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Abstract

Genomic information is encoded on a wide range of distance scales, ranging from tens of base 

pairs to megabases. We developed a multiscale framework to analyze and visualize the 

information content of genomic signals. Different types of signals, such as GC content or DNA 

methylation, are characterized by distinct patterns of signal enrichment or depletion across scales 

spanning several orders of magnitude. These patterns are associated with a variety of genomic 

annotations, including genes, nuclear lamina associated domains, and repeat elements. By 

integrating the information across all scales, as compared to using any single scale, we 

demonstrate improved prediction of gene expression from Polymerase II chromatin 

immunoprecipitation sequencing (ChIP-seq) measurements and we observed that gene expression 

differences in colorectal cancer are not most strongly related to gene body methylation, but rather 

to methylation patterns that extend beyond the single-gene scale.

Introduction

In mammalian genomes, information is encoded on a wide range of scales, ranging from 10–

100 bases (transcription factor binding sites, microsatellites, exons), to kilobases (CpG 

islands, genes), to megabases (nuclear lamina associated domains (LADs), 

heterochromatin). Such information can be detected in patterns in both the genome sequence 
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and the epigenetic state of cells, and these patterns can be represented as quantitative 

functions of genomic position, or genomic signals. Examples of such signals include 

interspecies sequence conservation, GC content, genome annotations, and (epi-)genomic 

measurements from RNA sequencing (RNA-seq)1, chromatin immunoprecipitation 

sequencing (ChIP-seq)2 or bisulfite sequencing3. In this work, we present a computational 

approach for systematically and simultaneously interrogating these genomic signals across 

all length scales.

We are witnessing an explosion in the acquisition of genomic data, but extracting biological 

insights through integrated analysis of heterogeneous genome assays has proved 

challenging4. Genomic signal analysis methods often filter the data through a sliding 

window of fixed length scale, necessitating the preselection of a particular length scale for 

the analysis5,6. Analysis methods that are designed to identify localized peaks, such as 

transcription factor (TF) binding sites, have limited applicability for identifying features that 

span larger genomic regions, such as epigenetic marks, and RNA polymerase II7,8. Hidden 

Markov Models (HMMs) have also been used to segment genomic signals9-11, but their use 

is complicated by the need to predefine the number and type of states. The fundamental 

challenge of analyzing heterogeneous genomic signals is that it is not known a priori which 

distance scales are the most relevant to a given genomic signal or to a given biological 

question.

To address this challenge, we have developed the multiscale signal representation (MSR) 

method, which is adapted from an image segmentation algorithm12 and inspired by 

multiscale approaches for classifying image texture patterns13. Multiscale techniques have 

previously been applied to several types of biological data, including insertional 

mutagenesis data14, copy number variation data15, epigenomic data and DNA replication 

timing domains16. The MSR generalizes these approaches by providing information about 

genomic signal enrichment or depletion at all genomic distance scales. The method divides 

the genome into hierarchically organized segments whose sizes range from basepairs to 

megabases. The segments are scored for enrichment or depletion of genomic signal 

intensity. Besides its use in summarizing and visualizing the information content of genomic 

signals across spatial scales, the MSR presents a novel and powerful way to unravel the 

biological function of these signals.

Results

Building the Multiscale Representation

In the MSR approach, the genomic signal values are smoothed and then used as a basis for 

dividing the chromosome into segments (on a succession of increasing length scales), which 

are then tested for enrichment or depletion of signal intensity. The four steps of the method 

are (Fig. 1 and Methods):

1. Smooth the genomic signal to create the scale space (Fig. 1a).

The genomic signal is convolved with Gaussian windows of various widths, i.e., 

length scales. The resulting set of convolved signals at each of the length scales can 

be described as a Gaussian scale space17.
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2. Create the segmentation tree (Fig. 1b).

A set of positions in the genomic signal is selected as starting nodes of the 

segmentation tree, which is created by propagating these nodes from the smallest 

scale in the scale space to the largest scale. This propagation procedure forces 

branches to follow a signal intensity isoline in the scale space, while ensuring that 

branches merge, ultimately converging to a root node.

3. Segmenting the genomic signal on multiple scales (Fig. 1c)

Based on the segmentation tree, the genomic signal is partitioned into segments at 

successive scales. At scale n, each node i is mapped to a genomic segment by 

following the outermost branches originating from that node to the leaf nodes at the 

smallest scale. The locations where these outermost branches are found on the 

smallest scale are the boundaries of the segment corresponding to (n,i). This 

procedure is carried out for every scale, producing the multiscale segmentation of 

the signal.

4. Scoring the segments (Fig. 1d)

Segments are assessed for depletion or enrichment of signal intensity using the 

Significant Fold Change (SFC), a score that combines both the statistical 

significance and the magnitude of the difference between the variables being 

compared. The SFC is positive or negative (corresponding to the observed intensity 

being larger or smaller than expected) in the case where the confidence threshold is 

met, but is defined as zero otherwise. Importantly, SFC scores can be compared 

between different scales, i.e., between segments with widely differing sizes.

In summary, the MSR of a genomic signal is a collection of segmentations of the signal at 

different spatial scales. Each segment in a scale-specific segmentation is scored for signal 

enrichment or depletion. We used 50 scales, which ensured for all our genomic signals that 

the largest scale contained only one segment spanning the entire chromosome.

Genomic Signals Distinguished by Multiscale Fingerprints

In order to investigate its ability to reveal patterns of signal enrichment and depletion on 

diverse distance scales, the MSR was applied to a variety of mouse-derived genomic signals 

including GC content, interspecies sequence conservation scores, and ChIP-seq data for six 

chromatin-associated proteins in primary mouse macrophages: three transcription factors 

(ATF3, NFκB-p50 and NFκB-p65), RNA polymerase II (Pol II) and two covalent histone 

modifications; acetylation of histone H4 (H4ac) and trimethylation of histone H3 at lysine 

27 (H3K27me3) (Fig. 2). As expected for TFs, which bind specific focal locations in the 

genome, segments for TF ChIP-seq genomic signals were only enriched at smaller scales, 

with segment sizes between 100 bp and 1 kb (upper-right panel). In contrast, Pol II is 

enriched across a much broader range of scales, consistent with its function of translocating 

along the gene in the process of transcribing it. Given that the interquartile range of gene 

sizes in the mouse genome is 7–46 kb, many large segments would be expected. Large 

segments are also identified for the chromatin marks H4ac and H3K27me3, consistent with 

previous observations7. In contrast to ChIP-derived genomic signals (which are essentially 
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convolved over the length-scale of the immunoprecipitated fragment size, ∼100-200 bp), 

sequence conservation is enriched at even the smallest scales (segment sizes < 100 bp). This 

reflects the basepair resolution of this signal and the existence of very small, but highly 

conserved genomic regions. While ChIP- and conservation-derived signals show substantial 

dynamic range (vertical pattern size in the heatmap), GC content, which ranges between 0 

and 1 with a genome-wide average of 0.41, has relatively small fold-changes between 

observed and expected signal intensity.

Because the segments at different distance scales are hierarchically related in the MSR, there 

is a natural way to prune the segment hierarchy to automatically select the scale(s) at which 

a genomic region is most highly enriched or depleted in signal. This pruning operation 

provides for enriched segment detection, or “peak calling”, in a multiscale context 

(Supplementary Note 1). We compared the MSR-based pruning approach with the widely 

used peak caller MACS18 and with SICER8 (which detects broad histone modifications), on 

the ChIP-seq data described above. Consistent with the scale-versatility of the method, we 

found that the detected peaks of the pruned MSR cover a larger range of length scales than 

the other peak-calling methods (Supplementary Fig. 1, 2, and Note 2, 3). It can be argued 

that the MSR segments more faithfully mark enriched regions of appropriate sizes for the 

various interacting biomolecules. For example, the Pol II MSR segments agree much better 

with gene lengths than the segments found by either MACS or SICER.

Consistent with our principal goal of investigating the ability of the MSR to enable 

multiscale comparisons between heterogeneous genomic signals (rather than the specific 

data reduction step of peak-calling), we used the “unpruned” MSR for all subsequent 

analyses.

Enriched Segments Overlap with Functional Genomic Regions

We next investigated the relationship between the MSR of the mouse-derived genomic 

signals and genomic annotations, such as genes, exons, LADs and repetitive elements. We 

computed the overlap between these annotated regions and the enriched segments (SFC>0) 

at each scale. Based on the expected overlap computed using a background model in which 

the annotated regions were randomly placed throughout the genome, we scored the degree 

of overlap between a genomic signal and a functional genomic element (see Methods). By 

visualizing the overlap scores between the various genomic signals and the various 

annotated genomic regions as heat maps (Fig. 3, and Supplementary Figs. 3-10), we were 

able to validate many known associations. For example, both small and large genomic 

segments that were enriched in sequence conservation tended to overlap with genes (Fig. 

3a), and exons exhibited the strongest levels of overlap. On the other hand, LADs (typically 

0.1–10 Mb in size) showed a relative depletion of large conserved segments, reflecting the 

relative paucity of genes in LADs19.

The MSR method can detect cases where minimal overlap between two genomic signals is 

observed at one scale while a large overlap is observed at another, such as when comparing 

SINE (short interspersed elements) repeats with GC content (Fig. 3b). There is significant 

overlap of SINE repeats with GC-enriched segments with approximate sizes from 10 kb to 

10 Mb (scale 20 to 40), consistent with longstanding observations that SINEs are enriched in 
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large-scale GC rich genomic regions in mammals20,21. Surprisingly, smaller GC-rich 

regions (scale 10–15, segment sizes around 1 kb) do not seem to overlap with the SINE 

repeats at all. Subsequent analysis revealed that these small GC-rich regions tend to overlap 

with CpG islands around transcription start sites (Supplementary Note 4). Therefore, a 

possible explanation of the paucity of SINEs within small GC-rich regions is that the 

integration of SINEs within the functionally important CpG islands is under negative 

selection pressure.

These results demonstrate that the associations between annotated genomic regions and 

genomic signals depend on the scales at which the genomic signals are analyzed, consistent 

with the fact that genomic signals contain distinct information at different scales. Moreover, 

correlations between genomic signals themselves also depend on the length scale. For 

example, we observed differential correlation, i.e., a lack of overlap at small scales and a 

significant excess of overlap at large scales, between the histone marks H3K27me3 and 

H4ac (Supplementary Note 5 and Supplementary Fig. 11). This finding likely reflects the 

mutually exclusive functions of the repressive mark H3K27me3 and the activating mark 

H4ac on the scale of genes (10 kb), as well as the fact that both chromatin marks are 

primarily found in gene-rich regions, which is indicated by the positive correlation at the 

scale of gene islands and deserts (1 Mb).

Multiscale Signatures Predict Gene Expression

Next, we investigated the multiscale information content of genomic signals by integrating 

them into a model for predicting gene expression. Recent models for predicting gene 

expression from genomic signals (mainly histone modifications22-24) have used a single-

scale approach (e.g., a 4 kb bin around the transcription start site (TSS)), to represent the 

genomic signal data. We created gene-specific MSRs using both the mouse macrophage 

ChIP-seq data and genomic signals from ENCODE4 and applied a Random Forest 

regression algorithm25 to predict gene expression (see Methods). Within this model, using 

the MSR-derived features improved prediction accuracy and the analysis revealed the 

variety of distance scales on which specific features have predictive capacity in the model 

(Supplementary Fig. 12, 13 and Note 6).

Focal and Broad DNA Methylation Linked to Gene Silencing

To evaluate the generality of the MSR we analyzed global DNA methylation changes in 

human colorectal cancer vs. normal tissue. In tumor cells many CpG islands (which are 

typically 300-3000 bp in size), often near TSSs, are hypermethylated, whereas the tumor 

genome as a whole is hypomethylated26,27. We recently showed that these two 

modifications are not independent – in a whole-genome bisulfite-sequencing (WGBS) study 

of a colon tumor and matched normal mucosa, we found that focal hypermethylation was 

enriched within large blocks of hypomethylation28. Like other similar works3,29,30 the 

identification of changes in DNA methylation at such different scales required the prior 

determination of scales of interest, followed by independent analysis with each of these 

different scales.
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In this work, we applied the MSR method to the colon cancer WGBS dataset, which 

confirmed the clear scale-dependent differential methylation patterns (Fig. 4a). Additionally, 

we found substantial concordance between the segments identified by the MSR and the focal 

and broad regions detected in ref28 (Supplementary Fig. 14 and Note 7). This demonstrates 

that a multiscale approach is capable of identifying regions that fixed-scale approaches can 

only identify when the scale(s) of interest are known in advance.

DNA methylation is important in organism development and plays a central role in 

oncogenesis27. Focal DNA hypermethylation near promoters is associated with the silencing 

of both developmental genes31, and, in cancer, of tumor suppressor genes32. 

Hypomethylation, on the other hand, is associated with both gene activation and 

repression33. Based on reports linking hypomethylated domains to chromatin silencing33 

and to nuclear organization of chromatin (via nuclear-lamina associated domains)28, we 

hypothesized that the association between gene expression and DNA methylation might be a 

function of scale.

To test this hypothesis we compared differential gene expression between the cancer and 

normal tissues with the differential DNA methylation (as captured by the MSR) around the 

TSS of genes (Fig. 4b and Supplementary Note 8). Consistent with current understanding of 

an inverse correlation between promoter methylation and expression28, we found that the 

166 genes that are strongly upregulated in the tumor are significantly (P<10-4) depleted for 

small-scale hypermethylation, and the 186 strongly downregulated genes are significantly 

(P<10-4) enriched for small-scale hypermethylation. In contrast, the moderately up- and 

downregulated genes show an unexpected pattern – differential methylation occurs across 

scales including the large scales, which extend far beyond the size of individual genes. 

Particularly, the 2503 moderately upregulated genes were enriched for hypermethylation at 

large scales and hypomethylation at small scales. This analysis clearly demonstrates the 

scale-dependent relationship between DNA methylation around the TSS and gene 

expression in cancer.

We next explored the role of cancer-associated methylation changes within gene bodies. 

Previous studies have reported a positive association between methylation state at gene 

bodies and expression level34,35, while complete methylome studies have shown that 

expression corresponds more strongly to LADs, which do not always correspond to gene 

boundaries28,33. In this work, we repeated the MSR analysis focused on the methylation 

pattern at the middle of genes (GM) rather than the promoter (Fig. 4c). For the moderately 

differentially expressed genes, we observed the same pattern as for the TSS analysis when 

investigating the larger scales, i.e., segments larger than 100 kb. This is unsurprising, since 

at these large scales the segments are far beyond the individual gene scale. On the smaller 

scales, where the segments are smaller than 10 kb, there is no pronounced pattern.

It was not clear whether the observed expression differences were affected specifically by 

gene body methylation, or whether they were due to methylation patterns at super-genic 

scales. To investigate this, a Random Forest regression model was trained to predict the 

differential gene expression using three different feature sets based on the DNA methylation 

data at multiple scales: 1) focal DNA methylation around the TSS, 2) DNA methylation 
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within the gene body, and 3) longer-range DNA methylation (at scales larger than 100 kb). 

We found that gene body methylation does not offer predictive value in explaining 

expression differences when TSS and long-range methylation are already considered in the 

predictive model (Supplementary Fig. 15).

Our findings suggest that gene expression is related to methylation patterns that extend 

beyond the single-gene scale, and further, that the elevated gene body DNA methylation in 

expressed genes may be attributable to long-range DNA methylation patterns extending 

beyond the transcribed region (rather than to gene body transcription, as has been suggested 

for the histone mark H3K36me334).

Discussion

We developed the multiscale signal representation (MSR) framework in order to overcome 

the limitations inherent to analysis methods based on a fixed genomic length scale. The 

MSR enables global analysis of genomic data in an unbiased manner with respect to the 

spatial scales on which biological information is encoded. We used the MSR to analyze 

measurements of transcription factor binding, covalent histone modifications and DNA 

methylation, as well as genomic annotations and sequence-derived data such as conservation 

and GC content.

Multiscale analysis of the macrophage cistrome and epigenome and a colon tumor's DNA 

methylome revealed distinct patterns of signal enrichment and depletion at different 

genomic length scales. Moreover, integrating multiscale information in a model to predict 

gene expression levels showed that understanding the epigenetic basis of gene regulation 

requires analyzing genomic signals at multiple scales and it provides clues about the 

interaction between the ChIP target and the gene.

Genome-wide profiling studies (e.g. ENCODE4) will undoubtedly broaden the limited gene-

centric view of the genome and gene regulation that prevailed in the past, but leveraging 

such genomic signals to reveal the biological mechanisms and functions of genomic events 

that occur at a scale much smaller or larger than the scale of genes presents both conceptual 

and analytical challenges. The MSR approach presented here is a computational tool 

specifically designed to address these challenges.

The MSR is complementary to other segmentation techniques, such as Segway11 and 

ChromHMM9: whereas the MSR segments one genomic signal at multiple scales, these 

HMM based models use multiple genomic signals to provide one segmentation, thereby 

dividing the genome into a number of functional states called chromatin domains. It is an 

open question whether the MSRs are specific for some of these functional states.

One limitation of the MSR approach is the idealization of the chromosome as a linear entity, 

i.e., that the physical distance between two genomic locations is related to their relative base 

pair positions. Future work will be aimed at addressing this limitation, for example, by 

incorporating contact probability maps between genomic positions36 into the MSR 

framework.
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Notwithstanding the one-dimensional assumption, the MSR simultaneously solves two 

important bottlenecks in the biological interpretation of heterogeneous genomic datasets, the 

problems of (1) a priori window size (scale) selection and (2) detecting associations 

between genomic signals encoding information on disparate genomic scales. As the body of 

published (epi-)genomic data continues to grow exponentially, the use of such an unbiased 

analysis method will be increasingly important.

Online Methods

Multiscale Segmentation

The multiscale segmentation algorithm for genomic signals is based on the multiscale image 

segmentation algorithm described by Vincken et al.12 Here, we describe the algorithm.

We start with a genomic signal x(i), a function of equally spaced genomic positions. A scale 

space with S scales is created. The first scale in the scale space (s=1) is the signal itself. The 

subsequent scales are obtained by convolving x(i) with a Gaussian window of increasing 

width. At smaller scales, the signal is only slightly smoothed, but at increasingly larger 

scales, the signal is smoothed over greater genomic distances. The standard deviation of this 

window for scale s is defined to be δs=exp((s-1)½ln2). We denote the convolved signal at 

scale s by xs(i).

Next, we choose a set of starting positions, which will serve as starting nodes of the 

segmentation tree. To constrain computational complexity, not all positions of the genomic 

signal are selected, but only those for which there is a differential signal intensity, i.e. x(i)

≠x(i+1) or x(i)≠x(i+1). Starting nodes are also placed at the first and last position of the 

signal. The number of starting nodes is on the order of 100,000 for most of the genomic 

signals analyzed in this work.

A bottom-up linking process is employed to link nodes between two adjacent scales. 

Basically, for each starting node at scale 1, the best successor node at scale 2 is determined. 

This process is repeated in an iterative fashion to find the best successor node at scale s 

based on the nodes at scale s-1. All genomic positions within a window of size rs centered 

on the genomic position of the parent node are considered as a potential successor node. The 

window size is defined as follows.

(1)

Two criteria are considered for each potential successor node: 1) the absolute intensity 

difference between the parent node at position a on scale s-1 and the potential successor 

node at position b on scale s, i.e. |xs-1(a)-xs(b)|, should be as small as possible and 2) the 

ground volume, which is defined as the number of nodes to which the potential successor 

node would be connected at scale 1, i.e. the number of starting nodes, should be as large as 

possible. The two criteria were equally weighted in computing the ‘affinity’ score between a 

node and its potential successor. (These two linkage criteria, intensity difference and ground 

volume, are given in eq. (10) and (11) of Vincken et al.12.) Of all potential successor nodes 
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in the search volume, the one with the highest ‘affinity’ score was selected. Due to the two 

criteria, the branches (connected nodes) have two properties: 1) they tend to follow intensity 

isolines in the scale space, and 2) they tend to merge with one another, creating a tree. This 

tree is called the segmentation tree. Thus, the ground volume criterion provides tension 

countering the intensity difference criterion and ensures that nodes merge to ever fewer 

nodes, ultimately converging to a root node. In our experiments we set S, the total number of 

scale, to 50. For the genomic signals used in this work, all branches were found to be 

merged at the largest scale (50), i.e. there is only one node at the largest scale. In essence, 

the segmentation tree traces how genomic features, which are represented by differential 

intensities in the genomic signal, propagate, spread out, and are ultimately combined, when 

the data are smoothed at increasing distance scales.

The segmentation of a genomic signal is derived from the segmentation tree. The number of 

nodes at scale s, say ns, is equal to the number of segments at this scale. For each node at 

scale s we select the node at scale 1 with the smallest genomic position that is connected to 

this node at scale s by following the left most branch of the tree down to scale 1. (See Fig. 

1b.) This results in ns genomic positions denoted by ti with i = 1,…,ns. The boundaries of 

segment i at scale s are given by [ti,ti+1-1], thereby dividing the complete genomic signal at 

scale s into ns segments.

Construction of the genomic signals

Most genomic signals analyzed in this work were based on ChIP-seq data of six proteins in 

primary murine bone marrow macrophage cells (BMMs) under unstimulated and 

lipopolysaccharide (LPS) stimulated conditions. The BMMs were cultured from female 

C57BL/6 mice (age 8-12 weeks). Amongst these six proteins were three transcription factors 

(TFs), ATF337, NFκB/p50 and NFκB/p65 (or p50 and p65 for short)38, all of which are 

involved in regulating macrophage activation by microbial molecular components such as 

LPS. The other three ChIP-seq targets were RNA polymerase II (Pol II), and two chromatin 

modification marks: acetylation of histone H4 (H4ac) and tri-methylation of histone H3 

lysine 27 (H3K27me3). A control ChIP-seq signal was also obtained from three IPs of 

BMMs with immunoglobulin G derived from rabbits that were not immunized with specific 

target antigens.

To create a genomic signal, the (uniquely mappable) 35 bp reads from sequencing the ends 

of ChIP fragments were aligned to the mouse genome (version: NCBIM37/mm9) and 

extended to a length of 158 bp, the average length of the sequenced fragments. Then, the 

extended reads were aggregated and the signal was downsampled to a resolution of 10 bp. 

Aggregation was accomplished by adding up the overlapping 158 bp reads along the 

chromosome. Downsampling of the signal was achieved using simple subsampling with a 

downsampling factor of 10, i.e. picking out every 10th data point. Each ChIP-seq experiment 

leads to 21 genomic signals, one for each chromosome (19 autosomes and two sex 

chromosomes). For chromosome 1, the largest chromosome in the mouse, which is about 

200 Mb long, the corresponding genomic signal consists of 20 million samples. In Fig. 1 a 

small part of the genomic signal of chromosome 11 for one of the Pol II ChIP-seq 
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experiments is depicted. Additional experimental protocols including antibody suppliers and 

computational details are given in the Supplementary Note 9.

A genome-wide unique mappability map of the mouse genome was created by mapping all 

∼3 billion 35 bp sequences of the mouse genome to itself using SOAP 2.039, discarding 

cases, where the mapping was not unique. Similarly to the ChIP-seq data, the uniquely 

mappable reads were extended, aggregated and downsampled to a resolution of 10 bp. The 

maximum value of this signal was 316 (158×2). In that case, the genomic position is 

surrounded on the left side by 158 bp to which 35 bp could be mapped uniquely in the 

forward (5′ to 3′) direction, and similarly on the right side for mapping in the reverse 

direction (3′ to 5′). This unique mappability landscape was used in determining enrichment 

or depletion of segments (as explained below).

Conservation scores for alignments of 29 vertebrate genomes with mouse (based on the 

phylogenetic hidden Markov model developed by Siepel et al.40) were downloaded from the 

UCSC Genome Browser41 (genome version: NCBIM37/mm9). These scores are real 

numbers between 0 and 1 or no number is reported in case of alignment gaps. In the 

genomic signal based on these conservation scores the alignment gaps were set to have a 

value of zero. A binary background signal (similar the genome-wide unique mappability 

map) was created by setting all alignment gaps to zero, and all positions for which a 

conservation score was reported to one. Both the conservation genomic signal and its 

background signal were downsampled to a resolution of 10 bp, after they were smoothed by 

convolution with a rectangular window of 10 bp.

GC content scores for the mouse genome were downloaded from the UCSC UCSC Genome 

Browser41 (genome version: NCBIM37/mm9). The GC content is a binary signal, which is 

one when the basepair is a “G” or a “C”, and zero otherwise. The corresponding background 

signal is also a binary signal, which is zero for undetermined basepairs (“N”), and one 

otherwise. Again, both signals were downsampled to a resolution of 10 bp after convolution 

with a 10 bp rectangular window.

Significant Fold Change

The MSR of a genomic signal contains segments ranging from basepairs to megabases, i.e. 

the segment lengths span several orders of magnitude. This frustrates scoring the segments 

for enrichment or depletion using standard enrichment tests (such as the hypergeometric test 

or the Z-test42,43), since the range of P-values output by such procedures is heavily 

influenced by the segment lengths44. Specifically, the segment length corresponds to the 

number of samples in the statistical test. Thus, larger segments will lead to much lower P-

values when the null hypothesis is not true as the larger number of samples leads to a higher 

confidence in rejecting the null hypothesis. Moreover, the P-value does not directly provide 

information on the effect size, which is biologically more relevant than the statistical 

significance reported by the P-value45,46.

Here, we introduce the significant fold change (SFC), a statistical score that combines the P-

value and effect size, to score the enrichment and depletion of segments in the MSR. The 

SFC is basically the effect size that is significant at a predefined level of statistical 
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confidence (P-value). It can be interpreted as the lower bound on the effect size. In this 

work, the SFC computation is based on the Z-test. However, the SFC can also be derived 

from other statistical tests, such as the t-test and the hypergeometric test.

The observed intensity of a segment is simply the summed signal intensity in the segment, 

denoted by X. The expected intensity of a segment follows a normal distribution N(np,np(1-

p)) with p=I/B. Here, I and B are the total summed signal intensity and total background 

signal intensity across the complete genomic signal (i.e. across the complete chromosome) 

respectively, and n is the summed intensity of the background signal of the segment under 

investigation. As explained above, for each type of genomic signal there is a background 

signal. For the ChIP-seq signals this is the unique mappability map. The genomic signal is 

per definition never larger than the background signal. As such, the background signal 

represents the potential signal and accommodates normalization. The normal approximation 

of the expected intensity is based on the central limit theorem under the null assumption that 

segments consisted out of randomly selected positions in the genomic signals42,43. We 

empirically tested this assumption by creating random segments in this manner and 

inspecting the Q-Q plots. For segments with n<10 the central limit theorem does not 

sufficiently hold. In that case, we inflate the variance by setting n=10 in the variance term of 

the normal distribution (not in the mean term) to avoid spuriously significant results for very 

small segments.

Next, we picked a P-value threshold pth. All analyses except the gene-specific MSRs (see 

below) have been performed with pth=10-6. The P-value threshold is converted to a Z-score 

using the inverse error function; Zth=-√2·erf-1(2pth), i.e. Zth=-4.75 in this work. Then we 

solve the equations 2 and 3 (below) to find pe and pd. Here n*=max(n,10).

(2)

(3)

Thus, the value of pe defines a normal distribution with mean npe (and variance n*pe(1-pe)), 

for which the intensities equal or greater than observed intensity X are expected with 

probability pth, the P-value. Similarly, the value of pd defines a normal distribution with 

mean npd, for which the intensities equal or smaller than observed intensity X are expected 

with probability pth. Given that np is the expected mean background intensity of the 

segment, if np<npe, there is significant enrichment, i.e. SFC > 0, and if npd<np, there is 

significant depletion, i.e. SFC < 0. Specifically, the SFC is computed as follows:

(4)
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Supplementary Fig. 16 presents a visual explanation of the SFC computation.

The control ChIP-seq signal was employed to avoid spurious enrichment: For each segment 

enriched in the signal, i.e. SFC > 0, the corresponding SFC was also computed for the same 

segment using the control ChIP-seq signal. If the segment was also enriched in the signal for 

the control IP, the SFC of the target signal was set to 0.

Two additional notes on the SFC: First, in the case that very large segments are enriched, i.e. 

segments that cover a significant portion of the chromosome, there must also be large 

segments that are depleted in the signal. This phenomenon is visible in Fig. 2 by the large 

scale enrichment and depletion of Pol II and the histone modifications beyond scale 30. This 

phenomenon only occurs when a segment is assessed for enrichment within the genomic 

signal, but not when the segment is compared to the segment of another genomic signal as in 

Eq. 5. Second, although in Fig. 2 no signals show depletion at small scales, this is not a 

property of the SFC, but a property of the genomic signals themselves. For example, the 

inverse of a peaky signal (such as the inverse of a TF ChIP-seq signal), which is 

characterized by sharp and deep valleys, would show depletion on small scales.

Average run time for a genome wide signal

The average run time to compute the MSR (segmentation and SFC) for all chromosomal 

signals in a genome is about 2 hours using 8 cores (Intel(R) Xeon(R) CPU X5472 3.00GHz) 

with the default parameters. The algorithm has a large memory requirement peaking at about 

13GB necessary for the convolution of very large signals. The size of the genome 

(chromosomes), number of scales, the density of starting positions and the sampling 

resolution of the signal are the most important parameters that affect computation time and 

memory requirement.

Score for the overlap between enriched segments and genomic annotation

Genomic annotation was gathered from different data sources for the mouse genome 

(version: NCBIM37/mm9). Specifically, annotation of genes and exons was obtained from 

Refseq47, annotation of LADs (4 types) was obtained from ref48, annotation of repeat 

regions (7 types) was obtained from http://repeatmasker.org/species/musMus.html (version 

3.2.8)49, and cytoband annotation was downloaded from UCSC Genome Browser41 

(original data generated by ref50).

Each genomic annotation type consists of a set of genomic regions. These genomic regions 

were compared to the enriched segments of a genomic signal at a particular scale. 

Specifically, the SFC computation (explained above) was used to assess the degree of 

overlap between the genomic regions and the enriched segments when compared to the 

randomly expected overlap. (In the main text, we abstain from using the term ‘SFC’ for this 

overlap score to avoid confusion.) The parameters to compute this SFC are: I, the total 

length of the genomic regions, B, the length of the genomic signal, n, total length of the 

enriched segments, and X, the total length of the overlapping parts of the genomic regions 

and enriched segments.
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Thus, the SFC represents the fold-change (log2 ratio) between observed and randomly 

expected overlap statistically significant at P=10-6. (Note that all parameters are scaled with 

the background signal of the corresponding genomic signal to avoid artificial in- or deflation 

of the SFC.)

Color values in Fig. 3, and Supplementary Figs. 3-11 are SFCs averaged across 

chromosomes (an SFC is computed per chromosome) and experimental conditions (each 

genomic signal, e.g. Pol II, is measured under different experimental conditions).

See Supplementary Note 10, where we compare this approach to the standard 

hypergeometric test and the fold change.

Gene-specific MSRs

A gene-specific MSR is the MSR at the genomic region from 1 kb upstream to 1 kb 

downstream of the gene normalized to ten scales. Given that scale s is the smallest scale at 

which the region is spanned by one segment, the MSR is sampled at 10 equidistant steps 

from scale 1 to scale s using nearest-neighbor interpolation to create the normalized MSR 

with ten scales. We decided to use 10 scales based on visual inspection of the gene specific 

MSRs, where we sought enough resolution to capture the intensity difference from the base 

pair to the whole-gene scale, however avoiding unnecessary redundancy of two consecutive 

scales showing the same information.

The P-value threshold for these MSRs is set to pth=0.5, such that Zth=0 (in Eq. 2 and 3) and 

the SFC simply becomes the fold change between observed and expected signal intensity. 

Thus, here we don't use a hypothesis testing framework to find significant segments, but let 

the machine learning framework ‘decide’ which segments are important for prediction.

In general, the number of scales to use for a MSR is the scale, at which the segmentation 

tree consists of only one node, corresponding to a segment spanning the entire genomic 

signal. When generating MSRs specific to particular genomic regions, this number might 

differ between these regions (mostly as a function of their length). However, the use of a 

fixed number of scales might be convenient or necessary for certain applications. In order to 

capture the multiscale information content with sufficient resolution, this number of scales 

can be set as the mean number of scales necessary to span each of the genomic regions. The 

interpolation strategy described above can then be used to derive the region specific MSRs 

with a fixed number of scales.

Random Forest

We employed the Random Forest implementation for MATLAB v0.02 downloaded from 

http://code.google.com/p/randomforest-matlab/. The Random Forest regression models were 

run with 5000 trees each and default settings for the other parameters. The reported 

importance scores represent the mean decrease in accuracy25.

Differential DNA methylation MSR

Three genomic signals were used to construct the MSR of differential DNA methylation: 1) 

a CpG binary signal, which is one for CpG sites, and zero otherwise, 2) the tumor 
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methylation signal, which contains the average methylation of the CpG sites in the tumor 

sample represented by scores between 0 and 1, and 3) the normal methylation signal, which 

contains the which contains the average methylation of the CpG sites in the adjacent tissue 

sample. The signals were downsampled to a resolution of 10 bp.

The multiscale segmentation was performed on the CpG signal. The differential DNA 

methylation score (DM) is computed as the SFC as explained before, where the total 

summed signal intensity of a segment (X) is derived from the tumor signal and the 

background signal is the CpG track. However, instead of a random background model, the 

normal methylation signal is used. Specifically, we employed Eq. 5 instead of Eq. 4.

(5)

Here, Y is the total summed signal intensity of the normal methylation signal in the 

corresponding segment. The differential DNA methylation score (DM) is between -1 and 1, 

where positive values indicate hypermethylation of the tumor sample with respect to the 

normal sample, and negative values indicate hypomethylation. DM was computed for three 

different P-value thresholds pth=10-6, pth=0.05 and pth=0.5. In the latter case (pth=0.5), DM 

is simply the differential methylation between tumor and normal, since DM becomes (X-

Y)/n. Fig. 4a depicts results with pth=10-6, whereas Fig. 4b,c depicts results with pth=0.5. 

Cross-validation results of the random forest model are given for the three P-value 

thresholds in Supplementary Table 1.

Code and data

MATLAB code for the multiscale segmentation, SFC computation, visualization and 

pruning are available through https://github.com/tknijnen/MSR. This code repository also 

contains a publicly downloadable MATLAB runtime environment that will allow users who 

do not have access to a full MATLAB installation to use the MSR software.

All BMM ChIP-seq data used in this project can be found under GEO accession number 

GSE54414, which can be accessed at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE54414.

The sequence data and alignments from the DNA methylation study are available under the 

dbGaP accession code PHS000385. However, we downloaded these data from http://

epigenome.usc.edu/publicationdata/berman20101101/.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Four-step procedure for the multiscale segmentation of genomic signals. The depicted 

genomic signal is a part of a Pol II ChIP-seq signal derived from primary murine bone 

marrow macrophage cells after 1 hour of lipopolysaccharide stimulation, mapped to genome 

assembly mm9. The genomic coordinates are in Mb.

(a) Smoothing of the genomic signal at different scales results in the Gaussian scale space. 

The scale space is represented as a heatmap below the original signal. (b) A segmentation 

tree is created by propagating nodes from the smallest scale to the largest scale. This tree is 

visualized by the white lines. The three pairs of green and black branches are examples of 

how to derive segments from the tree, as is explained in the text. (c) Segments at multiple 

scales are derived from the segmentation tree. The three green and black rectangles 

(segments) are derived from the green and black pairs of branches in b. The different 

segments are colored according to the (log2 transformed) fold change between observed and 

expected signal intensity within the segments. (d) The segments are scored for enrichment 

using a statistical testing procedure that outputs the fold change that is statistically 

significant at a predefined confidence level (‘Significant Fold Change’, SFC).
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Figure 2. 
Significant fold change (SFC) of segments across multiple scales for different ChIP targets, 

conservation scores and GC content.

Each of the six panels displays the results of a genome-wide multiscale segmentation 

analysis. In each panel, the heat map diagram shows a two-dimensional histogram that is 

created by binning the segments based on their scale (x-axis) and on their SFC (y-axis). The 

color indicates the number of segments.

The three panels on the left represent specific ChIP targets; their two-dimensional 

histograms are averages across multiple histograms derived from ChIP-seq experiments 

performed under different experimental conditions. The upper-right histogram is an average 

across the histograms corresponding to the ChIP experiments of three TFs; ATF3, p50 and 

p65 (also based on multiple experimental conditions). The histograms were averaged, as 

they were very similar for the three TFs. The middle and lower-right panels represent the 

multiscale signatures derived from the 29-way vertebrate conservation scores and the GC 

content signal, respectively. In the bottom of the figure the median (black line) and 

interquartile range (grey fill) of the segment sizes at different scales is shown. The median 

segments sizes for scales 5,10,…,45 are stated between the heat maps.
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Figure 3. 
Overlap between functional genomic regions and the segments comprising the MSRs of 

genomic signals.

(a,b) The heatmaps depict the degree of overlap between genomic regions and enriched 

segments (SFC>0) of the conservation (in a) and GC content (in b) genomic signals. The 

genomic regions are shown on the left of the heatmaps. Positive scores represent a larger 

overlap than expected by chance; negative numbers a smaller overlap. A grey color indicates 

that fewer than ten enriched segments at that scale were found. In that case, the overlap 

score was not computed. The top panel depicts the median (black line) and interquartile 

range (grey fill) of the segment sizes across the 50 scales. The median segments sizes for 

scales 5,10,…,45 are stated between the heat maps.
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Figure 4. 
DNA methylation MSR of differentially expressed colorectal cancer genes

(a) A two-dimensional histogram created by binning the segments based on their scale and 

on their differential DNA methylation score (DM) between a primary human colorectal 

tumor and adjacent normal colon tissue. The color indicates the number of segments. The x-

axis and y-axis represent the scale and the DM, respectively. Positive DM scores indicate 

hypermethylation in the tumor, whereas negative DM scores represent hypomethylation. 

DM scores in the bin around zero were removed. This figure is created similarly to Fig. 2. 

(b) Four groups of genes were created based on the differential expression between tumor 

and normal: 1) the strongly upregulated set of genes have at least 1 unit more expression in 

the tumor than in the normal tissue; 2) strongly downregulated genes have at least 1 unit less 

expression; 3) moderately upregulated genes have between 0.1 and 1 higher expression in 

tumor; and 4) moderately downregulated genes have between 0.1 and 1 lower expression. (A 

difference of 1 unit corresponds to a doubling or halving for these log2 transformed gene 

expression values.) These groups were compared with the genes that had the largest hyper- 
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or hypomethylation values around the TSS at a particular scale. The heatmaps depict the P-

values of the hypergeometric overlap test, where red indicates significant overlap 

(enrichment), blue indicates a significant lack of overlap (depletion) and white represents the 

randomly expected overlap. (c) Similar to b, but for segments overlapping the gene middle 

(GM).
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