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ABSTRACT

Molecular machines within cells dynamically assem-
ble, disassemble and reorganize. Molecular interac-
tions between their components can be observed at
the single-molecule level and quantified using colo-
calization single-molecule spectroscopy, in which in-
dividual labeled molecules are seen transiently as-
sociating with a surface-tethered partner, or other
total internal reflection fluorescence microscopy ap-
proaches in which the interactions elicit changes in
fluorescence in the labeled surface-tethered partner.
When multiple interacting partners can form ternary,
quaternary and higher order complexes, the types
of spatial and temporal organization of these com-
plexes can be deduced from the order of appear-
ance and reorganization of the components. Time
evolution of complex architectures can be followed
by changes in the fluorescence behavior in multiple
channels. Here, we describe the kinetic event resolv-
ing algorithm (KERA), a software tool for organizing
and sorting the discretized fluorescent trajectories
from a range of single-molecule experiments. KERA
organizes the data in groups by transition patterns,
and displays exhaustive dwell time data for each
interaction sequence. Enumerating and quantifying
sequences of molecular interactions provides im-
portant information regarding the underlying mech-
anism of the assembly, dynamics and architecture
of the macromolecular complexes. We demonstrate
KERA'’s utility by analyzing conformational dynam-
ics of two DNA binding proteins: replication pro-
tein A and xeroderma pigmentosum complementa-
tion group D helicase.

INTRODUCTION

Molecular machines that replicate, repair and survey
DNA for damage are often dynamic assemblies of macro-
molecules that form, disassemble, undergo modifications
and exchange components. In fact, the bustle of activity
around moving or stalled DNA replication forks is instru-
mental to the fidelity and robustness of DNA synthesis (see
(1-3) for recent comprehensive reviews). Stretches of single-
strand DNA (ssDNA) bound by the replication protein A
(RPA), the main ssDNA binding protein in eukaryotic cells,
or its bacterial counterpart SSB are channeled to DNA
replication, repair, recombination or signaling events (4,5).
Processes such as DNA damage bypass, nucleotide excision
repair (NER) and base excision repair (BER) depend on
the timely and coordinated assembly of molecular machines
that allow DNA synthesis across DNA lesions during repli-
cation, or remove DNA lesions from the genome prior to
replication (6-9). RNA processing during splicing, tran-
scription and ribosome assembly and function also involves
complex and dynamic nucleoprotein transactions (10-14).
Within these multicomponent architectures, transient inter-
actions take place, while complexes are formed, dissolved
and rearranged. Quantifying and enumerating these inter-
actions can be assisted by single-molecule analyses.
Colocalization single-molecule spectroscopy (15,16)
refers to a class of techniques that observe the dynamics
of a molecule or complex within a diffraction-limited area.
Commonly, fluorescence is used as a reporter to interrogate
one or more aspects of the system, with the ability of mul-
tichannel setups to observe distinct colors of fluorescence
independently and simultaneously for the same location.
In some cases, a fluorescent signal at a location implies the
binding of a labeled molecule. If an immobilized binding
partner is tethered to the surface, the kinetics of the binding
interaction can be quantified by measuring the duration
of the fluorescent events (17,18); this situation is shown
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schematically in Figure 1A. However, fluorescent probes
can also be used to access structural information, such as
conformational states (19-21). This is because fluorophores
can vary in brightness due to protein-induced fluorescence
enhancement and quenching (22,23), iron-mediated flu-
orescence quenching (24,25), Forster resonance energy
transfer (FRET) between donor and acceptor fluorophores
(26,27), and other mechanisms. Figure 1B shows a cartoon
of a fluorophore-labeled protein exploring three distinct
conformational states, resulting in discrete levels of fluores-
cence. However, the greatest strength of these techniques
is the simultaneous measurement of fluorescence from
two (28) or more (29) spectrally distinct channels. In these
studies, the interaction of more than one labeled species
(whether by binding, conformational change or other
fluorescent reporting) can be correlated in real time. In the
study of PCNA toolbelt formation (30), for example, two
labeled species (Cy3-labeled PCNA and Cy5-labeled Revl)
were colocalized with the surface-tethered polymerase m
to produce trajectories like those illustrated in Figure 1C,
but three-channel total internal reflection fluorescence
microscopy (TIRFM) is also employed, such as in a study
that investigated spliceosome complex formation (31),
initiation of RNA transcription (32) or nascent ribosomal
RNA folding and ribosome assembly (13). Multicolor fluo-
rescence trajectories can also be obtained using zero-mode
waveguide technology when high concentrations (over 5
nM) of the fluorescently labeled species are experimentally
or physiologically desired (33,34).

Although Figure 1 A—C presents the events as simple step-
wise changes in fluorescence, in reality ‘steps’ in the single-
molecule trajectories can often be obscured by the noise,
and closely spaced states may be difficult to distinguish.
Although for binary ON-OFF time trajectories a simple
thresholding procedure might allow the researcher to distin-
guish the states, some signals (as in Figure 1B) require more
complicated models. Experimental trajectories are idealized
whereby each segment of a trajectory is assigned to one of
a few discrete states. Multiple analysis software packages
have been developed to extract the state information from
single-molecule trajectories (35-43). These programs apply
methods including analysis of the noise, hidden Markov
modeling and Bayesian statistical approaches to translate
each trajectory in an ensemble into a time series of discrete
states (43).

Idealized trajectories contain important structure-
functional information. At their most general, these
models show the patterns of binding and dissociation
of the tagged molecules, or a macromolecular complex
exploring its conformational space. In a single-channel
setup, intermediate states may indicate states of specific
conformations or architectures (Figure 1B). A similar type
of fluorescence pattern may be observed when multiple
fluorescent molecules can bind to and dissociate from a
surface-tethered partner. In a multi-channel setup, the
binding molecules may bind in complexes or individually
(Figure 1C and D). There may be a preferred order or a
tendency for one molecule’s binding to inhibit binding with
the second partner (30,44). As Figure 1C demonstrates,
even a simple two-channel binding experiment can reveal
important information about the system when the order of
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binding is considered (44). Without explicit prior knowl-
edge of the patterns to look for, classifying the events into
meaningful categories can be difficult. While various step
finder programs help to determine which binding states are
present in the trajectories, the binding behaviors implied
by the transitions between states are harder to identify. In
addition, the length of time spent at each state, the dwell
time, is a statistical quantity which can be used to determine
important information about the kinetics of the binding
(17). In multi-channel studies, where the duration of each
state may depend on the state of other binding partners,
there is as yet no simple way of organizing the data to
discriminate between the possible multi-color transitions.
Finally, correlating the information contained in two or
more discretized data channels allows for a more complete
picture of the interactions than an analysis of any channel
individually.

Here, we present the kinetic event resolving algorithm
(KERA), designed to analyze multi-channel and multi-
state data. The purpose of this program is to search large
datasets for patterns of transitions between discrete states,
and to allow the researcher to study events of these pat-
terns in greater detail, to determine if they are the artifacts
of chance, or the result of biochemical preference. In some
cases, this allows properties of rarer events to be identified,
beyond the broad ensemble averages. Thus, the information
that the trajectory analysis provides is beyond mere state
identification. It identifies the time at which each transition
occurs, and how long the system remains in each state before
transitioning. It analyzes the order and sequence of events
in multi-channel and multi-process data, highlighting possi-
ble binding mechanisms and architectures of macromolec-
ular complexes. KERA has been developed to automati-
cally read the discretized time series data and identify and
classify all the transitions and their correlations. In addi-
tion, the user may define custom transition patterns using
a simple user interface or the power of regular expressions,
giving KERA a versatility which extends to a wide variety
of systems. Although KERA was designed with biochemi-
cal systems in mind, it has the ability to analyze discretized
time data from any source which is formatted correctly. The
scripts for KERA analyses are written in MATLAB and
are available through a public GitHub repository at https:
/Igithub.com/MSpiesLab/KERA along with KERA doc-
umentation (Supplementary Note 1). Ultimately, KERA
aims to be an open-source, user-friendly MATLAB suite,
which simplifies identification of discrete-state patterns
and extraction of dwell times in complex multi-channel
data.

MATERIALS AND METHODS
MATLAB Suite

KERA was designed as a suite of MATLAB code (version
2020a) which is available on GitHub at https://github.com/
MSpiesLab/KERA, along with full documentation (see
Supplementary Note 1, Figures S1-S2 and Table S1). The
code consists of several main scripts, which in turn call a va-
riety of functions included in a sub-folder. To run KERA,
only the ‘openKERA.m’ file is needed on the front end. This
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Figure 1. Schematics of possible evolution of single-molecule fluorescence over time for typical model systems. (A) A fluorescently labeled species binds to
an unlabeled immobilized partner and causes an increase in fluorescence at that location for the duration of the binding event. Measurement of the dwell
times in ON and OFF states over a large number of binding events informs on the dissociation and association rates, respectively. (B) A macromolecule
labeled with an environmentally sensitive fluorophore transitions between conformational states, which are observed as three distinct levels of fluorescence,
low (state 1), high (state 2) and intermediate (state 3), respectively. (C) A ternary complex forms, identified through multichannel imaging of species labeled
with spectrally distinct fluorophores. Conclusions regarding the architecture of the complex may be derived from the binding/dissociation sequence and
an a priori knowledge of the interaction sites on the macromolecules X, A and B. From a single fluorescent event alone, one may conclude that either
A bridges the interaction between X and B, or A and B bind to X simultaneously and independently. (D) Two-channel experiments can report on the
architecture of the ternary complex involving a surface-tethered molecule and its two interacting partners labeled with fluorescently distinct fluorophores.
Similar to panel (C), a knowledge of the interaction sites on X, A and B are required to make an unambiguous determination of possible architectures.
The schematics here assume that A and B interact with one another and share a common binding site on X.

creates a window which utilizes MATLAB’s built-in GUI rent results. If new data are imported, they can be appended

creation tools, such as buttons, menu options, and graph-
ics. Some of the scripts create temporary new GUI windows
which are used to examine the traces or alter the discretiza-
tion before being closed. The workflow starts with importa-
tion, followed by optional inspection of the traces and dis-
cretization, before creating an analysis profile for the data.
A battery of default search patterns are included for ease
of use, but after they are complete the user can define cus-
tom searches in a variety of ways, to be appended to the cur-

to the existing data, and all current search results updated
to include the new data. Search parameters can be copied
to new datasets and run there, as long as the datasets have
compatible numbers of channels and states. After analysis,
dwell-time data are available for export to csv files, while
the MATLAB arrays held within the output structure can
also be copied and pasted into a spreadsheet application.
Finally, the GUI window itself and all the data it contains
is easily exported so that an analysis session and all changes
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made to the data can be recovered at a later time or in an-
other KERA session.

Analysis of XPD conformational dynamics during interac-
tions with damaged DNA substrates

Intensity-time trajectories were selected from experiments,
which used Cy3-labeled xeroderma pigmentosum comple-
mentation group D (XPD) and Cy5-labeled DNA, as pre-
viously reported by Ghoneim and Spies (25). For KERA
analysis, the data came from the trials in which the Cy5-
labeled DNA substrate contained a cyclobutane pyrimdine
dimer (CPD) and biotinylated, Cy3-labeled XPD helicase
was tethered to the TIRFM flow cell surface. Changes in
the Cy3 fluorescence were reporting on the conformational
transitions that bring the Cy3-labeled ARCH domain of
XPD close to and away from the FeS domain, while ap-
pearance and disappearance of the Cy5 signal signified
DNA binding and dissociation, respectively. After extract-
ing intensity-time trajectories from raw videos, a set of se-
lection rules was applied to decide on the trajectories that
would be used in the analysis. Those chosen had an aver-
age intensity profile which was stable over time, without
systematic fluorescence level drift of constant states. For
Cy3 (ARCH domain) trajectories, at least two conforma-
tional transitions had to be present in the trajectory. Tra-
jectories with signal-to-noise ratio of less than 5:1 were
excluded. All accepted trajectories ended with irreversible
single-step photobleaching from a higher fluorescence state,
and were longer than 10 s before trimming. Previously, a
custom MATLAB user interface was used for normaliza-
tion, baseline correction and 50% thresholding to separate
the open and closed states of XPD ARCH domain (25).
Here, traces were normalized and baseline-corrected by us-
ing a custom MATLAB script (normalizeTrajectorySet) to
select regions of baseline and the highest fluorescent state
which lasted longer than three frames (see Supplementary
Note 2). The trajectories were also trimmed to exclude re-
gions after Cy3 photobleaching. hFRET (38), developed by
the Gonzalez lab for use in kinetically heterogeneous sys-
tems, was the chosen discretization software. The hFRET
method requires that all traces be the same length upon im-
port; the traces were thus padded at the end with 0 values to
auniform length. hFRET was run using an Hidden Markov
Model with one dimension, one sub-population per state,
shared emissions, priors manually set and analyzing the ab-
solute amplitudes. For the Cy3 data, four states were used
in the model, with the first being assigned to the 0 padding;
the priors were set to [0, 0.2, 0.5, 0.9]. For the CyS5 data,
three states were used, at [0, 0.2, 0.9]. After the analysis was
complete, the discretized Viterbi path trajectories were im-
ported to KERA. The padding state was removed from all
trajectories (or assigned to the baseline, state 1, in the few
occasions it occurred in the middle of the data), resulting in
a three-state model for the Cy3 signal reporting on the XPD
conformations and two-state model for the Cy5 reporting
on the DNA binding.

Analysis of the RPA conformational dynamics

Fluorescence intensity trajectories of MB543-labeled RPA
molecules on immobilized ssSDNA were extracted from a
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subset of the raw microscope movies previously described
in Pokhrel, Caldwell et al. (15). The trajectories selected for
analysis were those which had no fluorescence in the first
30 s (before fluorescent proteins were added), contained at
least two state transitions and had a raw signal-to-noise
ratio of at least 4. The trajectories were shifted using a
baseline-thresholding method to align their lowest state and
then normalized by their highest state (See Supplementary
Note 2). The trajectories were trimmed and split to analyze
each portion of the experiment separately: one split from
frames 300-1200 of acquisition (after RPA addition) and
one from frames 1200 to 2100 (after RADS52 addition or
buffer wash). These segments were then paired with a syn-
thetic ‘donor’ segment which would result in a calculated
FRET value which was equal to the original segment. As
a result, when these pairs were imported to ebFRET for
analysis, the FRET signal analyzed was equal to the nor-
malized trace (See Supplementary Note 2). ebFRET was
used to obtain a four-state model fitted to each ensemble
of traces which were then exported to the single-molecule
dataset (smd) format. The discretized Viterbi path time se-
ries were imported to KERA, which was used to extract the
dwell times of all non-edge states throughout the ensem-
ble. Histograms were plotted and analyzed to extract rate
constants using GraphPad Prism 7 as described in detail
in (44).

RESULTS
Overview of the KERA system

We have developed KERA, a MATLAB suite, united by
a simple GUI window which allows the user to run anal-
yses and export the results. The first step in the analy-
sis is to import the data and convert it to a unified for-
mat. Figure 2A shows an example of individual events se-
lected from noisy single-molecule data contained in pairs
of colocalized fluorescence trajectories (intensity time se-
ries). Before they are imported to KERA, the trajectories
must be turned into time series of discrete states, a pro-
cess referred to as idealization (Figure 2B). Idealization can
be carried out using any appropriate state-finding pack-
age. Below, we show two examples: one utilizing hFRET
(38) and the second utilizing ebFRET (37). After import-
ing the idealized trajectories, KERA’s main functionalities
are the ability to sort events and transitions by categories
and allow the researcher to search the set for transitions
and conformations of interest. Figure 2C-E provides an ex-
ample of the type of information this categorization pro-
vides. If this were a binding experiment of two distinctly
labeled species (red and green), the prevalence of events
in which red or green bound first might imply a preferred
binding order or architecture. For each such category of
transitions specified, dwell time data can be visualized us-
ing the built-in plotting tools and basic fitting methods al-
low for a fast estimate of kinetic information in each group
of transitions (Figure 2E). KER A’s other features include a
data browser to view and interact with the discretized and
raw data, as well as a dwell time summary which organizes
each channel’s state dwell times into easily accessible data
tables.
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Figure 2. Overview of the KERA workflow and features. (A) Examples of events from representative raw intensity trajectories from the data described in
(30). Although only three trajectories are shown, hundreds or thousands would be used in a given analysis. (B) The same events shown as idealized trajec-
tories. (C) Interpretation of the respective molecular architectures. Top: a binary complex formation between surface tethered molecule X and fluorescently
labeled molecule B. Middle: a binary complex between fluorescently labeled molecules A and B arrives to the surface-tethered X; A dissociates before B
suggesting that in the trimeric complex B bridges the interaction between X and A. This scenario assumes that A and B interact with the same site on X.
Bottom: the arrival of B followed by A results in a ternary complex. However, in this scenario, there is only one binding site on X, so the departure of B
first implies a reversal of the binding partner, as found in the PCNA Toolbelt-Revl Bridge switch observed in (30). Other interpretations, dependent on
the system, are possible. (D) The idealized data are imported to KERA. An example analysis compares the prevalence of certain transition patterns (event
classifications) within the data (the numbers are from (30)). (E) For a given event type, the dwell times are plotted as a histogram and an exponential fit is

applied to extract estimated kinetic data.

KERA data workflow

In single-molecule studies, many systems of interest may be
interrogated with the use of fluorescent probes such that
the intensity of the signal is correlated with some useful
property of the system (binding or conformational change,
for example). Single-molecule total internal reflection mi-
croscopy is well-suited to this task, and many papers de-
scribing methods to detect and quantify colocalized flu-
orescence are available (29,45-47). For example, an inte-
grated MATLAB suite for extracting binding experiment
data from raw microscope movies was reported in (48). For
the simple binary models, such as when molecules are ei-
ther bound or free with no intervening states, it is com-
mon to use a thresholding operation to define the regions of
‘ON’ fluorescence and ‘OFF’ fluorescence. For other mod-
els, software such as ebFRET (37,49), QuB (50), HHOMMY
(35), hFRET (38), VBEM-MGHMM (48), DISC (51) and
SMACKS (52) are among powerful discretization tools.
Although these methods (with the exception of QuB and
DISC) were developed specifically for FRET signals, they
can be adapted to analyze fluorescence trajectories from
single-color experiments and experiments with independent
fluorescence signals. These are not the only methods of dis-
cretizing a fluorescence time series, but KERA contains
a user interface for importing datasets created by QuB,
ebFRET, hFRET and HaMMY software packages (Fig-

ure 3A—C). In addition, any data which exist as a time series
of integer states may be formatted to match KERA’s raw
input format, which is described thoroughly by the docu-
mentation included with the code, and instructions are also
included for altering the source code to allow for new im-
port formats.

Once the data are imported into KERA, the analysis or-
ganizes them into a searchable matrix and pairs colocalized
data from disparate files into a single trajectory. Figure 3
shows this import process for a simple, cartoon trajectory
pair (Figure 3A). The molecule in the red channel has three
binding states (off, semi-bound and bound) while the green
channel has only an on- and off-state. Colocalized trajecto-
ries, or the trajectories describing data from the same loca-
tion but in different fluorescence channels, are organized as
successive rows in a matrix. Because most events of interest
occur between instances of the baseline or default state of
the system, the user has the option to specify which state
each channel exists in when there is no activity (Figure 3D);
this allows the program to highlight all departures from that
state in the later analysis. MATLAB’s built-in diff function
is used on each trajectory to identify all changes in state
with a non-zero entry; all time points in which the state was
constant are replaced by 0 entries (Figure 3E). Using the
find (location of non-zero elements) function allows these
vectors to be collapsed to a minimal form, where only tran-
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Figure 3. Flow of the program structure. The program’s default search method is demonstrated on a hypothetical two-channel multistate trajectory: (A)
A cartoon trajectory with two channels is idealized, either in QuB or ebFRET. The red channel has three states and the green channel has two states.
(B) QuB analysis would produce two tables listing the states and durations for each channel in the trajectory; this is converted by the program into the
form in panel C. (C) The output format of ebFRET, and the common input format for KERA. (D) The user identifies the ‘default state’, which KERA
will search for as marking the beginning and ending of kinetic events in the initial search. Events not matching this default state can later be specified by
custom search. (E) The diff built-in function locates all instances of a change in state. (F) These indices are used to identify time points of interest; all other
entries are redundant. (G) The collapsed matrix is shown on the left. The middle matrix is the aggregate timestamp matrix, where time data is stored for
all trajectories. The right matrix is the aggregate state matrix, where state data is stored as text strings delimited by semicolons. (H) The condensed state
matrix is searched to find all unique event classifications, which are recorded in a list. For each of these, KERA will (I) search for events matching that
classification and (J) record ensemble and individual event data about those events in a table.

sitions between binding states and the timestamp of each
transition are retained (Figure 3F). Each of these minimal
vectors is then added as an entry in the aggregated transi-
tion or timestamp cell arrays, allowing for quick reference
between transitions and the time at which they occurred
(Figure 3G).

Each trajectory is now encoded by an array of inte-
gers corresponding to the state of each channel. The pro-
gram then scans the dataset for matches to the user-defined
default binding behavior and makes a list of all unique
event classifications, accomplished by applying MATLAB’s
unique function to the results of the initial search. In
essence, a pattern which begins with the default state and
returns to it after any number of transitions is searched for
in the data. This default state may be set by the user, but
by default it is assumed that non-fluorescence in all states
is the “fully unbound’ or ‘default’ state to which the system
returns eventually. All matches are recorded in a list, and all
unique elements of that list are recorded as separate classifi-
cations. A classification is defined as a specific ordered set of
transitions forming an event; a few possible such classifica-
tions are shown in Figure 3H. As demonstrated in Figure 2,

event classifications depend on the binding or transition or-
der. Each of these classifications becomes the subject of a
subsequent detailed search of the data, and it is the classifi-
cations that direct the organization of the final output of the
program. In addition to these automatically defined classi-
fications, the user has the ability to define custom binding
patterns to search for. The user interface for this allows for
a limited system of wildcard and token states, increasing the
versatility of these user-defined patterns. For more complex
patterns, full support of regular expressions allows the user
to define search strings using raw regex input, a powerful
tool for pattern recognition.

Once an event classification is defined, every event match-
ing the description of that classification is cataloged and
analyzed by the code in a single, comprehensive table. This
means that, for a given classification, the program searches
the transition matrix for events matching that description
(Figure 3I). By cross-referencing the indices of search re-
sults with the time data matrix, the timestamps of all events
are recovered efficiently. This produces time data about the
events individually and as an ensemble within that classifi-
cation, which are recorded in a table. Each classification’s
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ensemble data receives its own row in that table, for conve-
nient comparison (Figure 3J). Events which are not com-
pleted before the end of the trace, or which begin before the
start of the trace, are ignored, since reliable time data cannot
be attached to that event.

Visualization and post-processing

Although the program identifies all unique event classifica-
tions through this method, it is often more of interest to ex-
amine partial events, or specific single transitions, regard-
less of where they may occur in the set. For this purpose,
KERA will also catalog all instances of each configura-
tion (multi-channel combination of states) and each single-
channel transition type, along with their dwell time distri-
butions. A custom search feature allows the user to specify
a string of states in a channel, and thus filter the configu-
rations by the following or preceding state. This is a useful
in cases where the kinetics of a given state may exhibit hys-
teresis: the state being transitioned to (or from) impacts the
dwell time of the state of interest.

The resulting sets of dwell times may be analyzed to de-
termine important kinetic information about the system.
The rate constants for binding and dissociation may be de-
termined from histograms of the dwell times obtained by
this analysis (44,53). Thorough treatment of the kinetics of
binary binding possibilities have been reported in numer-
ous previous studies. However, correlating the kinetic and
thermodynamic data in separate channels (such as tran-
sitions between conformational states dependent on the
bound and unbound states of a separate molecular com-
ponent) is a more difficult task. This is, in part, because of
the difficulty in obtaining dwell times which are specific to
transitions between particular multi-channel system states.
KERA, with its ability to categorize transitions and states
and thus differentiate between different binding behavior in
multi-channel experiments, collects dwell times into groups
which are more amenable to this kind of analysis. For ex-
ample, in the study of the interactions of XPD protein with
damaged DNA substrates, the differential kinetics of DNA
binding were correlated with the conformational state of a
domain on the protein (see XPD case study in Results). In
the study of the ternary complexes formed by PCNA, Poln
and Revl, the dwell times associated specifically with each
architecture could be extracted with KERA, taking into ac-
count information from both channels to distinguish system
states (30).

For the dwell times of any given event classification, the
program can optionally display basic dwell time histograms
and cumulative distributions, to aid in kinetics evaluation.
This creates a graph similar to those shown in Figure 4. For
both the histograms and the cumulative distributions, two
options are available: the dwell times may be binned linearly,
to form an exponential distribution, or they may be binned
logarithmically. In the latter case, the data points are taken
to be the natural logarithm of each dwell time. The horizon-
tal scale changes to reflect this. The advantage of this ap-
proach is that it becomes more visually apparent whether a
single- or a double-exponential model is most suited to the
data (54). This interface is illustrated by Figure 4. In ad-
dition to histograms, the program can also display and fit
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models to cumulative distributions, which are more useful
in cases where fewer data points are available for the cre-
ation of a robust histogram.

Examining these histograms and the outputted best-fit
curve data shows at a glance which processes are kinetically
faster, and which ones may depend on more than one rate
constant. This portion of the suite is not meant to rigor-
ously determine the kinetics of the interactions occurring
in solution; it is more a tool for the researcher to exam-
ine their data without leaving the MATLAB environment
in which the dwell time data are calculated. As noted, all
data are available in a format which may be copied directly
to a spreadsheet, allowing statistical analyses by dedicated
data fitting packages.

Ultimately, these capabilities of searching data for event
classifications and then extracting dwell time data from
those events are meant to aid the researcher in discover-
ing biochemically relevant binding behaviors, as well as ex-
tracting quantitative information. In a binding experiment
with thousands of colocalized pairs, the interpretation of
the ensemble’s behavior is made more complex by the vast
quantity of data and binding events available. Even in a
single-channel experiment, a model which has more than
two possible states becomes onerous to interpret, because
each dwell time may depend on the states which the system
takes on before and after a given binding site. In addition,
the states which are achieved may exhibit a preferred or-
der, indicated in the data by a predominance of one bind-
ing pattern; without a method to catalog and count all dis-
tinct patterns, locating such preferred patterns would be
time-consuming and frustrating, even using the transition
density plots which FRET data analysis packages provide.
KERA allows many patterns to be discerned by a simulta-
neous scan through all of the data, and the ability to search
through the data in a customizable way allows researchers
to extract specific data about state-dependent dwell times.
For researchers with experience in Regular Expressions, raw
regex input allows for even greater flexibility in the patterns
which are categorized. These advanced methods are de-
scribed in the documentation, but KER A’s user-friendly in-
terface allows for a default scan of a single-molecule dataset
with minimal user input.

The two case studies included below focus on macro-
molecular interactions with a time evolution through dis-
crete states modeled by a Markov process. Indeed, KERA
provides tools and visualizations which make the analy-
sis of Markovian processes simpler, but it is equally true
that the core functionality of KERA does not assume any
such processes are at work. Idealized data can come from
any source, including ones which are non-Markovian or
far from equilibrium and KERA will still parse it to ef-
fect the classification and enumeration of the patterns con-
tained in the data. Thus the identification of rare events as
well as the discovery of events which occur more often than
would be assumed in a Markovian system are both possi-
ble in KERA. Although examples of nucleoprotein inter-
actions are most relevant to the scope of this paper and
the original motivation of KERA, discrete-time state tran-
sitions from any system may be analyzed as long as the
data is placed into MATLAB cell variables of the correct
format.
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Figure 4. Program Output screen. An illustration of the graphical output of KERA, which displays select data from the larger set of results. For each event
classification, a cartoon depiction of a representative transition is shown at the top of the window (here, channel 2 changes from state 1 to state 2 and
back). The total number of such events is counted and displayed below a histogram of the dwell times of the event. The arrow buttons allow the user to
move between event classifications. The fitting options on the right change the way the histogram is displayed and fitted. This analysis was run on simulated

two-state two-channel data.

Case Study 1. Discerning the XPD helicase domain dynamics
in free and DNA bound states

XPD protein is a helicase which provides an important
function in NER (55,56) due to its ability to verify DNA
damage (57). In addition to superfamily 2 helicase motor
domains (HD1 and HD?2), and an iron-sulfur (FeS) con-
taining domain, XPD contains a flexible ARCH domain,
which protrudes from the HD1 creating a pore in the pro-
tein. DNA passes through this pore from the DNA binding
site in the helicase core to the secondary DNA binding site
located at the interface between HD1 and FeS domain (58—
60). Using smTIRFM, Ghoneim and Spies (25) visualized
motions of the ARCH domain. In this study, biotinylated
XPD molecules site-specifically labeled with Cy3 dye at the
ARCH domain were immobilized on the surface of a mi-
croscope slide. The presence of an endogenous FeS cluster
in XPD caused distance-dependent Cy3 quenching when
the ARCH domain was in ‘closed’ conformations, result-
ing in discrete fluorescence changes. Direct correlation of
ARCH domain motion and binding of DNA substrate was
achieved by supplying the reaction with damage-containing
DNA molecules labeled with CyS5, a dye spectrally distinct
from the dye in the ARCH domain. Fluctuations in the
Cy3 signal reported on the ARCH motion (i.e. opening
and closing), while the abrupt increase and decrease in the
CyS5 signal reflected DNA binding to and dissociation from
surface-tethered XPD, respectively (see Figure SA for a car-

toon schematic of the experimental system and Figure 5B
for representative two-color fluorescence trajectories).

In the original study, the data in both Cy3 and CyS5 chan-
nels were analyzed using two state models, where ‘open’ and
‘closed’ states of the ARCH domain were assigned using
50% threshold, while the ‘bound’ and ‘free’ states of XPD
corresponded to the presence and absence of the Cy5 signal.
Based on the kinetics analysis, several states were identified
within ‘open’ and ‘closed’ states. Here, we have re-analyzed
a subset of the data that corresponded to the XPD interac-
tion with damage-containing DNA. The data (N = 60 tra-
jectories) were discretized using hFRET (see ‘Materials and
Methods’ section) and imported into KERA. A three-state
model was chosen for the Cy3 conformational signal, and a
two-state model was used for the Cy5 binding signal. The
resulting analysis illustrates trends in the binding behav-
ior and correlated motions of the ARCH domain (Table 1).
For example, the dwell time analysis of the ARCH domain’s
states shows that the domain was in the ‘closed’ conforma-
tion (‘state 1°, which displayed the lowest Cy3 fluorescence)
for 30% of the combined length of the trajectories. However,
only 20% of the DNA binding and unbinding events oc-
curred when the ARCH was in this state. In contrast, ~40%
of the DNA binding and unbinding events occurred when
the ARCH domain was in the ‘open’ conformation (highest
fluorescence state), even though this conformation was only
adopted for 30% of the observed time. The results are sig-
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Figure 5. Molecular schematic, representative discretized traces and their analysis from the XPD experiment. A subset of the original data from (25) was
reanalyzed using KERA. (A) Experimental design. Biotinylated, Cy3-labeled XPD helicase is immobilized on the surface of the TIRFM flow cell. The
states of the Cy3 fluorophore reflect the XPD ARCH domain conformations, as the proximity of the Cy3 dye site-specifically positioned in the ARCH
domain to the endogenous iron-sulfur cluster (FeS) results in the Cy3 quenching. The damaged DNA substrate was labeled with a Cy5 dye and only
exhibited fluorescence when bound to the immobilized XPD at the slide surface. (B) Three sets of representative fluorescence intensity-time trajectories,
each representing the fluorescence signal from a pair of colocalized Cy3 (green) and CyS5 (orange) fluorophores. The solid lines indicate the discrete states
which the noisy trajectories were fit to using the hFRET. Two states ‘ON’ (DNA bound to XPD) and ‘OFF’ (free XPD) are observed in the CyS5 trajectories,
while the Cy3 trajectory was fit with a three-state model (1: ‘closed” ARCH, 2: ‘intermediate/partially open” ARCH, and 3: ‘open’ ARCH). (C) Dwell time
distributions for each state of the ARCH domain. Natural logarithms of dwell times were binned in 0.4 intervals, plotted as histograms using GraphPad
Prism software and fitted to double exponentials. For each state, blue distributions contain all events irrespective of whether DNA was present or absent,
while gray distributions contain only a subset of dwell times when the DNA was present.
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Proportion of time # DNA binding Binding event # DNA unbinding Unbinding event
ARCH state ARCH spent at state i events proportion events proportion
1 (Closed) .30 54 21 49 .20
2 (Intermediate) 40 98 .39 97 .39
3 (Open) .30 100 40 101 41
Total 1 252 1 247 1

nificantly biased (P < 0.001 by chi-squared test) and show
that binding and unbinding events are both more likely to
happen when the ARCH domain is open. This conclusion
aligns intuitively with the structure-functional understand-
ing of the XPD protein (59,61-62). However, if this were
a more novel system, this prevalence of binding behavior
at a certain conformational state would be a vital piece of
information in understanding the impact of the conforma-
tional change. Figure 5C shows distributions of dwell times
in states 1, 2 and 3 binned logarithmically (bin size 0.4). For
state 1, distributions for both, all events (z = 103) and a sub-
set of the events when CPD-containing DNA was present
(n = 31) clearly suggest at least double exponential fit. No-
tably, all long events (over 10 s in duration) occurred in the
presence of DNA. The ratio of amplitudes for the fast and
slow exponentials for this state changed from about 90/10%
to 55/45%. Less of a change was observed for state 2, where
the ratio changed from 70/30% to 55/45% in the presence
of damaged DNA, which no change was observed for the
most open state 3 (70/30%). This observation echoes that
reported in the original study. The main difference, how-
ever, if the simplicity with which the data were extracted and
sorted into distinct categories.

Case Study2: Conformational dynamics of replication protein
A (RPA)

RPA, the major ssDNA binding protein in eukaryotes,
acts as a master regulator of DNA replication, recom-
bination, and repair processes (5). Due to the abun-
dance of RPA within the nucleus (63) and its sub-
nanomolar affinity for ssDNA (64), RPA rapidly coats ss-
DNA as it is exposed (see (5,65) for review). RPA has six
oligonucleotide/oligosaccharides-binding (OB) folds (A-
F), which are connected by flexible linkers. Four of these OB
folds are high-affinity DNA-binding domains (DBD) (A-
D), which can individually associate and dissociate from ss-
DNA within the stable RPA:ssDNA complex (Figure 6A).
The ability of RPA to dynamically sample ssDNA binding
conformation is critical for its role in directing the hand-
off of ssDNA to other proteins involved in DNA replica-
tion, recombination and repair (66-68). In homologous re-
combination, Rad52 mediates handoff of DNA coated by
RPA to Rad51, a lower affinity protein (69). In the Pokhrel,
Caldwell et al. study (15), smTIRFM was used with fluores-
cently labeled RPA to monitor the RPA conformational dy-
namics. An environmentally sensitive fluorophore, MB543,
was site-specifically added to either DBD-A or D to al-
low for observation of their conformational states when
bound to surface tethered ssSDNA as varied levels of fluo-
rescence intensity. Rad52 was also added to observe how
the binding of this RPA interacting protein and mediator

of RPA displacement would affect the distribution of RPA
conformations.

The selected fluorescence intensity trajectories were nor-
malized and analyzed using ebFRET to determine a four-
state model with the four states being fluorescence inten-
sities that correspond to different conformations of RPA
(see ‘Materials and Methods’ section). The resulting dwell
times at each state were extracted using KERA. These state-
specific dwell times were fit to exponential decays to yield
off-rates and the percentage of events in each of the states
were quantified. These values were then used to determine
the effect that the presence of Rad52 had on the ability of
RPA to access the four conformational states and the sta-
bility of these states. Namely, it was determined that the
presence of Rad52 resulted in a loss of the most ssDNA-
engaged state RPA DBD-D. This result revealed that the
Rad52 mediator mechanism relies on specifically modulat-
ing the ssDNA binding dynamics of RPA DBD-D, allowing
the lower affinity Rad51 to access ssDNA that was previ-
ously occluded by RPA. This is an example of the utility
of KERA for analyzing a single-channel dataset to extract
kinetic information.

The beta version of KERA, which was under develop-
ment at the time of this study, was more limited in its capa-
bilities, lacking the custom and regex search functions. One
motivation for the inclusion of those features in the current
version was the desire to examine the dependence of kinet-
ics on the past and future states of the system. With the cur-
rent custom search function, the dwell times of a given state
can be organized by the attributes of the preceding or fol-
lowing state transition. This could be useful in determin-
ing whether a system exhibits hysteresis or preferred direc-
tionality in its movements. Similar to XPD case, the RPA
analysis with KERA can be readily extended to multicom-
ponent system to separate the conformational dynamics in
the presence of interacting partners labeled with spectrally
distinct fluorophores. While such analysis was not necessary
in the case of Rad52, which upon addition rapidly formed
an RPA-ssDNA-Rad52 complex that persisted through-
out the experiment, other RPA partners may form transient
complexes necessitating multichannel analysis.

DISCUSSION

KERA is envisioned as a data-processing tool for the single-
molecule fluorescence experiments that operate with large
datasets and explore multi-process data correlated across
several colors or channels. In these, the statistical power of
the kinetic and dynamic analyses is found in the large en-
semble of representative events available. However, to ef-
fectively organize and study all possible events, states and
combinations of transitions, a fast and thorough approach
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Figure 6. Microscopic conformational dynamics of RPA. (A) Conformation dynamics of RPA that results in microscopic binding and dissociation of its
individual DNA binding domains can be monitored at the single-molecule level by following the fluorescence of an environmentally sensitive fluorescent
dye, MB543 (green star), site specifically incorporated into a respective DBD. (B) The representative fluorescence trajectory shows transitions between four
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as regular or logarithmic distributions to determine the rate constants.
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to organizing the data of interest must be used. KERA is
particularly suited to any application where discrete time
trajectories are sorted by categories of transition order and
transition combination.

However, fluorescence data are not the only type com-
monly subjected to state idealization. QuB was originally
developed for studies of ion channel flows, and is now used
to assign states in fluorescence studies. Similarly, the versa-
tility of KERA, and the ability to import any time series
of integer states, means that studies outside the realm of
TIRFM can also benefit from its ability to classify events.
Its analysis is adaptable to arbitrarily many interacting data
channels, each with any number of possible discrete states.
Because of KERA’s ability to extract all dwell time data
from each event, any form of analysis that makes use of
dwell times may be performed on the output as appropriate.
With the use of custom searching capabilities, systems may
be analyzed that have patterns of arbitrary complexity, and
the language of regular expressions is uniquely suited for
identifying patterns with wildcard tokens, quantifiers and
logical operations. However, the user is not required to have
experience with regex to use the simplified search interface,
which still offers significant flexibility.

Primarily, KERA allows quick and thorough isolation of
events of interest, both through an automatic general search
for all event classifications and through the optional custom
search. By understanding the frequency and dwell times of
the events in question, relevant properties about the bio-
chemical system may be extracted. This increases the utility
and ease of analysis for large ensembles of discretized time
traces, and can reveal multi-process correlated patterns in
experiments with an arbitrary number of fluorescent color
channels, each modeled with any number of binding states.

DATA AVAILABILITY

KERA scripts and documentation are available in
the Github repository (https://github.com/MSpiesLab/
KERA).

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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