negatively affect a fast T cell response.

Extrinsic Regulation
Cell metabolism is regulated by various extrinsic factors.
Hormones or cytokines influence the metabolic regulation as
well as nutrient availability in the cell, such as glucose, by
regulating transporter expression in the cell. In obesity, not
only the nutritional status of the individual changes, but also
concentrations of messenger molecules, such as leptin,
adiponectin, resistin, visfatin, and others, which may directly
affect Th2 cell function or indirectly inhibit Th2 cells by
promoting Th1/Th17-biased inflammation. Adipose tissue
produces the hormone leptin and with the expansion of
adipose tissue in obesity, the leptin concentration increases. In
contrast, the concentration of adiponectin, a hormone regulating
the glucose metabolism, decreases following the onset of obesity.
Adiponectin is secreted by adipocytes, as well as lymphocytes
(84) and has anti-inflammatory properties, such as limiting IFNg
production (85) or promoting IL-10 secretion by Tregs (86). An
important regulator of the blood glucose concentration is the
hormone insulin, produced by the b cells of the pancreas (87). By
inducing glucose uptake into the tissue, insulin is an anabolic
hormone whose effect on T cells is only started to be researched
in detail. The underlying chronic Th1 inflammation in
individuals with obesity leads to an increase of pro-
inflammatory cytokines, such as IFNg, while anti-inflammatory
cytokines, such as IL-10 are decreased. IL-33 is an alarmin that
has been found to induce type 1 as well as type 2 responses. The
cytokine produced by endothelial and epithelial cells has been
shown to have an protective effect on obesity (88). Aside from an
oversupply of nutrients that leads to obesity, undernutrition also
has significant influence on cellular metabolism and function.
The influence of the hormones leptin, adiponectin and insulin,
the cytokine IL-33, as well as undernutrition and fasting on T cell
function will be discussed below.

Leptin
The pro-inflammatory adipokine leptin is secreted by adipocytes
and regulates energy consumption and conversion by regulating
food intake as well as glucose metabolism (89). Leptin can pass
Frontiers in Immunology | www.frontiersin.org 6
the blood brain barrier and upon binding the leptin receptor in
the brain induce various signaling cascades affecting food intake
and energy balance. Impaired crossing of leptin of the blood
brain barrier, dysfunctions in the subsequent pathways or
decreased sensitivity of the leptin receptor lead to a decreased
leptin signaling in the brain. These are possible reasons for leptin
resistance and can subsequently lead to a dysregulation in the
energy homeostasis (reviewed in (90)). Additionally, leptin has
been shown to promote T cell survival and proliferation (91).
Leptin has a strong positive association with obesity, is expressed
at higher levels in metabolically unhealthy PWO and is
negatively associated with being underweight and malnutrition
(92, 93). The anorexigenic hormone promotes energy
consumption by improving glucose metabolism, controlling the
appetite and improving insulin sensitivity (reviewed in (89)).
During obesity, the serum leptin concentration increases, which
can result in a leptin resistance. The consequential increase in
food intake, impaired nutrient absorption and inhibition of lipid
and glucose metabolism (94) can lead to a further aggravation of
the obese phenotype. Especially in individuals with obesity,
leptin leads to an increased secretion on IFNg and suppression
of Th2. Naïve T cells lack expression of the leptin receptor, but
upregulate it upon activation. In activated CD4+ T cells, leptin
functions as an activator of mTOR (95), upregulates glucose
uptake and metabolism and thereby leads to an increased Th1
(96) and Th17 (97) cellular response and a suppression of Treg
cells (98). Indeed, another study showed that leptin enhanced
Th1 cytokine production, while IL-4 production was decreased
(99). Contrarily, Zhang et al. did not find an effect of leptin on
Th2 differentiation but a promoting effect on Th2 survival (100).
Moreover, Zeng et al. described an enhancing effect of
recombinant leptin on ILC2 and Th2 cytokine expression via
the PI3K-AKT axis (91, 101). In their study, leptin supported
Th1 and Th2 proliferation and survival by activating the (JAK2-
STAT3, MAPK and) mTOR pathway. Therefore, they propose
the supporting function of leptin on distinct T cell subsets is
dependent on the skewing conditions, leading to a leptin-
dependent enhancement of a type 2 response in the context of
allergy. Consequently, the increased serum leptin concentration
could support T cell proliferation and the type 1 biased
inflammatory environment presents skewing conditions to
support a Th1 differentiation of T cells. Due to increased
serum leptin levels in allergic rhinitis, they propose a possible
connection of allergic rhinitis to obesity. Taken together, leptin
affects Th2 cells indirectly by supporting the underlying Th1
inflammation in obesity.

Adiponectin
The protein hormone adiponectin regulates glucose and lipid
metabolism. Mechanisms for this regulation include support of
fatty acid oxidation and inhibition of gluconeogenesis via an
activation of AMPK (102). Adiponectin possesses anti-
inflammatory properties, such as inducing IL-10 secretion in
Tregs (86), and is negatively associated with BMI (103).
Furthermore, metabolically healthy PWO often show higher
levels of adiponectin similar to the levels of lean people (104).
Additionally, two studies found a decrease in glycolysis in
June 2022 | Volume 13 | Article 932893

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Schmidt et al. Th2 Cell Function in Obesity
activated T cells leading to impaired Th1 or Th17 differentiation
(85, 105). Research on the direct effect of adiponectin on Th2
cells is still lacking, but Li et al. could demonstrate a positive
effect of adiponectin on IL-4 production that in turn can lead to
an increased Th2 response (106). Interestingly, women have
more adiponectin in their blood than men. Taking the
immunomodulatory effects of adiponectin into account, this
could lead to a stronger activation of a type 2 immune
response in females (107), which could be relevant to sex
differences in obesity and allergic disorders (108). Additionally,
as adiponectin promotes insulin sensitivity it supports a potential
important player in the context of obesity (109). Taken together,
adiponectin is strongly linked to type 2 inflammatory responses,
in which its anti-inflammatory effect is further increased (86).
Ramos-Ramıŕez and colleagues demonstrated that adiponectin
increased the ability of Treg cells to secrete IL-10 and this effect
was further increased in a type 2 inflammatory environment
(110). Activation of PPARg, which induces Th2 and Treg
responses, leads to increased adiponectin levels in high fat diet
(HFD) fed mice, while overexpression of adiponectin also
increases the expression of PPARg (110). In adipose tissue,
adiponectin negatively regulates ILC2 function by activation of
AMPK and the subsequent suppression of IL-33 signaling (111).
Collectively, these data suggest a supporting role of adiponectin
for Th2 responses by inhibiting type 1 inflammatory responses
and amplifying IL-4 and IL-10 production.

Visfatin, Resistin, Apelin
A number of other adipocyte-derived mediators are increased
during obesity, such as visfatin (112), resistin (113) and apelin
(114). Visfatin leads to activation of T cells and promotes the release
of IL-6, IL-1b and TNF but also IL-10 from monocytes leading to
CD4+ T cell activation (115). Resistin, which confers resistance to
the action of insulin, is considered a pro-inflammatory molecule
activating NFkB, TNF and IL-6 (113). However, it has also been
shown that modulation of DCs by resistin leads to enhanced Treg
expansion (116). Taken together, the direct effect of all three
mediators on Th2 cells has not yet been studied in detail.

Growth Differentiation Factor 15 (GDF15)
GDF15, which has emerged as a putative target for treating
obesity (117), is a stress-induced hormone produced by a variety
of cells – including adipocytes - in the body. Recently, it was
shown that the Th2 cytokines IL-4 and IL-13 induce GDF15
production by adipocytes in a STAT6-dependent manner (118).
Whether GDF15 directly affects Th2 cells via its receptor GFRAL
is currently unclear.

Insulin
The anabolic hormone insulin plays an important role in energy
storage, glucose uptake and synthesis of glycogen and lipids. After
food consumption, the insulin concentration increases to
subsequently increase the glucose uptake from the blood stream
into the cells via Glut4 (87). In obesity, this increase of insulin
concentration is abated and the insulin sensitivity decreases, leading
to higher blood glucose levels in the individual. Importantly,
metabolically healthy PWO show greater insulin sensitivity than
Frontiers in Immunology | www.frontiersin.org 7
metabolically unhealthy PWO, whereas they are more insulin
resistant than metabolically health lean persons (21). Upon
activation, T cells begin to express the insulin receptor but
contrarily to the anabolic function of insulin within tissue, in T
cells insulin signaling supports T cell proliferation and effector
function (119). Additionally, insulin influences the differentiation of
regulatory T cells by inducing PPARg (80). Li et al. described an
insulin dependent pathway that activates HIF1a and subsequently
induces PPARg (80). Additionally, Jeschke and colleagues reported
an anti-inflammatory role of insulin after severe trauma by
decreasing type 1 and increasing type 2 inflammatory responses
(120). As a possible mode of action, they propose an indirect effect
of insulin by reducing of the blood glucose concentration and
consequently decreasing glycolysis in effector T cells. Due to
glycolysis being the prominent pathway for energy generation in
type 1 inflammatory cells, this type of immune response is more
severely inhibited. Another mode of action of insulin could be the
upregulation of Glut1 on T cells and subsequently increasing the
glucose uptake into the cells. Following the increased glucose
availability, T cells are steered towards an upregulation of
glycolysis and Th1 differentiation. By supporting Th1
differentiation of T cells, insulin could indirectly inhibit Th2
differentiation. Obesity and related pathologies such as type 2
diabetes mellitus (T2DM) increase the blood glucose
concentration. Here, insulin resistance that characterizes T2DM
could skew T cell differentiation to a Th1 phenotype in a graded
manner by a gradual increase of blood glucose concentration and
subsequently the nutrients for T cells to utilize glycolysis.
Additionally, a strong body of literature shows an association of
IL-17 signaling with insulin resistance and the development of
obesity and T2DM. Nicholas and colleagues recently described a
positive association of Th17 responses with T2DM (121),
confirming the positive association of increased Th17 responses
during obesity shown by Fabbrini et al. (122). IL-17 directly affects
adipogenesis and glucose metabolism as well as impairing insulin
sensitivity (123, 124). Thus, interfering with Th cell subset
polarization may be a novel therapeutic approach to
improve T2DM.

IL-33
The alarmin IL-33 is a versatile interleukin that can induce Th1
responses as well as Th2 responses. IL-33 supports IFNg
secretion of CD8+ T cells and NK cells (125, 126) as well as
neutrophil activation (127), thereby supporting characteristic
effector functions of a type 1 inflammatory immune response.
However, IL-33 administration can also induce marked type 2
inflammation, with eosinophilia, increased production of the
interleukins IL-4, IL-5 and IL-13 as well as mucus production
and epithelium remodeling (128). Th2 cells, as well as ILC2, Treg
cells and M2 macrophages, express the IL-33 receptor ST2 and
are activated by IL-33 ligation to produce type 2 inflammatory
cytokines (128). These effects are characteristic for inducing type
2 immune responses. Additionally, IL-33 has been shown to be
protective in obesity. In obese mice, administration of IL-33
restores immunological and metabolic profiles of adipose tissue
and exerts this effect through activation of adipose tissue ILC2.
Treatment of obese mice with w1, a helminth derived RNAse
June 2022 | Volume 13 | Article 932893

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Schmidt et al. Th2 Cell Function in Obesity
that induces type 2 inflammatory responses, induced a release of
IL-33 from adipocytes that subsequently can further support Th2
responses (129). Mahalakõiv et al. also described a protective
effect of IL-33, produced by stromal cells, in diet-induced obesity
in mice (130). In a study in humans Tang et al. found elevated
levels of IL-33 in Chinese adults with a positive correlation
between IL-33 and risk factors for metabolic syndrome (131).

IL-25, TSLP
In recent years, also other alarmins, such as IL-25 and thymic
stromal lymphopoietin (TSLP), have been investigated and, for
both, a supporting role on the Th2 response and protective effect
against obesity could be shown. While IL-25 mainly protects
from obesity by stimulating M2 macrophages and inducing
lipolysis (132–134), TSLP acts trough activation of DCs to
prime naïve T cells for differentiation into Th2 cells (135).
Treatment of mice on HFD with TSLP protects from weight
gain and glucose intolerance, and it further induces the loss of
white AT mediated by T cells that upregulate sebum secretion
(136). Although increased IL-4 production was observed in
TSLP-treated mice, the polarization state of the CD4+ T cells
was not assessed (136). Thus, there could be a critical role for
Th2 cell induction through TSLP-activation promoting an
unexpected link to skin barrier maintenance and sebum
secretion during obesity.

Fasting
While obesity is a well-known and acknowledged health burden,
research on the effects of undernutrition on immune cell
metabolism and function is sparse. Short-term effects of
undernutrition can be assessed through fasting-mimicking diets
or intermittent fasting, which has a beneficial effect on the host
organisms (reviewed in (137)) and hematopoietic stem cells (138), B
cells (139), monocytes (140) and memory T cells (141). Collins and
colleagues described a collapse of circulating memory T cells after
dietary restriction and an accumulation in bone marrow (141). This
effect was even further enhanced by glucocorticoids, steroid
hormones that support gluconeogenesis. The accumulation of
memory T cells in the bone marrow protected the cells during
dietary restriction. Due to the decrease in blood glucose levels
following a period of fasting, AMPK is activated and subsequently,
mTOR is inhibited to reduce the energy consumption of the cells.
Consequently, processes such as autophagy are increased, while
glucose uptake and glycolysis are decreased (142). Due to the
increased utilization of energy conserving pathways, fasting has
especially anti-inflammatory effects, while highly energy consuming
pro-inflammatory responses are downregulated (139, 143).
Consistent with this, Lenehan et al. found a decrease especially of
Th1 and Th17 inflammation in wasting AT of tumor-bearing mice,
while the Th2 response were maintained (144). Collectively, fasting
has a supporting effect on Th2 responses, while the more energy
consuming type 1 inflammatory responses are inhibited.

Collectively, studies indicate that Th2 cells are affected by
their nutritional environment (Figure 1). While it is known that
factors such as mTORC1 activation and leptin signaling inhibit
Th2 cells, while AMPK and adiponectin signaling activate or
promote Th2 cell function, more research is required to pinpoint
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the evident differences between the T helper cell subsets. Studies,
mainly performed in mice, using different models of obesity and
starvation as well as disease models highlight how Th2 cells are
influenced by the hosts’ metabolic status.
TH2 CELL FUNCTION DURING OBESITY
AND MALNUTRITION

The regulation of CD4+ T cell metabolism on a cellular level is an
important factor for the activation, differentiation and polarization
of the cells. The impact of metabolic regulation also affects immune
responses both locally within adipose tissue (Figure 2) and in the
periphery (Figure 3). During obesity, T cells live in a nutrient-rich
environment, in which fatty acids are abundantly present, whereas
during malnutrition glucose availability is decreased. However, due
to the systemic immune and hormonal alterations in an obese or
fasted state it is difficult to disentangle effects of nutrients and
cytokine/hormone activities and this area is only beginning to be
studied in detail. Therefore, we will summarize the currently
available literature on local – within AT- and peripheral Th2 cell
function during obesity and fasting (Figure 3).

Local Effect on Adipose Tissue Th2
Cell Function
Within the healthy adipose tissue, an anti-inflammatory
environment predominates. Several cell types that are associated
with a classical type 2 response have been identified in the adipose
tissue, including ILC2, eosinophils and M2-polarized macrophages
(145, 146). However, data concerning Th2 cells in adipose tissue
are limited.

During obesity, Th1 cells increase within the adipose tissue,
which could have an inhibitory effect on Th2 cells through the
production of IFNg (147, 148). IFNg induces SOCS1 that inhibits
IL-4R signaling (149, 150). Furthermore, the Th1 transcription
factor Tbet directly interferes with GATA3 (151). Interestingly,
the absolute number of Th2 cells remains relatively constant (152),
suggesting that cell proliferation is inhibited. Other mechanisms
than the modulators, including leptin and adiponectin, outlined
above, may also play important roles in the suppression of Th2 cells
during obesity. We have recently shown that PD-L1-upregulation
occurs during late stages of obesity in mice and also in human
visceral adipose tissue of obese individuals (153), which may block
further Th2 proliferation via PD-1 engagement. Similarly,
regulation of innate effectors, such as ILC2, through cellular
interactions shape adaptive T cell responses (154). In essence,
obesity disrupts the homeostatic environment in favor of a
proinflammatory Th1 bias, the step forwards, while Th2 cells
cause a step back from obesity (Figure 2).

Systemic Effect of Obesity on Th2
Cell Function
Insulin Resistance
In human subcutaneous and visceral adipose tissue, it was shown
that Th2 cells negatively correlate with systemic inflammation and
insulin resistance, suggesting Th2 cells have a protective role (25). In
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FIGURE 2 | Immune balance and the nutritional state of the host organism. Schematic of cellular interactions within adipose tissue that affect T cell subsets and
downstream effector mechanisms. Th, T helper; Treg, regulatory T cells; DC, dendritic cell; M1, M1/classically activated macrophages; M2, M2/alternatively activated
macrophages; EO, eosinophil; NEU, neutrophil; ILC1/2/3, innate lymphoid cell type 1/2/3.
FIGURE 3 | Effects of nutritional dysregulation on peripheral immune responses. Both obesity and malnutrition lead to dysregulation of Th2 cells, which can affect
many different inflammatory conditions ranging from allergies to infections and autoimmunity.
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mice, transfer of CD4+ T cells into obese Rag1-/- recipients led to the
differentiation towards Th2 cells and reversed enhanced weight gain
and insulin resistance. These effects were further shown to be
dependent on STAT6 (152). In mice on HFD, Th2 cell frequency
significantly decreased in the adipose tissue as mice become obese
(155). In human adipose tissue, Th2 cells inversely correlated with
plasma CRP concentration, a marker indicating systemic
inflammation (25). Inflammation has been linked to insulin
resistance since the early 1990s, when adipose tissue TNF was
shown to be increased during obesity and neutralization of TNF
improved peripheral glucose uptake (156). Additionally, IFNg and
IL-1b also modulate insulin signaling (reviewed in (157, 158)),
whereas IL-4 and IL-10 were shown to promote insulin sensitivity
(159). Given that T cells influence M1/M2-polarization, it is likely
that T cell-derived cytokines play an important role for the
generation of pro-inflammatory M1-polarized macrophages
during obesity (160). Therefore, the decreased production of IL-4
by Th2 cells and IL-10 from Treg cells within the adipose tissue
leads to a relative decline of anti-inflammatory M2 macrophages,
while the concurrent increase of Th1 cells promotes TNF-
expressing M1 macrophages and hence, insulin resistance.
Importantly, frequency of Th2 cells in adipose tissue is associated
with systemic insulin resistance (152).

Asthma
Obesity is associated with an increased risk to develop asthma – a
chronic inflammatory disease of the lung. Asthma has a highly
heterogeneous pathogenesis and a continuum of endotypes: from
a Th2-driven (type 2) to a non-Th2-driven endotype (161). Th2-
driven asthma includes early-onset allergic asthma, late onset
eosinophilic asthma and exercise-induced asthma, and is
characterized by classical type-2 associated factors, including
Th2 cells, eosinophils and IgE (162). Non-Th2 asthma includes
neutrophilic asthma and obesity-associated asthma, is associated
with severe asthma and characterized by Th1, Th17 cells and
neutrophils. However, Th2-driven asthma has been described in
children and adults with obesity (163, 164) and asthma-obesity
endotypes may be associated with age of onset (165).

Dysregulation of T cells may also be an important factor
during obesity-induced asthma. Here, the expansion of Th1 cells
contributes to the non-Th2-driven asthma pathology. As
outlined above, Th2 cells decline with active suppression of
Th2 cell differentiation and proliferation by Th1 cell IFNg and
Tbet to counter-regulate Th2 responses. In contrast, it was also
found that leptin increased Th2 cells during airway
hyperreactivity in mice, in part through MAPK, STAT3 and
ER stress response (100, 166). Similarly, in mice on HFD that are
immunized and challenged with Ovalbumin (OVA) allergen to
induce allergic asthma-like lung inflammation, a mixed
inflammatory response developed with increased levels of TNF,
IL-5 and IL-10, ultimately leading to an eosinophil-dominated
allergic airway response (167). Further studies, have implicated
ILC2 and ILC3 (168), or mast cells (169) in asthma pathogenesis,
with the latter promoting a delayed Th1, Th2, Th17 profile. A
recent study found that autophagy may also be involved in
exacerbation of eosinophilic airway inflammation as mice
deficient in Atg5 on HFD had increased Th2 cell numbers in
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the inflamed lung (170). Interestingly, a 12-week HFD in female
mice was protective against airway hyperreactivity through
pulmonary DCs recruitment and decreased Th1/17 responses
while leaving Th2 cells intact (171). Whereas mice do not
develop asthma per se, only aspects of human asthma
endotypes can be modelled and should be taken into
consideration (161). Taken together, while human obesity-
associated asthma is more Th1-driven, in mice – and in certain
cases also in humans – a contribution of type 2 associated
immune cells including Th2 cells may be important.

Skin Inflammation
Inflammatory skin diseases are widespread and have many
etiologies. The two most important chronic diseases of the skin
are atopic dermatitis (AD) and psoriasis, both of which have
been associated with obesity. While AD is classically regarded as
a Th2-biased chronic allergic inflammatory skin disease with
contribution of eosinophils, basophils, mast cells and ILC2 to
pathogenicity, psoriasis is driven by a Th1/Th17-biased immune
response and includes neutrophils and ILC3 (172). Both AD and
psoriasis have been associated with obesity (reviewed in (173–
176)). However, Th2 cells are not directly involved in psoriasis,
but a case could be made for diverting the Th1/Th17-response
towards a less pathogenic Th2 response by treatment with IL-
4 (177).

The overall risk for AD is only minimally increased for adults
with obesity (OR=1.08) according to a recent study of patients in
the UK (178) but AD is a disease that usually has an early onset
during the first years of life. Indeed, several studies have linked
childhood obesity to AD (173, 174, 179, 180). However, the
pathomechanisms linking these diseases are still not fully
understood. Th2 cells seem to be involved, as PPARg in Th
cells drives obesity-associated Th2-immunopathology in severe
AD (preprint doi: https://doi.org/10.1101/825836). Furthermore,
a recent study in atopic children observed an abnormal blood
profile with higher cholesterol and triglycerides (181) –which are
also increased during obesity. Whether the increased fatty acids
directly influence Th2 polarization via PPAR signaling remains
unclear (182).

An important factor promoting the development of AD is the
breakdown of the skin barrier (172, 183), which can be measured
by trans-epidermal water loss (TEWL). Importantly, TEWL is
significantly increased in people with obesity (184, 185). The
cardinal Th2 cytokines IL-4 and IL-13 may contribute to this
breakdown as their homeostatic levels maintain skin barrier
integrity (186). Thus, the pro-inflammatory T cell bias during
obesity may interfere with homeostatic function or the
production of IFNg, which is also found during chronic AD
lesions, may alter skin integrity to disrupt barrier function
through alteration of the fatty acid composition of ceramide
(187) or downregulation of tight junction function (188). More
studies are required to link obesity and the development of a
pathogenic Th2 response in the skin.

Wound Healing
Obese patients are at risk of developing complications after
surgery including wound infections and wound separation
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(reviewed in (189)), which can be consequences of the impaired
wound healing in obese patients (reviewed in Anderson 2015).
Th2 cells are an important factor in mediating wound repair by
induction of M2 macrophages and eosinophils that promote
angiogenesis, myofibroblast activation and deposition of
extracellular matrix, as well as by inhibition of pro-
inflammatory Th1 and Th17 responses (190–192). Whether
obesity directly interferes with the capacity of Th2 cells to
promote wound healing is currently under investigation.

Rheumatoid Arthritis (RA)
A hallmark of chronic synovial inflammation is the sustained influx
of immune cells into the joints. Innate effector cells, including
neutrophils and pro-inflammatory macrophages, and effector T and
B cells promote synovial inflammation. The anti-inflammatory
cytokines IL-4, IL-13, IL-10 and TGFb are downregulated during
established RA (193). However, during early RA IL-4 and IL-13 are
upregulated in synovial fluid suggesting an early modulatory or
compensatory role, also highlighted by their anti-arthritic properties
(194–197). In amousemodel of collagen-induced arthritis, Th2 cells
were shown to be increased after repeated IL-33 administration and
promoted amelioration of disease (198). People with obesity that
additionally have RA, also have poorer quality of life and show
higher disease activity (199). To date it is unclear how Th2 may be
affected in RA patients with obesity. It is tempting to speculate that
the pro-inflammatory state in obese individuals negatively affects
RA pathogenesis and disease activity, which is ameliorated through
the induction of Th2 cells.

Eosinophilic Oesophagitis (EoE)
EoE is an emerging disease, which is characterized by a
deregulated type 2 response with high numbers of eosinophils
in the oesophageal epithelial layer, leading to clinical symptoms
that include dysphagia, feeding dysfunction and vomiting. In a
model of OVA-induced EoE, obesity increased Th2 cytokine
expression and reduced regulatory T cell responses (200). The
altered immune response was not only limited to the oesophageal
tissue but expanded to the spleen and mediastinal lymph nodes.
Whereas Th2 cells were increased, OVA-specific IgE responses
were reduced in obese allergic mice (200). Leptin levels were
increased in obese allergic mice, which may affect T cell
polarization as outlined above, but more experimentation is
required to formally address this in the context of EoE.
Whether the exacerbation of Th2 responses during obesity
may be involved in other allergic settings, such as food
allergies, and how these processes can be therapeutically
exploited must be the focus of future studies.

Infectious Diseases
Obesity is associated with increased risk to contract infectious
diseases including skin infections and infections of the lower
respiratory tract (201). Importantly, differences between men
and women were also noted. Similarly, obesity affects the
outcome of infections (202). During the SARS-CoV-2-
pandemic it also became evident that obesity is an important
risk factor for severe disease and mortality (203). Remarkably,
Th2-associated cytokines showed an upward trend over the
Frontiers in Immunology | www.frontiersin.org 11
severe courses of Covid-19 (204). Similarly, IL-13 was found to
be a driver of severe disease (205) promoting lung damage with
participation of Th2 cells (206). However, it is currently unclear
to what extent Th2 cells and the associated cytokines contribute
to pathology in severe Covid-19.

In conclusion, obesity is an important factor regulating Th2
functionality extending beyond local tissue responses. However,
to date studies investigating Th2 cells in other inflammatory
settings are scarce and such studies may reveal unexpected novel
regulatory functions of Th2 cells.

Systemic Effect of Fasting/Malnutrition
on Th2 Cells
Obesity is a consequence of overnutrition and its high prevalence in
industrialized countries led to a heightened research interest in this
area, whereas the study of the effects of malnutrition on the immune
system is less widespread. Immunity in the context of chronic
malnutrition is difficult to study and according to a 2014 systematic
review yields varying results (207). However, starvation and
cachexia are linked to immune dysfunction in humans and mice
(208). After two days of starvation, splenic CD4+ T cells in mice
declined by 50% (209), which can also be observed in malnourished
children (210). Importantly, not only numbers of Th cells were
reduced in the blood of starved mice and also malnourished
children, but their capacity to produce IFNg and IL-2 (209, 211).
Instead, malnourished children had increased concentrations of IL-
4 and IL-10 in their blood (212). In the absence of glucose,
activation of Th cells via Glut1 is impaired (8), but whether this
also impairs Th2 cell function, which seems to be intact although
glycolysis cannot be used (213), remains to be determined.
Interestingly, a recent study showed that during cancer-associated
adipose tissue wasting the Th2-environment in adipose tissue is
maintained both in mice and humans (144).

Intermittent fasting, which has become a widespread strategy
to lose weight, is another approach to investigate the effects of
short-term caloric restriction on immune cells. In a mouse model
of eosinophilic asthma - induced by intranasal administration of
IL-33 and OVA - a two-day fasting period reduced the
accumulation of Th2 cells, IL-13, generation of OVA-specific
IgG1, and eosinophils in the lungs compared to non-fasted mice
(142). Whether this effect is solely attributable to Th2 cells or
mediated by ILC2s remains to be determined. During a model of
autoimmunity, fasting reduced accumulation of CD4+ T cells
and IFNg-producing cells, while it increased IL-17A production
(214). Taken together, while Th2 cells, and indeed other T helper
subsets, are affected by malnutrition well-controlled studies that
address the functional impact on immunity are required.

Helminth-Mediated Induction of Th2 Cells
During Obesity
Taking into account that Th2 cells are beneficial for the
homeostatic environment in adipose tissue of lean individuals,
it is only logical that the question arises whether induction of
Th2 cells during obesity has an ameliorating effect. Several
studies have addressed this question using helminth infections
to evoke a Th2 and regulatory state that may impact the severity
of unrelated inflammatory conditions and disease states. There
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are extensive studies in mouse models, as well as human clinical
trials using live helminth infections for the treatment of several
inflammatory diseases (reviewed in (215)).

The impact of the induction of Th2 cells by helminth
infection on the low-grade chronic inflammation during
obesity has been addressed in a number of studies. Studies in
helminth-infected humans observed improved metabolic health
(216–223). In mice, acute helminth infection with
Nippostrongylus brasiliensis also improved metabolic health
and decreased weight gain (146, 224). Hussaarts and colleagues
revealed that chronic Schistosoma mansoni infection (>12 weeks)
significantly ameliorated diet-induced obesity in mice compared
to non-infected controls (225). Unsurprisingly, infection with the
gastrointestinal helminth Heligmosomoides polygyrus also led to
ameliorated weight gain and improved metabolic function (226).
Su et al. brought more complexity to these findings as they show
that Th2 cells were critical in the regulation of the helminth-
induced changes to the microbiome that subsequently affected
nutrient uptake and weight gain (227). Studies with Strongyloides
stercoralis-infected patients that were obese revealed that they
had also higher type 2-associated cytokines in their circulation
(228). Interestingly, these changes were reversed upon
antihelminthic treatment to remove the worm infection.

While these infection models rely on infection with live
helminths, the side effects may outweigh the benefits and thus
single helminth-derived products may have a better safety profile for
human application. Omega-1, derived from S. mansoni eggs, that is
a potent inducer of Th2 cells in mice, was shown to ameliorate
HFD-induced obesity (129, 229). More recently, ES-62, a
glycoprotein of Acanthocheilonema vitae, was also shown to
improve metabolic health (230). Importantly, small-molecule
analogues still possess anti-inflammatory properties (231). With
regard to the variety of helminth-derived products and their
immunomodulatory functions (reviewed in (232)), many of these
may be able to modulate Th2 cell function during obesity and thus
may improve diabetes or even counteract weight gain.

In contrast to these hypothetical experimental interventions,
there is also potential to target T cell metabolism using 2-
deoxyglucose (2-DG), which inhibits glycolysis and blocks CD4+

T cell proliferation, with 2-DG used in numerous clinical trials
focusing mostly on cancer but to date none have investigated a
possible impact on AT T cells and obesity. Leptin has also been used
in clinical trials exploring therapeutic potential in obesity (233). It is
clear that further insight on the regulation of different T cell subsets
Frontiers in Immunology | www.frontiersin.org 12
in the context of obesity and, or, the metabolic syndrome are
required to inform on the development of new T cell mediated
therapies for obesity.
CONCLUSION

In recent years, the importance of adipose tissue as an immune
organ has become increasingly appreciated. It has been shown
that changes in the metabolic status of an individual
subsequently lead to changes in the immune balance. Overall,
obesity primarily impairs Th2 responses, while reinforcing type 1
inflammatory responses. Starvation and malnutrition, on the
other hand lead to a type 2 biased immune response. However,
more research on the metabolic pathways promoting T cell
polarization towards Th2 is still required, especially with
regard to the temporal regulation of the utilization of glycolysis
and OXPHOS during different immune responses. Further
investigation into the importance of IL-4-producing iNKT cells
will also help to develop further therapeutic options, such as
treatment with aGalCer for the activation of iNKT cells (234),
IL-25, TSLP or IL-33 to activate ILC2 and Th2 cells (136, 235–
237), or IL-4 or helminth products to promote Th2
differentiation (238). In the ongoing immunometabolism
dance, it is one step forward and (Th)2 steps back.
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