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The duration bisection paradigm is a classic task used to examine how humans and other
animals perceive time.Typically, participants first learn short and long anchor durations and
are subsequently asked to classify probe durations as closer to the short or long anchor
duration. However, the specific representations of time and the decision rules applied in
this task remain the subject of debate. For example, researchers have questioned whether
participants actually use representations of the short and long anchor durations in the deci-
sion process rather than merely a response threshold that is derived from those anchor
durations. Electroencephalographic (EEG) measures, like the contingent negative variation
(CNV), can provide information about the perceptual and cognitive processes that occur
between the onset of the timing stimulus and the motor response. The CNV has been
implicated as an electrophysiological marker of interval timing processes such as temporal
accumulation, representation of the target duration, and the decision that the target dura-
tion has been attained. We used the CNV to investigate which durations are involved in the
bisection categorization decision. The CNV increased in amplitude up to the value of the
short anchor, remained at a constant level until about the geometric mean (GM) of the short
and long anchors, and then began to resolve. These results suggest that the short anchor
and the GM of the short and long anchors are critical target durations used in the bisec-
tion categorization decision process. In addition, larger mean N1P2 amplitude differences
were associated with larger amplitude CNVs, which may reflect the participant’s precision
in initiating timing on each trial across a test session. Overall, the results demonstrate the
value of using scalp-recorded EEG to address basic questions about interval timing.
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INTRODUCTION
DURATION BISECTION
The duration bisection paradigm is a classic task used to examine
how humans and other animals perceive time (e.g., Penney et al.,
2008). In a typical duration bisection experiment with humans,
participants are asked to classify probe durations as closer to either
the short or the long anchor duration (e.g., 2 vs. 8 s) learned in
training. The probe durations usually comprise either a geometric
or an arithmetic series that includes the short and long anchors
as well as intermediate durations. The point of subjective equality
(PSE), the difference limen (DL), and the Weber fraction (WF)
can be obtained from the participant’s response function. The
PSE is an index of perceived duration, while the DL and WF index
temporal sensitivity (Grondin, 2010). These measures have been
useful for the study of the perceptual and cognitive factors that can
influence subjective perception of time (e.g., Penney et al., 2000;
Vicario, 2011).

Although most information processing models of interval
timing posit that timing decisions rely on comparisons of cur-
rently elapsing time with memory representations of previously

experienced durations, the specific information that contributes
to those representations and the decision rules applied remain
the subject of debate (e.g., Allan, 2002; Wearden, 2004; Penney
et al., 2008). For example, whether the short and long anchors are
used during duration classification has been challenged by proce-
dures in which the participant is not explicitly taught the anchor
durations (Wearden and Ferrara, 1995) and by evidence that par-
ticipants rely on a bisection criterion derived from the anchor
durations rather than using the anchor durations themselves
(Allan and Gerhardt,2001). Similarly,whether the decision process
relies on comparison of two time traces until a response threshold
is reached (Wearden, 2004), a sequential application of decision
rules (Penney et al., 2008), or some other mechanism is unclear.
Our understanding of the memory representations and decision
rules suffers from the fact that they are latent processes not easily
determined by behavioral measures in a typical duration bisection
task (e.g., the assumed relationship between the PSE and actual
transition from a “short” to “long” decision, Balci et al., 2009).

Consequently, methods that provide information about the
perceptual and cognitive processes that occur between the onset
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of the timing stimulus and the motor response are desirable. Non-
invasive electrophysiological measures such as electroencephalog-
raphy (EEG) and event related potentials (ERPs) are complemen-
tary to behavioral measures because they can be used to reveal how
distinct cognitive processes unfold at a higher temporal resolu-
tion than behavioral measures alone (Luck, 2005). One candidate
EEG/ERP event that appears to be sensitive to sub and supra-
second temporal information is the contingent negative variation
(CNV).

THE CONTINGENT NEGATIVE VARIATION AND INTERVAL TIMING
Electroencephalography and ERP measures have been used exten-
sively to reveal the brain’s motor preparation processes (e.g., Bru-
nia, 2004; van Boxtel and Böcker, 2004). One such measure is the
CNV, which was termed the “expectancy wave” when first reported
by Walter et al. (1964). Time is an essential dimension of prepara-
tion and anticipation (Buhusi and Meck, 2005; Coull and Nobre,
2008), so it is unsurprising that its role in CNV generation has
also been examined (e.g., Birbaumer et al., 1990; Correa et al.,
2006). Indeed, several research groups (Macar et al., 1999; Macar
and Vidal, 2003, 2009; Pfeuty et al., 2003a,b, 2005, 2008; Praamstra
et al., 2006) have reported relationships between CNV parameters
(e.g., amplitude, peak latency, slope) and aspects of explicit and
implicit interval timing (e.g., encoding, storage, and retrieval).
The ramping negative potential of the CNV has been claimed to
reflect an accumulation process resulting from spreading activa-
tion or signal integration of neurons in the medial frontal brain
areas (König et al., 1996; Macar et al., 1999, 2006; Macar and Vidal,
2004; Pouthas et al., 2005; Meck et al., 2008; Simen et al., 2011).

For example, early work by Macar et al. (1999) showed a rela-
tionship between the amplitude of the CNV and the subjective
duration of the interval in temporal reproduction. The authors
categorized participant’s responses into three groups according
to accuracy, which indicated that the CNV amplitude decreased
(i.e., became less negative) as the produced intervals decreased
(2600 ∼ 2800; 2400 ∼ 2600; and 2200 ∼ 2400 ms) even though the
participants were attempting to reproduce the same 2500 ms target
duration in all cases.

Resolution of the CNV appears to bear a relationship to the
memory representation of the target duration. Macar and Vidal
(2003) used both visual and tactile temporal generalization tasks
to show that the CNV peaked at the memorized target duration
(2000 ms) rather than at the end of the probe duration (2500 or
3100 ms). Pfeuty et al. (2003b) obtained similar results with a S1–
S2 duration comparison task. During S2, the CNV reached its
negative peak at the S1 target duration (700 ms) at left hemisphere
and medial frontal electrode locations, while at right hemisphere
frontal electrode sites the CNV peaked at the end of S2. The
authors suggested that the distinct CNV profiles at the right and
left hemisphere electrodes reflected distinct memory representa-
tions for the S1 target duration and the elapsing S2 duration. In
a subsequent S1–S2 experiment (Pfeuty et al., 2005), the authors
showed that given the same S2 probe duration (794 ms), the peak
latency of the CNV corresponded to the S1 target duration (600
vs. 794 ms), although they failed to obtain an effect of target dura-
tion on CNV amplitude. They, and others (Durstewitz, 2004), have
suggested that the slope of the CNV reflects the rate of temporal

accumulation within the information processing framework of the
scalar expectancy theory (SET) of timing (Gibbon et al., 1984).

Finally, the relationship between the CNV and timing is not
limited to explicit interval timing tasks. Praamstra et al. (2006)
replicated the peak latency and slope effects (Macar and Vidal,
2003; Pfeuty et al., 2005) in an implicit motor timing task. In this
task, participants pressed one of two keys depending on whether
an arrow pointed to the left or the right. Each trial comprised a
short sequence of cues, each presented isochronously (2000 ms)
with the exception of the final cue. A CNV occurred between suc-
cessive cues, but when the final cue was presented late (2500 ms),
the CNV peaked at the expected inter-stimulus interval (2000 ms)
and then began to resolve. In sum, the available evidence suggests
a relatively robust relationship between interval timing and CNV
peak latency and slope (e.g., Tarantino et al., 2010), while the rela-
tionship between CNV amplitude and timing stimulus duration
is equivocal (e.g., Kononowicz and van Rijn, 2011).

Given the putative role of the CNV as a marker of interval tim-
ing, it should be possible to use it as a tool to examine information
processing in the duration bisection task. Specifically, the research
reviewed above suggests that the CNV at medial frontal electrode
sites should reach its negative peak when elapsed time matches
a remembered target duration, and begin to resolve (i.e., return
to baseline) when the categorization decision is made, which in
turn implies that the duration of the target criterion used for the
decision has been reached. In the case of duration bisection, this
means that if the critical information is whether the currently
elapsing duration has exceeded the memory representation of the
comparison memory duration, then the CNV should peak and
resolve when the current duration exceeds the comparison dura-
tion. Therefore, if a bisection criterion (Allan and Gerhardt, 2001)
is the target criterion, the CNV should peak and resolve before
the end of probe durations that are longer than that criterion.
If, however, the value of the entire probe duration is used in the
decision process, then one might expect the CNV to peak and
resolve at stimulus offset for the long duration probe trials. In
other words, the electrophysiological response should identify the
temporal information used during a bisection trial.

MATERIALS AND METHODS
PARTICIPANTS
Seventeen undergraduate students (nine female) at the National
University of Singapore participated in return for payment ($9/h).
All had normal or corrected to normal vision and 16 were right-
handed. Data from five participants were omitted from the data
analysis because of excessive eye or body movement artifact (see
below).

STIMULI
Stimuli comprised seven 440 Hz tones, with 10 ms rise and fall
times, played over stereo headphones at a comfortable level. The
stimulus durations were geometrically spaced from 800 to 3200 ms
(i.e., 800, 1008, 1270, 1600, 2016, 2540, and 3200 ms).

PROCEDURE
The duration bisection paradigm (Gibbon, 1981) was imple-
mented in E-Prime (Psychology Software Tools, USA). At the
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beginning of each block, the two anchor durations (800 and
3200 ms) were presented to the participants five times each. The
presentation sequence of the 10 durations was randomized for
each participant and feedback was provided on the computer
screen after each presentation (“That was the Short/Long dura-
tion”). The subsequent test block comprised 196 trials with 28
trials at each of the 7 probe durations. The inter-trial interval
(ITI) was a combination of participant’s response time (RT) and a
random duration between 1000 and 2000 ms. Trial order within a
block was pseudo-randomized so that no consecutive probe trials
were of the same duration. Each participant completed two test
blocks.

Participants were seated in a dim, sound-attenuated room with
their fingers resting on a computer keyboard. Participants were
told that a series of tones would be presented and that they should
press one of the two response keys (G or K) to indicate whether
the tone duration was more similar to the “short” or “long” anchor
when the tone terminated. Key to response assignment was coun-
terbalanced across participants. The maximum RT allowed was
2000 ms following tone offset. Response (“short” or “long”) and
RT relative to signal offset were recorded.

EEG RECORDING
Electroencephalographic activity was recorded using a 64-channel
Biosemi Active-Two system with sintered Ag/AgCl electrodes
mounted in an elastic cap according to the extended 10–20 system.
The electrooculogram (EOG) was recorded from electrodes posi-
tioned at the outer canthus of each eye and just above and below
the left eye. The reference electrode was placed on the nose and
the ground electrodes (CMS/DRL) were placed behind the vertex
in the vincinity of POz. The EEG and EOG were recorded con-
tinuously from DC to 400 Hz at a sampling rate of 2048 Hz and
subsequently downsampled offline to 256 Hz.

DATA ANALYSIS
Behavioral data
A behavioral response function was generated for each participant
by determining the proportion of trials classified as “more similar
to the long anchor” for each probe duration (i.e., n responses out
of 56 for each of the 7 probe durations). The pseudologistic func-
tion from the Pseudo Logistic Model of Killeen et al. (1997) was
fit to the classification data of each participant (Allan, 2002). The
fitted function was used to obtain estimates of the PSE and the
DL. The DL was calculated by subtracting the duration, derived
from the fitted pseudologistic function at which the proportion
of “long” responses equaled 0.25, from the duration, also derived
from the fitted pseudologistic function, at which the proportion
of “long” responses equaled 0.75, and dividing by 2.

EEG data
Electroencephalography data were processed using EEGLAB
(Delorme and Makeig, 2004). The data were digitally filtered
offline with a band-pass from 0.1 to 32 Hz. EEG epochs time-
locked to the onset of the probe tone were computed at all
recording sites for a time window from 200 ms before tone onset
to 3500 ms thereafter for all probe durations. Independent com-
ponent analysis (ICA; Stone, 2002) was used to isolate and remove

eye blink, eye movement, and motor artifacts from the epoched
data. The 200-ms immediately prior to the onset of the stimu-
lus served as the baseline and was subtracted from each epoch
after ICA. Data from five participants were excluded from further
analyses because these artifacts could not be isolated. While data
from FCz has typically been the focus of CNV analyses (e.g., Macar
et al., 1999; Pfeuty et al., 2003a,b; Praamstra et al., 2006), here data
from FCz and five adjacent electrodes (FC1, FC2, C1, C2, and Cz)
were averaged to provide a better signal to noise ratio.

To further confirm the presence of the CNV component, cur-
rent source density (CSD), was computed using the CSD toolbox
(Kayser and Tenke, 2006; Kayser, 2009), based on the spherical
spline algorithm derived by Perrin et al. (1989, 1990). CSD esti-
mates the second spatial derivative of the scalp potentials, similar
to what is done with the Surface Laplacian (Kayser and Tenke,
2006; Pizzagalli, 2007). For the CSD computed here, previously
validated default values were used, i.e., the order of the Legendre
polynomial (n) was 50, the flexibility of the spline (m) was set to 4,
and the smoothing parameter (lambda) for the spline interpola-
tion was 10−5 (Tenke et al., 1998). Each EEG epoch was first CSD
transformed, baseline corrected, and then averaged.

To maximize the signal to noise ratio for examination of the
ERP components up to the duration of the short anchor (i.e.,
800 ms), the trials for the seven probe durations were averaged
together to generate a single ERP waveform for each participant.
We assumed that the EEG would be comparable for the first 800 ms
of all probe duration presentations because 800 ms is the earliest
time point at which a participant can learn the identity of the
probe duration (i.e., at offset of the 800-ms probe). To determine
whether the CNV peaked and began to resolve prior to the end of
timing signal, however, the trials for the two longest probe dura-
tions (i.e., 2540 and 3200 ms) were averaged together to generate
an ERP waveform for each participant.

Contingent negative variation slopes were obtained for several
time windows to quantify (1) the ramping of the CNV (from the
end of N1P2 to the end of the short anchor duration), (2) the
development of the CNV between the “short” anchor duration
(800 ms) and the geometric mean (GM; 1600 ms), (3) the devel-
opment of the CNV between the GM and arithmetic mean (AM;
2000 ms), and (4) the development of the CNV between the AM
and the duration of the second longest probe (2500 ms). For each
participant, the average potential obtained by collapsing across the
six frontal and central electrodes of interest (i.e., FCz, FC1, FC2,
C1, C2, and Cz) in each of these four time windows was regressed
against sample time (ordinary least squares) to obtain a linear slope
of the change of potential amplitude across time (μV/ms). This
procedure resulted in 12 slopes for each time window of interest,
which were then statistically analyzed.

To identify the beginning of CNV ramping, global field power
(GFP; Lehmann and Skrandies, 1980, 1984) was calculated at each
time point as the SD of the electrical potential of the 64 scalp
electrodes, resulting in a single value at each time sample. High
GFP indicates stable scalp potential distribution and optimal sig-
nal to noise ratio, while low GFP indicates a change in distribution
(Michel et al., 2009). As early ERP components are often associ-
ated with narrow time windows of high GFP and sharp transitions
between components (Murray et al., 2008), using the distinct

Frontiers in Integrative Neuroscience www.frontiersin.org November 2011 | Volume 5 | Article 77 | 3

http://www.frontiersin.org/Integrative_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Integrative_Neuroscience/archive


Ng et al. Contingent negative variation in duration bisection

transition of GFP from the transient P2 to the more diffuse CNV
to define the slope onset should be better than an arbitrary zero-
crossing point. The GFP indicated that a transition in the grand
average of the data occurred at 246 ms, similar to that obtained in
a previous study (240 ms, Pfeuty et al., 2005).

We also examined the relationship between the CNV and dura-
tion bisection performance. Epochs from a subset of the inter-
mediate probe duration trials (1270, 1600, and 2016 ms) were
allocated to either the “short” or “long” category based on the
participant’s response. This set of epochs allowed us to examine
possible CNV differences between short and long judgments up to
1200 ms with better signal to noise ratio. The partial least squares
(PLS) method (McIntosh and Lobaugh, 2004) was used (cf. Taran-
tino et al., 2010). PLS fits neuroimaging data using least squares
and the solutions are “constrained to the part of the covariance
structure that is attributable to experimental manipulations or
that relates to behavior”(McIntosh and Lobaugh, 2004, S251). The
salience and reliability of the ERP differences between conditions
are verified using both bootstrapping and randomization tests,
with statistical significance set at alpha = 0.05. For probe durations
longer than 1200 ms, CNV resolution would be confounded by the
different offset times of the three intermediate probes. Instead, we
analyzed measures of event related synchronization and desyn-
chronization (ERS/ERD, Pfurtscheller and Lopes da Silva, 1999),
which preserve potentials not time-locked to the stimulus onset,
and allow frequency-specific analysis of the EEG. We converted
the “short” and “long” classification epochs into ERD/ERS time
series (see Pfurtscheller and Lopes da Silva, 1999) using the 200-
ms baseline as the reference power. We focused on the alpha band
(∼7–13 Hz) because a previous report implicated this band in
temporal anticipation (Babiloni et al., 2004). ERS is indicated by a
negative percentage, whereas ERD is indicated by a positive value.

Finally, we were also interested in the relationship between tim-
ing and early ERP components such as the N1P2 complex due to
its reported association with subjective time perception (e.g., Ben-
dixen et al., 2005; Xuan et al., 2009). The sensitivity of the N1P2
to attention and perceptual features of the probe onset marker
(Näätänen and Picton, 1987) and its latency fit well with a role
as a possible biomarker of timing initiation on each trial. To this
end, the correlation between the magnitude of the N1P2 complex
and the CNV amplitude was examined. The peak-to-peak ampli-
tude of the N1P2 of each participant was taken as the difference
between the maximum and minimum peak of the ERP of all seven
probe durations in the time window from 50 to 280 ms following
tone onset at the nine fronto-central electrodes (FC1, FC2, FCz,
C1, C2, Cz, CP1, CP2, CPz) where the scalp projection of the N1P2
complex is the largest (Crowley and Colrain, 2004).

RESULTS
The bisection response function averaged across the 12 par-
ticipants has the classic form of a smoothly increasing ogive
(Figure 1). The group mean PSE was 1690 ms (SD = 280 ms), and
the group mean DL was 260 ms (SD = 149 ms). Figure 2 shows
the grand average ERPs separately for each probe duration.

For each participant, the ERP elicited by the timing stimulus,
independent of probe duration, was computed by averaging the
trials from all the probe durations. The across participant grand

FIGURE 1 | Mean proportion of “long” responses as a function of

probe duration averaged across the 12 participants. The error bars
indicate 1 SEM. The smooth line illustrates the pseudologistic function
(Killeen et al., 1997) fitted to these mean proportions.

average over the six frontal and central electrodes of interest is
shown in Figure 3. Distinct N1 and P2 components are present,
as is a steady increase in negative potential from about 250 ms to
shortly before 1000 ms, after which the potential becomes less neg-
ative (i.e., CNV resolution). The CNV amplitude between 246 and
800 ms was examined by averaging the potential across the time
window for each participant. The mean amplitude was −2.75 μV
and a parametric, two-tailed, one-sample t -test against zero poten-
tial indicated the negativity was significantly greater than zero,95%
CI = [−4.04 to −1.46] μV, t (11) = −4.70, p = 0.0006, confirming
the presence of a negative ERP component in the sample. The
spatial topographic map of the CSD in the time window from
246 to 800 ms shows a bilateral distribution with a focus over
frontal – central electrode sites (Figure 4).

As described in the Methods, examination of the GFP revealed
that the transition from P2 to CNV occurred at approximately
246 ms, so a CNV slope was obtained for each participant in the
time window from 246 to 800 ms. These 12 CNV slopes were tested
against zero slope using a parametric, two-tailed, one-sample
t -test. The mean slope was −0.0042 μV/ms, the 95% CI was
[−0.0057 to −0.0014] μV/ms, t (11) = −3.59, p = 0.0042, indicat-
ing the negative slope was significantly different from zero over
that time period. Furthermore, correlation analysis revealed that
shallower CNV slopes were associated with longer PSEs, Pearson’s
r = 0.67, p = 0.02. However, mean CNV amplitude between 246
and 800 ms was not correlated with mean PSE, Pearson’s r = 0.42,
p = 0.19.

Note, however, that analysis of ERPs derived from all probe
durations does not permit conclusions about when CNV resolu-
tion begins because stimulus offsets occur throughout the time
period of interest. To determine when/whether CNV resolution
began relative to the short anchor, as well as the GM and AM of
the anchor durations, the ERP elicited by the timing stimulus was
computed for each participant using trials at the two longest probe
durations only (i.e., 2540 and 3200 ms). Slopes were obtained as
described in Methods using time windows that framed the short
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FIGURE 2 | Grand average of the ERP waveforms obtained by

collapsing across the six frontal and central electrodes of interest (i.e.,

FCz, FC1, FC2, C1, C2, and Cz) time-locked to stimulus onset. (A) ERPs
of the first four probe durations in the series: 800, 1008, 1270, and
1600 ms. (B) ERPs of the last four probe durations in the series: 1600,
2016, 2540, and 3200 ms. The ERP of 1600 ms is plotted in both panels for
comparison. The data were smoothed with an eight-point Gaussian window
for presentation only.

anchor to GM (800–1600 ms), the GM to the AM (1600–2000 ms),
and the AM to shortly before offset of the second longest probe
duration (2000–2500 ms).

The mean slope was 0.0007 μV/ms in the 800- to 1600-ms
time window and −0.0009 μV/ms in the 2000- to 2500-ms time
window, neither of which was significantly different from zero
[t (11) = 0.95, p = 0.36 and t (11) = −0.83, p = 0.42, respectively].
However, the mean slope of 0.0030 μV/ms in the 1600- to 2000-ms
was significantly different from zero, 95% CI = [0.0001 to 0.0059]
μV/ms, [t (11) = 2.27, p = 0.0045], indicating a decline in negative
potential (Figure 5).

The salience (i.e., the contrast between task conditions; McIn-
tosh and Lobaugh, 2004) of the ERP differences between “long”
and “short” response categories is shown in Figure 6. At the
centro-frontal and centro-parietal sites, where the CNV was the
most prominent, the salience of the difference was not statis-
tically significant (PLS analyses) for most of the analysis time
window, the only exception being the time window between 850
and 1100 ms. Moreover, the amplitude of the ERP corresponding

FIGURE 3 | Grand average of the ERP waveforms obtained by

collapsing across the six frontal and central electrodes of interest (i.e.,

FCz, FC1, FC2, C1, C2, and Cz) time-locked to stimulus onset and

including trials from all probe durations. Vertical dotted lines indicate the
time window boundaries used to define the CNV slope. The data were
smoothed with an eight-point Gaussian window for presentation only.

FIGURE 4 |The topographical distribution, viewed from above the

head, of the mean current source density (CSD) between 246 and

800 ms computed using trials from all probe durations. Prominent
bilateral negative sources can be seen in the fronto-central region,
consistent with the polarity and topography of the CNV.

to “long” responses was in fact less negative (indicated by positive
salience in the plot) than that corresponding to “short” responses
in this time window. Thus, we did not replicate the finding that
larger CNV amplitude corresponds to larger perceived duration.
Rather, when there was a difference, the effect was in the opposite
direction.

Figure 7 shows the “short” and “long” response ERS time series
averaged across the six frontal and central electrodes selected for
the CNV ERP analyses. The ERS of the “long” responses between
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246 and 800 ms in this fronto-central region was significantly
stronger than that of the“short” responses (−16.9%) as confirmed
by a parametric, two-tailed, paired sample t -test, t (11) = 2.25,
p = 0.046, 95% CI = [−0.34 to −33.5%].

FIGURE 5 | Grand average of the ERP waveforms obtained by

collapsing across the six frontal and central electrodes of interest (i.e.,

FCz, FC1, FC2, C1, C2, and Cz) time-locked to stimulus onset and

including only the two longest probe durations. Time window
boundaries used to define the various CNV slopes are indicated with
vertical dotted lines. The data were smoothed with an eight-point Gaussian
window for presentation only.

FIGURE 6 | Electrode salience of the ERP difference between “long”

and “short” responses from a subset of data (intermediate probes

1270, 1600, and 2016 ms) is illustrated for the fronto-central and

parieto-central electrodes. Statistical significance and stability of the
differences between the two conditions at each time point was obtained by
partial least square (PLS) analyses. Circles indicate statistical significance
(p < 0.05). A positive salience difference indicates less negative amplitude
in the ERP of the “long” responses. The time axis is segmented by 200 ms
tick marks, and positive amplitude is plotted upward.

The mean CNV amplitude averaged across the six selected elec-
trodes and the mean N1P2 peak-to-peak amplitude difference
averaged across the nine selected electrodes were computed for
the 246- to 800-ms time window for each participant by averaging
trials across all probe durations. A Pearson’s correlation revealed
that the larger the mean N1P2 peak-to-peak amplitude differ-
ence of a participant, the larger the mean CNV amplitude of that
participant, r = −0.77, p = 0.003 (Figure 8).

DISCUSSION
The group mean PSE was close to the GM of the long and short
anchor durations, a result that is often obtained with the dura-
tion bisection procedure, particularly when the probe durations

FIGURE 7 | Alpha (∼7–13 Hz) ERS time series averaged across the six

frontal and central electrodes of interest (i.e., FCz, FC1, FC2, C1, C2,

and Cz) for the two response categories, computed using epochs from

the three intermediate probe durations. There was no statistically
significant power difference in the baseline (−200 to 0 ms) or late
(800–1200 ms) time windows, t (11) = 0.1 and −1.24 respectively.

FIGURE 8 | Scatter plot depicting the linear relationship between the

mean CNV potential (246–800 ms) and the N1P2 amplitude difference

(peak-to-peak). Simple regression indicated that larger N1P2 amplitude
differences were associated with larger amplitude CNVs. The Pearson
correlation coefficient (r ) was 0.77, and the percentage of variance
explained by the regression (R2) was 60%.
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are spaced logarithmically (e.g., Penney et al., 2000). The mean DL
was also comparable to those obtained in earlier studies using simi-
lar anchor durations and indicates that the participants performed
the task with an acceptable level of temporal precision.

The critical question here, however, is whether or not scalp-
recorded electrophysiological measures reveal information about
the nature of the time keeping and decision processes in the dura-
tion bisection task. The timing stimuli used in the task elicited
clear ERP components in the form of the N1, P2, and a sustained
negativity. The slow negative ERP component, which had a diffuse
central scalp distribution, dominated the time window between
approximately 250 and 800 ms after tone onset. We interpret this
component as a CNV due to the consistency of its topography with
the CNV reported in previous studies. Specifically, the statistical
analyses using six fronto-central electrodes as well as the topo-
graphical distribution of the CSD transformed EEG data showed
that it was maximal at fronto-central electrode sites, which is
the distribution reported in ERP (e.g., Pfeuty et al., 2003a,b),
CSD (e.g., Gibbons and Rammsayer, 2004), and EEG/MEG source
localization (N’Diaye et al., 2004) studies investigating temporal
estimation. Moreover, although the increase in the CNV to its peak
value was relatively rapid compared to studies that used longer tar-
get durations and response locked ERP derivations (e.g., 2500 ms;
Macar et al., 1999), the waveform was similar to that obtained
in studies that used stimulus locked ERP derivations and target
durations comparable to the short anchor duration used here (e.g.,
794 ms; Pfeuty et al., 2005).

As described in the “Introduction,” the amplitude and the slope
of the CNV have been interpreted as markers of temporal accu-
mulation with longer subjective durations accompanied by larger
amplitude CNVs (Macar et al., 1999; Macar and Vidal, 2004) and
steep CNV slopes indicating faster temporal integration (Pfeuty
et al., 2005). Moreover, the peak latency and resolution of the CNV
have been interpreted as indicators of the memorized target dura-
tion (Macar and Vidal, 2003; Pfeuty et al., 2003b). We used these
features of the CNV to examine the duration information partic-
ipants use to solve the duration bisection task, and whether, on
longer duration trials, participants categorize the timing stimulus
before it offsets.

The data suggest that the short anchor duration is an impor-
tant criterion that is used on a trial-to-trial basis in the standard
duration bisection task. Specifically, the CNV slope was statisti-
cally different from zero between 246 and 800 ms (i.e., the short
anchor duration). However, the CNV amplitude did not continue
to increase even though the timing signal continued until either
2540 or 3200 ms in the trials that contributed to this analysis.
Rather, the slope analysis indicated that approximately the same
potential was maintained until about 1600 ms, at which point the
potential declined until about 2000 ms. Pfeuty et al. (2003b, 2005)
reported that the CNV peak occurred at the time of the target
duration even when the timing signal was longer than the target
duration. Therefore, we interpret the finding that CNV amplitude
increased to a plateau at about 800 ms as indicating that the par-
ticipants treated the short anchor duration as a target duration.
In fact, up to this point in a duration bisection trial, stimulus pre-
sentation is quite similar to the S2 presentation in a typical S1–S2
trial: one pays attention from S2 onset, until either S2 is terminated

or the remembered S1 duration has been reached, whichever is
shorter.

Given Macar et al. (1999) have shown that the longer the timed
signal the larger the accompanying CNV amplitude, it is curious
that the CNV did not continue to increase beyond about 800 ms
even though the timing stimulus remained on until either 2540 or
3200 ms for the trials that entered this analysis. Moreover, unlike
the experiments of Pfeuty et al. (2003b, 2005) in which a decision
about the probe duration could be made when the single target
duration had been reached, in the duration bisection task used
here the participant did not have enough information to make a
long or short decision about a continuing stimulus based only on
the knowledge that the short anchor target duration had elapsed.

However, there are other studies in which the CNV amplitude
was not modulated by the duration being timed (Elbert et al.,
1991; Gibbons and Rammsayer, 2004). Hence, it is possible that
the CNV amplitude does not reflect accumulated duration in a
linear fashion or that, if it does, the effect is detectable using
scalp-recorded ERPs only for certain types of interval timing task.
The putative presence of multiple target durations in the dura-
tion bisection task, such as the short and long anchors and/or a
measure of central tendency, may make it difficult to detect robust
EEG biomarkers for each of those critical durations. Nevertheless,
the rise and fall of the CNV reported here is consistent with a time
window during which participants have to sustain their atten-
tion in order to make a decision about the probe durations, as
compared to some non-specific tonic attentional processes. More-
over, timing and non-timing decision making experiments have
demonstrated plausible dissociations of memory and decision
processes. For instance, using a psychological refractory period
(PRP) paradigm, Rattat and Fortin (2011) found that a secondary
digit recognition task interfered with interval timing only when the
stimulus onset asynchrony (SOA) was reasonably long and led to
an overlap of decision making and response selection. In a visual
perceptual discrimination task, Ratcliff et al. (2009) found that
a perceptual categorization (“face/car”) decision could be sepa-
rated into an evidence gathering phase and a decision making
phase, each characterized by a unique single-trial EEG compo-
nent. The implication is that gathering information about the
short anchor as one of the target durations (CNV rise) is nec-
essary, but not sufficient for a bisection decision. This dissociation
between encoding and decision is not easily made in the S1–S2
paradigm, because there is presumably only one criterion that is
critical for making a choice; decision follows upon expiration of
the remembered S1 duration. From this perspective, the bisection
paradigm may allow a more detailed examination of the CNV in
time perception.

That the CNV began to resolve at approximately 1600 ms for
the two longest probe durations, as indicated by the positive slope
between 1600 and 2000 ms, implies that the GM of the long and
short anchor durations (i.e., 1600 ms) served as a target duration
or temporal criterion with the classification decision occurring at
about the GM rather than at the time of stimulus offset (2540 or
3200 ms). Interestingly, the CNV amplitude was sustained from
about the AM of the anchor durations (2000 ms) to 2500 ms,
which suggests that the AM did not serve as a target duration
or criterion. We did not analyze the change in potential at and
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immediately following the offset of the long anchor duration (i.e.,
3200 ms) because the EEG signal in that time range was conta-
minated by stimulus offset potentials and motor response related
potentials (cf. Tarantino et al., 2010). Therefore, we do not have
EEG data that addresses whether the long anchor was also treated
as a target duration. Logically, however, if the GM of the short and
long anchor durations is indeed used as a temporal criterion in
the duration bisection decision process, then one might expect the
brain to monitor the value of the longest probe duration so that
adjustments to that criterion can be made if needed. This is in line
with research suggesting that participants track temporal infor-
mation on every trial in the duration bisection task (e.g., Brown
et al., 2005; Penney et al., 2008).

Whereas the relationship between the CNV amplitude and the
subjective perceived time was not as prominent as reported in pre-
vious experiments, a correlation analysis revealed that shallower
CNV slopes were associated with longer PSEs. As noted in the
“Introduction,” several authors (Pfeuty et al., 2003b, 2005; Durste-
witz, 2004) have suggested that the slope of the CNV reflects the
rate of temporal accumulation. Hence, a shallower CNV slope
means slower temporal accumulation, which results in a smaller
perceived (i.e., subjective) duration for a given objective dura-
tion. An apparent difficulty with applying this interpretation to the
duration bisection task, however, is that the slower accumulation
would likely occur during both“short”and“long”anchor duration
presentations also. If the probe duration, as well as the durations
that are used, either directly or indirectly, in the “short”/“long”
decision are all measured using the same accumulation rate by a
given participant, it is not clear how a slow temporal accumulation
would result in a longer PSE than a relatively faster PSE (although
the response function may be sharper for the faster accumula-
tion case). A 10 pulse probe accumulation holds the same relative
position with respect to 5 and 15 pulse anchors as would be the
case if the accumulation process were five times faster (i.e., 50
pulse probe, 25 and 75 pulse anchors). A possible solution to
this explanatory difficulty is that the slow accumulation occurs
on some trials only. Assuming the critical short and long anchor
trials are not overrepresented among these trials, then the PSE
could be longer due to the slower temporal accumulation because
slow clock trials will be compared to anchor durations used in the
decision process that were laid down with relatively faster temporal
accumulation.

We also found an ERS difference between intermediate probe
durations classified as short and long. Specifically, in the alpha
band the ERS was stronger for “long” responses. In a forepe-
riod study, Babiloni et al. (2004) found that trials cued with a
short foreperiod (600 ms) were associated with stronger alpha
ERS (∼6–10 Hz) than were long foreperiod (1400 ms) trials. The
authors postulated that stronger alpha ERS reflected stronger
temporal expectation. Assuming stronger temporal expectation
is a consequence of optimal allocation of temporal atten-
tion (e.g., Coull and Nobre, 2008), then the stronger ERS
obtained here in “long” response trials may reflect “stronger
and quicker” (Babiloni et al., 2004) initial allocation of atten-
tion. Within the SET framework, more efficient allocation of
attention on a trial would mean loss of fewer pacemaker
pulses as compared to a less attentive trial (Lejeune, 1998), and

therefore a higher probability of a duration being classified as
“long.”

Finally, the finding that the larger the mean peak-to-peak
amplitude of the N1P2 complex the more negative the subse-
quent mean CNV may be a consequence of the precision with
which a participant is able to initiate timing on each trial across a
test session. ERP components such as N1 and P2 are sensitive to
physical features of the stimuli, and general state and attention of
the individuals (e.g., Näätänen and Picton, 1987; Herrmann and
Knight, 2001; Picton et al., 2002; Crowley and Colrain, 2004; Nagai
et al., 2004). Hence, the N1P2 component may be a marker for the
precision of the signal or “start-gun” that initiates timing when
the bisection stimulus is presented. If timing is indeed achieved
by groups of ramping neurons through spreading activation or
signal integration (König et al., 1996; Simen et al., 2011), with the
change in CNV amplitude reflecting that ramping process (Macar
et al., 1999; Macar and Vidal, 2004), then a reduction in latency
jitter of the component across trials would result in a larger aver-
age ERP component. For example, Trillenberg et al. (2000) found
that the CNV amplitude was more negative when the SOA was
the most probable one in the trial block in a Go/No-go task with
variable SOAs. The RT was also fastest for the most probable SOA
trials as compared to the other SOA trials. The authors argued that
this was the moment when participants could most reliably orient
attention. Co-variations in the N1P2 component and subjective
perception of time have also been reported in a replication of
Macar et al. (1999) that used sub-second auditory intervals (Ben-
dixen et al., 2005) and in a number–time interaction study (Xuan
et al., 2009). In both studies, larger N1P2 components were asso-
ciated with longer perceived time, and accompanied by a more
negative CNV component. We explored the possibility that the
jittering in the N1P2 component may affect the CNV amplitude
by calculating the inter-trial phase coherence (ITPC) at the time
window of N1P2 (80–250 ms; Mørup et al., 2007). ITPC mea-
sures the synchronization between the time-locked event and the
EEG across trials (Delorme and Makeig, 2004). It varies from 0
(no consistent synchronization) to 1 (perfect synchronization).
Participants who initiate timing consistently (i.e., less jitter across
trials) should show stronger synchronization between the time-
locked event and the EEG signal. In our sample, ITPC in the theta
range (∼4–7 Hz), whose event related power is dominant in this
early time window (e.g., Yordanova et al., 2002), was significantly
correlated with the N1P2 amplitude (r = 0.64, p < 0.05) and the
CNV amplitude (r = −0.63, p < 0.05).

CONCLUSION
The relationship between temporal memory and the CNV has
been based mainly on paradigms like temporal discrimination
(e.g., Pfeuty et al., 2005), temporal generalization (e.g., Macar and
Vidal, 2003), and reproduction (e.g., Elbert et al., 1991; Macar
et al., 1999), in which the target or criterion duration is unam-
biguous. Here, we used the CNV as a tool in order to understand
how the representations of the anchor durations in the bisection
task are used to make categorical decisions. The ERP and CSD
topographies of the negative slow potential (i.e., CNV) were con-
sistent with those obtained in other timing tasks. It peaked at the
time close to the short anchor duration (800 ms) and remained
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stable until the GM (1600 ms) of the probe series, when it started
to resolve. This pattern suggests that participants monitored the
anchor durations and used the GM of the anchor durations as
a bisection criterion (Kopec and Brody, 2010; cf. Wearden and
Bray, 2001; Allan, 2002). In addition, while the association of the
N1P2 component with interval timing has been relatively unex-
plored to date, we suggest that this component’s relationship to
CNV amplitude may indicate it is a marker of the initiation of
timing. Indeed, the latency jitter of the timing “start-gun” may
prove vital to understanding variability in timing performance and

the manifestation of electrophysiological events during interval
timing.
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