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Abstract: Despite the tubulin-binding agents (TBAs) that are widely used in the clinic for cancer ther-
apy, tumor resistance to TBAs (both inherited and acquired) significantly impairs their effectiveness,
thereby decreasing overall survival (OS) and progression-free survival (PFS) rates, especially for the
patients with metastatic, recurrent, and unresectable forms of the disease. Therefore, the development
of novel effective drugs interfering with the microtubules’ dynamic state remains a big challenge
in current oncology. We report here about the novel ethyl 2-amino-1-(furan-2-carboxamido)-5-(2-
aryl/tert-butyl-2-oxoethylidene)-4-oxo-4,5-dihydro-1H-pyrrole-3-carboxylates (EAPCs) exhibiting
potent anti-cancer activities against the breast and lung cancer cell lines in vitro. This was due to
their ability to inhibit tubulin polymerization and induce cell cycle arrest in M-phase. As an outcome,
the EAPC-treated cancer cells exhibited a significant increase in apoptosis, which was evidenced by
the expression of cleaved forms of PARP, caspase-3, and increased numbers of Annexin-V-positive
cells. By using the in silico molecular modeling methods (e.g., induced-fit docking, binding metady-
namics, and unbiased molecular dynamics), we found that EAPC-67 and -70 preferentially bind to
the colchicine-binding site of tubulin. Lastly, we have shown that the EAPCs indicated above and
colchicine utilizes a similar molecular mechanism to inhibit tubulin polymerization via targeting
the T7 loop in the β-chain of tubulin, thereby preventing the conformational changes in the tubulin
dimers required for their polymerization. Collectively, we identified the novel and potent TBAs that
bind to the colchicine-binding site and disrupt the microtubule network. As a result of these events,
the compounds induced a robust cell cycle arrest in M-phase and exhibited potent pro-apoptotic
activities against the epithelial cancer cell lines in vitro.

Keywords: microtubules; ethyl-2-amino pyrrole-based carboxylates (EAPCs); tubulin depolymerization;
cell cycle; mitotic arrest; apoptosis; breast; lung; cancer; paclitaxel; vinblastine; colchicine; induced-fit
docking; binding metadynamics; unbiased molecular dynamics

1. Introduction

The microtubules are known as important regulators of many aspects of cellular
functions, including cell proliferation and migration, vesicle trafficking during endocyto-
sis, chromosomal segregation during mitosis, etc. [1–4]. The last one has made them an
attractive target for the development of anti-cancer drugs. The protein tubulin, a major com-
partment of the microtubules, contains several various binding sites for the small-molecule
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drugs. This includes the laulimalide, maytansine, taxane/epothilone, vinca alkaloid, and
colchicine sites [5–10]. Based on their effects on the microtubule dynamic state, the tubulin-
binding agents (TBAs) are categorized into 2 major groups: microtubule-stabilizing agents
including the taxanes, epothilones, and laulimalide and microtubule-destabilizing agents
that are composed of colchicine, the vinca alkaloids, and maytansine [11,12].

Despite the impressive response rate shortly after the initiation of taxanes- and/or
vinca alkaloids-based therapies, the extended use of these chemotherapeutic agents is
limited due to the acquired resistance of tumors to these drugs. This might be due to the
broad spectrum of molecular mechanisms: e.g., overexpression of ABC-transporters, such
as P-glycoprotein in tumor cells [13,14], mutations in β-tubulin, and the altered expression
of specific β-tubulin isotypes [15,16], etc. In this view, the agents targeting the colchicine-
binding site (CBS) exhibit several advantages, including overcoming multidrug resistance
(MDR), which is supplemented by their well-known abilities to inhibit angiogenesis [17–20].
Moreover, CBS inhibitors (CBSi) have several significant advantages over other microtubule-
targeting agents (MTAs) because this site of tubulin is more amenable to the molecules
with favorable physicochemical properties that improve oral bioavailability over taxanes
and vinca alkaloids binding sites, for example, have less drug-drug interactions, and are
less prone to developing multi-drug resistance. Despite the clinical use of colchicine as
an anti-cancer derivative, it is currently excluded based on its extreme toxicity; the broad
number of CBSi is currently described [21] and can be used as structurally diverse scaffolds
for the generation of potent anti-cancer derivatives exhibiting limited toxicities, improved
solubility, etc. [22].

In general, the scaffolds to develop the novel TBAs targeting the CBS are based on the
presence of diverse chemical groups, including the trimethoxyphenyl (TMP) group. This
principle is raised from the structure of colchicine, which consists of a 3,4,5-trimethoxyphenyl
ring (the A ring), a saturated seven-membered ring containing an acetamido group at
position 7 (the B ring), and a tropolone ring (the C ring). It was shown that the TMP
group of colchicine is oriented within β-tubulin close to Cys β241 and thereby allows
colchicine to bind to β-tubulin at its interface with α-tubulin, subsequently inhibiting
tubulin polymerization [23]. Thus, it was accepted that the most common conservative
chemical groups in the compounds exhibiting tubulin depolymerizing properties are
composed of trimethoxyphenyl (TMP) moiety (ring A) and the linker region connecting
ring A and ring B [24–26]. This point of view was mainly based on the structure-activity
relationship (SAR) analysis of colchicine and combretastatin A-4 and its analogs, the well-
known earliest inhibitors of tubulin polymerization.

The present study aimed to examine the cytotoxic activities of the 2-amino-1-(furan-2-
carboxamido)-5-(2-aryl/tert-butyl-2-oxoethylidene)-4-oxo-4,5-dihydro-1H-pyrrole-3-carboxylates
(EAPCs) synthesized in our lab and further assess their molecular mechanisms of anti-
cancer activities as the novel chemical structures exhibiting tubulin-binding activities.

Here, we show for the first time that 2-aminopyrrole derivatives (EAPC-67 and -70)
exhibit potent cytotoxic activities against a broad spectrum of cancer cell lines (e.g., triple-
negative breast cancer HCC 1806, MDA-MB-231; non-small cell lung cancer H 1299, etc.).
This was evidenced by the decreased viability of EAPC-treated cancer cells as measured
by MTS-based assay, increased expression of apoptotic markers (e.g., cleaved forms of
PARP, caspase-3), and the number of apoptotic (e.g., Annexin V-positive) cells. These
activities of EAPCs were due to their abilities to halt a cell cycle progression and induce a
robust cell cycle arrest in M-phase. This, in turn, was a consequence of the inhibition of
the microtubule polymerization due to the ability of EAPCs to bind with the CBS of the
tubulin. To reveal this possibility, we used different in silico molecular modeling methods.
First, we used a blind docking strategy to determine the preferred drug-binding site on
the tubulin dimer. We found the CBS of tubulin to be the most energetically favorable
for EAPCs indicated above. Next, we used the induced docking of the ligands in the
CBS. By utilizing this approach, we identified two of the most probable poses of EAPC-67
exhibiting the maximal induced-fit docking (IFD) scores. Afterward, by using the binding
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metadynamics approach, we determined the stability of the poses for these selected ligands
by calculating the PoseScore and CompScore indexes. Finally, based on the metadynamics
data, we performed 100 nanosecond unbiased molecular dynamics to determine the key
interactions of the most stable ligand pose with the CBS. Data analysis of the induced fit
docking and the trajectory of molecular dynamics revealed that the external orientation of
the T7 loop of the β-chain of tubulin is required for the successful binding of the drug to
the CBS. Otherwise, steric clashes are created between the ligand atoms and the amino acid
atoms of the T7 loop that block access for the ligand to its binding site. This data indicates
that the molecular mechanism of action of EAPCs might be similar to colchicine and is
predominantly associated with the impossibility of internal turning of the T7 loop in the
β-chain of tubulin. Based on our data, we also proposed that EAPCs block the rotation of
the T7 loop and subsequently prevent the conformational changes in the tubulin dimer
from the curved to the straight state which is required for tubulin polymerization.

2. Materials and Methods
2.1. Chemical Compounds

Paclitaxel (PTX), vinblastine (Vin), and colchicine (Col) were purchased from Sigma, St
Louis, Missouri, USA, and dissolved in 100% dimethyl sulfoxide (DMSO) (Sigma Aldrich,
St. Louis, MO, USA). 10 novel 2-amino-1-(furan-2-carboxamido)-5-(2-aryl/tert-butyl-2-
oxoethylidene)-4-oxo-4,5-dihydro-1H-pyrrole-3-carboxylates (EAPCs) as potential micro-
tubule destabilizing agents were synthesized in our laboratory according to the standard
protocols, as shown in Figure 1 and in previous studies [27].
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Figure 1. The common synthetic pathway of the derivatives of 2-amino pyrroles.

2.2. Molecular Modeling Methods

Blind docking: To identify the potential binding sites of EAPCs on the tubulin, the
molecular docking procedure was performed by using Schrodinger molecular modeling
software (Schrödinger Inc., New York, NY, USA, 2021). The Glide Docking XP mode was
used to find the tubulin-ligand supramolecular complex with the minimal energy scoring
function. The tubulin structure (no. 4O2B) was downloaded from the Protein Data Bank
(PDB) (4O2B. Available online: www.rcsb.org/structure/4O2B, accessed on 3 April 2022).
The protein structure was prepared before docking using the Protein Preparation Wizard
module. Ligand preparation was performed by the standard protocol using the module
LigPrep [28]. To determine the possible interactions of the most active compounds with
the tubulin molecule, “blind docking” was performed. Only tubulin inhibitor binding
sites were used for analysis. After defining binding sites, a Grid Box for each of them was
generated by using the receptor grid module.

Induced Fit Docking: The Standard Induced Fit Docking Protocol is used to generate
possible induced CBS conformations [29]. Initially, the prepared ligands were docked
using a softened potential with Glide XP [30]. The Coulomb-vdW scaling factor was set
to 0.5 for the ligand and protein atoms, and a maximum of 20 poses were generated on

www.rcsb.org/structure/4O2B
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one ligand tautomer. The generated poses were further processed by Prime for side-chain
refinements within 7 Å of the binding site for better accommodation of the ligands. Next,
the protein-ligand system was minimized using the OPLS4 force field [31]. In the final
stage, the ligands were docked using the Glide XP module into the optimized binding
site generated within 30 kcal mol−1 of the lowest energy structure obtained after Prime
refinement to generate 20 poses per system. To rank the poses of the ligands, we used IFD
score (IFDScore = 1.0 × GlideScore + 0.05 × PrimeEnergy). Based on the maximum IFD
score the conformations of the ligand-protein complex were chosen for the next steps of
molecular modeling.

Metadynamics: The metadynamics method was used to assess the stability of the
EAPC-67 pose in the selected induced-fit conformations. 10 independent metadynamics
simulations of 10 ns are performed using root-mean-square deviation (RMSD) of the ligand
heavy atoms as the collective variable. The alignment before the RMSD calculation was
done by selecting protein residues within 3 Å of the ligand. The hill height and width were
set to 0.05 kcal/mol (about 1/10 of the characteristic thermal energy of the system, kBT)
and 0.02 Å, respectively [32]. To remove bad contacts and/or strain in the initial starting
structure and to slowly reach a temperature of 300 K for the simulated system, a 0.5 ns
simulation was performed in the NVT ensemble before the start of the metadynamics itself.
The EAPC-67-tubulin complex was solvated in a simple point charge (SPC) water model
using an orthorhombic box with periodic boundary conditions. The total charge of the
system was neutralized by the addition of sodium and potassium ions. The final snapshot
of the short unbiased molecular dynamics (MD) simulation of 0.5 ns is then used as the
reference structure for following the metadynamics production.

Molecular dynamics: After the metadynamics procedure, 100 ns unbiased molecular
dynamics was performed to assess the position of the ligand in the CBS and determine key
amino acid interactions over time. The Desmond program in Schrödinger suite 2021-2 was
used to perform classical molecular dynamics of the EAPC-67-tubulin complex [33]. The
EAPC-67-tubulin complex was solvated in a simple point charge (SPC) water model using
an orthorhombic box with periodic boundary conditions. The total charge of the system
was neutralized by the addition of sodium and potassium ions. To minimize and relax the
system, a short simulation in the NVT ensemble of 100 picoseconds was performed. The
main simulation was performed in the NPT ensemble. The simulation was run for a total of
100 ns with a recording interval of 100 ps. The temperature and pressure were kept constant
at 300 K and 1.01325 bar, respectively, throughout the simulations. Calculation of the
root means square deviations (RMSD) and analysis of the protein-ligand interaction were
performed using the simulation interaction diagram (SID) program tool in the Schrödinger
Maestro Suite.

Trajectory analysis and clusterization: To investigate conformational flexibility over
MD simulation, the collective motions of the EAPC-67-tubulin complex were investigated
for all snapshots in the trajectories. For the extraction of snapshots from 100 nanosecond
molecular dynamics, VMD software was used [34]. After snapshot extraction using the
pca.xyz() function in the Bio3D package in R, we performed a principal component analysis
(PCA) analysis over cartesian coordinates of Cα atoms of all snapshots in the trajecto-
ries [35,36]. Each trajectory was projected onto the first eigenvector subspaces to reveal
concerted atomic displacements, representing the “essential dynamics” of the protein.
Using the PCA data, K-means clusterization analysis was performed over each trajectory
described by the first three principal components. The optimal number of clusters was
calculated using the Silhouette method [37]. After clustering, a medoid was selected from
each cluster as a representative conformation.

The molecular mechanics/generalized Born surface area (MM-GBSA): The MM-GBSA
method was used as a post-molecular dynamic validation tool [38]. Based on the medoids of
clusters, we calculated the binding free energy (∆Gbind) of each EAPC-67-tubulin complex,
including the solvation energy (∆Gsolv), using the implicit water model. A representa-
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tive conformation of the ligand-receptor complex was chosen based on minimal ∆Gbind
Prime energy.

2.3. Cell Lines and Culture Conditions

The human basal-like TNBC cell lines HCC 1806, MDA-MB-231, and non-small cell
lung cancer cell line H1299 were purchased from the American Type Culture Collection
(Manassas, VA, USA). The cell lines indicated above were maintained in RPMI-1640 medium
(Paneco, Moscow, Russia) supplemented with 15% fetal bovine serum (Gibco; Thermo
Fisher Scientific Inc., Waltham, MA, USA), 50 U/mL penicillin, and 50 µg/mL streptomycin.
The cell lines were cultured at 37 ◦C in a humidified atmosphere of 5% CO2 in an incubator
(LamSystems, Miass, Russia).

2.4. Antibodies

The primary antibodies used for western blotting were anti-PARP (cat. no. 436400;
Invitrogen; Thermo Fisher Scientific Inc., Waltham, MA, USA), cleaved caspase-3 (cat. no.
9661S), phospho-NuMA Ser395 (cat. no. 3429), phospho-Histone H3 Ser10 (cat. no. 53348)
(Cell Signaling Technology Inc., Danvers, MA, USA), and beta-actin (cat. No. A00730-
200, GenScript, Piscataway, NJ, USA); HRP-conjugated secondary antibodies, anti-mouse
immunoglobulin (Ig)G (cat. no. sc-2005) and anti-rabbit IgG (cat. no. sc-2004), were
purchased from Santa Cruz Biotechnology, Dallas, TX, USA.

2.5. Western Blotting Analysis

To examine the protein expression in parental and Tx-R cells, whole-cell lysates (WCL)
were prepared by scraping the cells growing as monolayers into a radio-immunoprecipitation
buffer (RIPA buffer) (25 mM Tris-HCl pH 7.6, 5 mM EDTA, 150 mM NaCl, 0.1% SDS,
1% NP-40, 1% sodium deoxycholate) supplemented with the cocktail of protease and phos-
phatase inhibitors. The cellular lysates were further incubated for 1 h at 4 ◦C and clarified
by centrifugation for 30 min at 11,400 rpm at 2 ◦C. The protein concentrations in WCL
were calculated by the Bradford assay. The protein samples (20 µg) were loaded on the
4–12% Bis-Tris or 3–8% Tris-acetate NuPAGE gels (Invitrogen, Carlsbad, CA, USA) and
upon completion of electrophoresis transferred to a nitrocellulose membrane (Bio-Rad, Her-
cules, CA, USA), membranes were probed with primary (1:1000 and incubated overnight
at 4 ◦C), and secondary antibodies (1:1000 and incubated for 1 h at room temperature) and
visualized by enhanced chemiluminescence (Western Lightning Plus-ECL reagent, Perkin
Elmer, Waltham, MA, USA).

2.6. Tubulin Polymerization Assay

The impact of the CAs on the dynamic state of the tubulin polymerization was assessed
by using the Tubulin Polymerization kit (Cytoskeleton Inc., Denver, CO, USA) as specified
by the manufacturer. Results were obtained on a SpectraFluor Plus microplate reader
(Tecan GmbH, Grödig, Salzburg, Austria) and readings were taken every minute for 1 h
(61 measurements in total).

2.7. Flow Cytometry

The number of apoptotic cells was counted by using Muse Annexin V Dead Cell
Kit (Merck KGaA, Darmstadt, Germany) according to the manufacturer’s instructions.
Unstained and single-stained untreated cells were used as controls. Cells were analyzed in a
Muse Cell Analyzer (Merck KGaA, Darmstadt, Germany). For all the experiments indicated
above at least 10,000 events were acquired for each sample. Results were presented as
the percentage of desired cells relative to the total number of cells as mean ± standard
deviation of four biological repeats.
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2.8. Statistics

All the experiments have been repeated a minimum of 3 times. The results are
presented as the mean ± standard error (SE) for each group. Statistical analyses (Student’s
t-test) were performed using Statistical software program version 7.0 (S.A. Glantz, McGraw
Hill Education, New York, NY, USA). p < 0.05 was considered to indicate a statistically
significant difference.

3. Results
3.1. Synthesis of 2-Aminopyrrole Derivatives and Their Characteristics

In the current study we performed the synthesis of ethyl 2-amino-1-(furan-2-carboxamido)-
5-(2-aryl/tert-butyl-2-oxoethylidene)-4-oxo-4,5-dihydro-1H-pyrrole-3-carboxylates (shown
in Figure 1 as 2a-j). These compounds were obtained by recycling furanones 1 under the
action of cyanoacetic ester in the presence of a catalyst-triethylamine.

The chemical compounds indicated above were synthesized according to the stan-
dard protocols. Briefly, a solution of 0.002 mol of the corresponding 3-(4-methylbenzoyl)
hydrazone 2,3-dihydro-2,3-furandione 1 in 20 mL of anhydrous dioxane was added to an
equivalent amount of cyanoacetic acid ethyl ester and triethylamine. The resulting mixture
was heated for 30–40 min and further cooled to 0 ◦C. The precipitate was filtered and
recrystallized from ethanol.

The resulting compounds 2a-j are yellow-colored crystalline substances, soluble in
dimethyl sulfoxide, dimethylformamide, poorly soluble in ethanol, and insoluble in ben-
zene, water, and hexane. The infrared (IR) spectra of synthesized compounds 2a-j are char-
acterized by the presence of absorption bands of stretching vibrations of NH groups in the
region of 3109–3414 cm−1, carbonyl groups in the region of 1692–1712 and 1646–1676 cm−1,
as well as stretching vibrations of the C = C double bond in the region of 1590–1628 cm−1.
In the 1H nuclear magnetic resonance (NMR) spectra, in addition to the signals of sub-
stituents in the aromatic ring and the ester group, singlets of protons of the NH group of the
amide fragment at 10.47–10.90 ppm, signals of protons of the amino group at 8.85–9.20 ppm
and 8.27–8.48 ppm are recorded, respectively; the vinyl proton singlet was recorded at
6.32–6.64 ppm.

Infrared spectra were taken on an IR-Fourier spectrophotometer-spectrometer, model
FSM-1201 (SPb Instruments, Saint-Petersburg, Russia) in disks with potassium bromide;
1H NMR spectra were taken on Bruker Avance III apparatus (Bruker Avance, Bremen,
Germany) in DMSO-d6, operating frequencies 400 MHz (1H) and 100 MHz (13C), the
internal standard is the residual signal from the deuterium solvent. Elemental analysis was
performed on a Leco CHNS-932 (Leco Corporation, St. Joseph, MI, USA). The chemical
purity of the compounds and the progress of the reactions were monitored by TLC on Sorbfil
PTSKh P-A-UF-254 plates (Sorbpolymer, Krasnodar, Russia) in the ether-benzene-acetone
solution (ratio 10:9:1); detection was carried out with iodine vapor. Melting points were
determined on an SMP40 apparatus (Bibby Scientific Ltd., Stone, UK). 2D structure formulas
and spectral characteristics of the synthesized compounds are shown in Supplementary
Figures S1 and S2, respectively.

3.2. EAPCs Reduce the Viability of the Epithelial Cancer Cell Lines In Vitro

To examine whether EAPCs are active against epithelial cancer cell lines, we per-
formed the MTS-based survival assay by using HCC1806 MDA-MB-231 breast cancer and
H1299 non-small cell lung cancer (NSCLC) cancer cells. Each cancer cell line indicated
above was treated with various concentrations of EAPCs (0.01–100 µM) for 48–72 h. PTX,
Vin and Col were also included as the positive controls and exhibited cytotoxic activities
in nanomolar concentrations for all cancer cell lines indicated above. The IC50 values for
EAPCs are shown in Table 1, illustrating that EAPC-67, -70, and -71 exhibited the most
potent cytotoxic activities for all cancer cell lines included in the present study.
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Table 1. IC50 values (in the micromolar range) for EAPCs in HCC1806, MDA-MB-231 triple-negative
breast cancer, and H1299 non-small cell lung cancer cell lines.

Number of EAPC
Cell Lines

MDA-MB 231 H1299 HCC 1806

64 21.5 ± 2.01 28.7 ± 1.54 23.19 ± 3.72

65 28.2 ± 1.12 17.5 ± 2.31 14.13 ± 2.91

66 40.2 ± 3.42 46.3 ± 4.21 54.2 ± 4.87

67 2.9 ± 0.21 6.7 ± 0.53 9.4 ± 0.64

68 >100 >100 56.16 ± 3.2

69 26.1 ± 2.56 21.5 ± 1.5 29.50 ± 1.43

70 6.7 ± 0.52 2.2 ± 0.25 25.35 ± 2.12

71 10.24 ± 1.36 2.5 ± 0.42 29.73 ± 1.91

72 85.1 ± 1.25 79.6 ± 2.5 68.63 ± 4.17

73 39.3 ± 2.97 >100 >100

3.3. EAPC-67 and -70 Arrest Cancer Cells in M-Phase and Inhibit Tubulin Polymerization

Given that EAPC-67, -70, and -71-treated cancer cells acquired a round-shape mor-
phology (data is not shown), we proposed that the growth-inhibitory activities of these
compounds were due to the ability to induce mitotic arrest and interfere with the mi-
crotubule dynamic state. To examine this possibility, we performed the western blotting
analysis to assess the expression of the proteins specifically accumulated in the M-phase of
the cell cycle. Indeed, the expression of pH3 Ser10 and pNuMA Ser395 (the well-known
mitotic markers) was significantly increased in EAPC-treated cells, as shown in Figure 2.
Importantly, in H1299 NSCLC cells of all three types of EAPCs exhibited much more potent
activity to induce cell cycle arrest in M-phase when compared to the well-known TBAs,
vinblastine, and colchicine.
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Figure 2. Immunoblot analysis for the expression of M-phase specific proteins (e.g., phospho-
NuMA Ser395 and phospho-H3 Ser10) in H1299 lung cancer (A) and HCC1806 breast cancer (B) 
treated with DMSO (negative control), EAPC-67, EAPC-70, EAPC-71 (both 10 μM), Colchicine 
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Figure 2. Immunoblot analysis for the expression of M-phase specific proteins (e.g., phospho-NuMA
Ser395 and phospho-H3 Ser10) in H1299 lung cancer (A) and HCC1806 breast cancer (B) treated
with DMSO (negative control), EAPC-67, EAPC-70, EAPC-71 (both 10 µM), Colchicine (0.05 µM) and
Vinblastine (0.01 µM) for 24 h. Actin stain was used as a loading control.

To further reveal whether the accumulation of EAPC-treated cancer cells was due to
their ability to interfere with the microtubule dynamic state, we performed the tubulin
polymerization assay. PTX- and Vin-treated tubulin samples were used as positive and
negative controls, respectively. We found that EAPC-67 and -70 effectively inhibited tubulin
polymerization, as shown in Figure 3. As expected, PTX exhibited high polymerization
activity with tubulin, whereas Vin effectively inhibited tubulin polymerization.
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the graph reflects the decrease in the rate of tubulin polymerization.

3.4. EAPCs Induce Apoptosis of Breast and Lung Cancer Cells

Next, we examined the pro-apoptotic activities of EAPC-67 and -70- in epithelial
cancer cell lines. For this purpose, we initially assessed the expression of apoptotic markers
(cleaved forms of caspase-3 and PARP) by western blotting. Indeed, we found a significant
increase in the expression of apoptotic markers in breast and lung cell lines after EAPC
treatment (Figure 4).
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 Figure 4. Immunoblot analysis for apoptosis markers (e.g., cleaved forms of PARP and caspase-3) in
H1299 lung cancer (A) and HCC1806 breast cancer (B) after treatment with DMSO (negative control),
EAPC-67, EAPC-70, EAPC-71 (10 µM), colchicine (0.05 µM) and vinblastine (0.01 µM) for 24 h. Actin
stain is used as a loading control.
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Similar to WB data, FACs analysis revealed a significant increase of apoptotic (i.e.,
Annexin V-positive) cells after EAPC treatment (Figure 5).
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Figure 5. FACs analysis for apoptotic markers in HCC 1806 breast cancer cells treated with DMSO
(control), paclitaxel, vinblastine, and colchicine (positive control), EAPC-67, and EAPC-70 for 24 h.
(A) Representative dot plots are shown. (B) Quantitative analysis of the early-apoptotic cells after the
treatment as indicated above. (C) Quantitative analysis of the total apoptotic cells after the treatment
as indicated above. **** p < 0.0001.

Given that EAPC-67 was found to be most active against both of the breast cancer cell
lines and also exhibited potent anti-proliferative and cytotoxic activities against the NSCLC
cell line (Table 1 and Figures 4 and 5), we further performed computational-based analysis
to determine the molecular mechanism of action of this compound.

3.5. Molecular Modeling Studies

The molecular modeling study was composed of four parts: (1) Blind docking to deter-
mine the most possible binding site in the tubulin for EAPC-67; (2) Binding metadynamics
to select the most stable conformation for EAPC-67; (3) Unbiased molecular dynamics of
the most stable pose of EAPC-67 within 100 nanoseconds; and (4) Analysis of the structural
changes in tubulin upon EAPC-67 binding.

First, we generated EAPC-67 tautomers by using the LigPrep module and further used
them for the blind docking to assess their binding with the well-known tubulin binding
sites, including colchicine, and the vinca alkaloid, maytansine, and the pironetin binding
site. The binding site with the lowest GlideXP score was considered the most possible
for ligand binding. Based on the GlideXP score values, we found the CBS as the most
energetically favorable for EAPC-67. It is well-known that the protein molecules are not
rigid and might undergo conformational changes, in particular after binding with the
ligand, thereby suggesting the obvious limitations associated with protein molecule rigidity.
Therefore, to more accurately predict the ligand pose, we performed induced-fit docking of
two EAPC-67 tautomers with the previously selected CBS.
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For each of the EAPC-67 tautomers, 20 ligand poses were generated by the induced
docking algorithm. According to the results of induced fit docking, the pose with the
maximum IDF score was chosen for each of the two tautomers. To select an EAPC-67
tautomer that is more likely to bind to the tubulin molecule, we performed binding pose
metadynamics (BPMD), which allows us to assess the ligand’s stability in solution. Ligand
poses that are unstable under the bias of the metadynamics simulation are expected to
be infrequently occupied in the energy landscape, thus making minimal contributions
to the binding affinity. The results of BPMD were evaluated by the CompScore value,
where CompScore is the linear combination of PoseScore and PersScore and is equal to
PoseScore − 5 × PersScore. For each of the tautomers, the CompScore was 0.158 and 1.436,
respectively (Figure 6). Lower values of the CompScore indicate that the protein-ligand
complexes exhibit the highest stability.
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Next, we subjected the EAPC-67 tautomer conformation with maximum CompScore
and PoseScore to 100 nanosecond unbiased molecular dynamics under periodic conditions.
Molecular dynamics was used for the refinement of an IFD Pose and to determine the
key interactions between ligand atoms and the amino acids of the CBS. Also, MD allowed
us to evaluate the ensemble of available conformations for the complex and generate
the “best” single structure approximation (representative conformation) for the complex
EAPC-67-tubulin by performing the clusterization assay. An analysis of the structure of the
representative conformation provided a better understanding of the mechanism of inhibition
of tubulin polymerization induced by the synthesized compounds. The trajectory analysis
showed the low RMSD values of the ligands and proteins (Figure 7), which indicates the
absence of large fluctuations during the entire time of molecular dynamics.

Over the 100 nanoseconds of molecular dynamics, EAPC-67 predominantly formed
the non-covalent contacts with the following amino acids B: Leu 248, B: Asn 249, B: Ala
250, B: Asp 251 of the T7 loop, with B: Lys 254, B: Leu 255 of the H8 helix and with B: Lys
352 of the S9 sheet. Therefore, we found that the ligand interacted predominantly with
the amino acids of the secondary elements of the T7 loop, H8 helix, and S9 sheet of CBS.
The types of non-covalent interactions with these amino acids, including the formation of
hydrogen, hydrophobic, ionic interactions, and the formation of water bridges, as well as
the contribution of each interaction type to the overall interaction with a particular amino
acid, are shown in the Figures 8A and 9. The time-dependent total number of contacts
between the ligand and protein and the number of contacts between the ligand and specific
amino acids are shown in Figure 8B.
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Figure 8. (A) Protein-ligand fraction interaction diagram between EAPC-67 and tubulin. H-bonds,
ionic, hydrophobic interactions, and water bridges are shown in green, red, purple, and blue, respec-
tively. (B) Contact points of EAPC-67 and amino acids of colchicine binding site during the whole
simulation trajectory. The top panel shows the total number of protein-ligand contacts over 100 ns.
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Figure 9. 2D plot of ligand-protein fraction interaction diagram between EAPC-67 and tubulin
over 100 nanoseconds MD with labeled key amino acids. Each type of non-covalent interaction is
highlighted in the corresponding color.

To select a representative conformation of the ligand-receptor complex, we performed
clustering of the molecular dynamics snapshot by the K-means method based on PCA
analysis. First, a PCA analysis of the EAPC-67-tubulin complex trajectory was performed,
as shown in Figure 10A. This plot demonstrates the distribution of the EAPC-67-tubulin
complex conformations in the PC 1–2 subspace, where the blue-white-red color scale reflects
the time of the simulation. The contribution of each principal component to the overall
variability of atomic positions during molecular dynamics is shown in Figure 10B. The
cumulative contribution of the first three PCs cover 15.4%, 26.5%, and 34.5% of the total
variance, respectively. Since the number of clusters is critical for the K-means method, we
used the Silhouette method to determine their optimal numbers. Based on the Silhouette
graph, the optimal number of clusters was determined as 3. Then, clustering of the EAPC-
67-tubulin complex conformations by the K-means method was carried out in the PC 1–3
subspace, followed by the projection of the cluster members onto the 2D PC1-2 graph
(Figure 10C). The cluster members were further projected onto the RMSD plot to visualize
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the relationship between conformations that belong to each particular cluster and time.
Eventually, we found three large clusters of EAPC-67-tubulin complex conformations that
were clearly separated in time with medoids (Snapshots 834, 1556, and 1987) corresponding
to each cluster (Figure 10D).
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To determine the representative conformation of three medoids, we utilized the MM-
GBSA method to evaluate the protein-ligand complex exhibiting the minimal value of 
ΔGbind prime energy. 

As shown in Table 2, the conformation of the EAPC-67-tubulin complex repre-
sented as a medoid of cluster 2 exhibited the lowest ΔGbind binding energy and ligand 
strain energy. The lowest value of ΔGbind indicates that the medoid of cluster 2 is the 
most probable conformation when compared to the other medoids. The lowest ligand 

Figure 10. Principal component analysis (PCA) of EAPC-67-tubulin complex trajectory. (A) Plotting
PC1 component (x-axis) versus PC2 component (y-axis). Each dot denotes the one conformation of
the protein. The spread of blue and red color dots describes the degree of conformational changes in
the simulation, where the color scale from blue to white to red is equivalent to the simulation time.
The blue indicates the initial timestep, white is intermediate and the final timestep is represented by
the red color. (B) The proportion of variance per each principal component. (C) Clustering of the
EAPC-67-tubulin complex conformations in the PC1-PC3 subspace based on the K-means method
and projection of cluster members onto the PC1-PC2 plot diagram. A member of each of the three
clusters is indicated by a separate color. (D) Conformational clusters of the EAPC-67-tubulin complex
are displayed on the RMSD plot. Each dot represents a complex conformer, and the yellow markers
indicate the representative conformations (medoids–snapshots 834, 1556, and 1987) of each cluster.

To determine the representative conformation of three medoids, we utilized the MM-
GBSA method to evaluate the protein-ligand complex exhibiting the minimal value of
∆Gbind prime energy.

As shown in Table 2, the conformation of the EAPC-67-tubulin complex represented
as a medoid of cluster 2 exhibited the lowest ∆Gbind binding energy and ligand strain
energy. The lowest value of ∆Gbind indicates that the medoid of cluster 2 is the most
probable conformation when compared to the other medoids. The lowest ligand strain
energy values also illustrate that minimal energy is required for the adaptation of EAPC-67
to the receptor-bound conformation.
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Table 2. ∆Gbind energy and ligand strain energy values for each medoid of three clusters.

Medoids of Cluster MM-GBSA ∆G bind
(kcal/mol)

Ligand Strain Energy
(kcal/mol)

Snapshot 834 −24.2 11.4
Snapshot 1556 −31.1 9.3
Snapshot 1987 −25.6 10.9

After selecting a representative conformation, we aligned the CBS site to the straight
conformation of tubulin obtained from the PDB database (PDB ID: 1JFF). Structural differ-
ences were most prominent in the β-chain of tubulin, showing that upon ligand binding the
rotation of the T7 loop is necessary. Otherwise, critical steric clashes are formed between
the atoms of the ligand and the amino acids of the T7 loop, thereby making the interac-
tion of the protein and the ligand impossible. We also found the displacements of other
secondary elements, (e.g., translation of the H7 helix, upward movement, and rotation of
S8 and S9 β-sheet) required for the enlargement of free space (Figure 11). Such structural
changes increase the available space for the ligand but completely block the transition
of the tubulin dimer from the curve to the straight conformation. As a consequence, an
effect of the EAPC-67 was due to its ability to interfere with the concerted movements of
these secondary structure elements required for tubulin to adopt its straight, microtubular
conformation and, therefore, to assemble in the microtubules.
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Figure 11. The structural difference between straight (PDB ID: 1JFF) and representative conformations
of β-chain of tubulin was obtained from MD. The straight conformation (light brown color) of the
β-chain of tubulin is aligned with the representative conformation (blue color). Arrows indicate the
main secondary elements undergoing significant structural changes during the transition from one
conformation to another. The straight confirmation is not suitable for interaction with the EAPC-67,
since steric clusters are formed with the amino acids of the protein secondary elements (S8, S9, H7,
T7) surrounding the colchicine-binding pocket.

4. Discussion

Pyrrole-based compounds are known as one of the attractive scaffolds in medicinal
chemistry [39]. Indeed, the privileged structures represent the molecular scaffolds with
versatile binding properties, such that a single scaffold can provide potent and selective
ligands for a range of different biological targets through modification of the functional
groups [40,41]. Therefore, the use of pyrrole–based compounds is considered an attractive
strategy to obtain potential drugs due to its ability to modulate several pharmacokinetics
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parameters, such as solubility, lipophilicity, polarity, and pharmacodynamics, includ-
ing hydrogen-bonding capacity and the ability to form the complexes with coordinating
metals [42,43]. This explains the existence of a broad spectrum of pyrrole-based drugs,
including anti-fungal agents, anti-microbial agents, anti-inflammatory agents, HMG-CoA
reductase inhibitors, antidepressants, antihypertensive agents, antimalarial agents, anti-
cancer agents, anti-HIV-1 agents, etc. [44–46]. To our knowledge, pyrrole and pyrrole-fused
heterocycles are suitable to develop novel and effective scaffolds for drugs exhibiting
anti-cancer activities due to the targeting of the CBS. Indeed, these scaffolds exhibit high
capacities for expanding the chemical space of tubulin inhibitors due to the existence of
the various ways to synthesize the derivatives with various functional groups, as well as a
wide modification of existing candidate molecules [47–53].

In addition to the well-established and informative in vitro assays to examine the
biological activities of the newly synthesized compounds, computer-aided drug discovery
(CADD) has emerged as a powerful and promising technology for cheaper, faster, and
effective drug design. These CAAD approaches based on various molecular modeling
methods, including standard docking, induced-fit docking, biased/unbiased molecular
dynamics, MM-GBSA, etc. are widely used in the field of anti-cancer research [54–56]. All
of them were shown as effective tools to develop novel inhibitors targeting the various
binding sites of proteins, including the CBS of the tubulin. This is due to the availability
of the multiple X-ray structures of tubulin-ligand complexes, which provide important
information about the conformational changes in the tubulin molecule and interactions
between various functional groups of ligands and amino acids of the CBS [57–60]. The use
of the in silico approach significantly reduces the cost to develop novel drugs and allows the
negative selection of non-effective molecules at the early stage of drug discovery. Moreover,
SAR analysis of various functional chemical groups allows us to find out the novel patterns
of interactions between ligand atoms and specific protein amino acids. In addition, such
interaction analysis is effective for the prediction of the tubulin depolymerization rate,
cytotoxicity against cancer cells, etc. For example, Lorenzo Pallante et al. modeled the β-III
tubulin isotype protein structure based on the homology modeling method to discover
novel compounds exhibiting high specificity to β-III tubulin isotype [61]. Laura Gallego-
Yerga et al. performed a virtual screening of the Zinc database to find potential inhibitors
of the colchicine site by using an ensemble docking approach, molecular dynamics, and
pharmacophore modeling. As a result, the authors synthesized tetrazole derivatives and
further tested their potential activity to interfere with tubulin polymerization in vitro. In
good agreement with the design principles, this compound demonstrated potent in vitro
activity against tubulin polymerization in a micromolar range and an anti-proliferative
effect against human epithelioid carcinoma HeLa cell line in nanomolar concentrations [62].
Based on the 2D-quantitative SAR analysis of quinolines and using the docking method,
Mohamed et al. synthesized 29 quinoline derivatives targeting the CBS and exhibiting po-
tent anti-proliferative activities against various human cancer cell lines including colorectal
carcinoma (HCT-116), hepatocellular carcinoma (HepG-2), and breast cancer (MCF-7) [63].
In addition, abundant examples illustrating the effectiveness of computer simulation mod-
eling approaches for the design and synthesis of tubulin inhibitors targeting the CBS were
shown and reviewed recently [64–67].

In agreement with current studies, we used a combination of computer modeling
methods indicated above and biological activity assays to discover the anti-cancer activities
of pyrrole-based compounds targeting the CBS of tubulin. As a result of our CAAD
approaches, we report here about the novel pyrrole-based active compounds exhibiting
potent cytotoxic activities against distinct cancer cell lines, including HCC1806, MDA-
MB-231 triple-negative breast cancer, and H1299 non-small cell lung cancer cells. Among
all synthesized compounds, EAPC-67 and EAPC-70 were the most active, demonstrating
the highest cytotoxic activities against cancer cells in a dose-dependent manner. Next,
by using the polymerization assay, we found that the cytotoxic activities of EAPCs are
due to their ability to interfere with the microtubule dynamic state (Figure 3). Molecular
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modeling data revealed that the EAPCs interact directly with the CBS and induce the
conformational changes of the tubulin dimer that are typical to the mode of action of the
compounds targeting the CBS [68,69]. In particular, translation of the H7 helix, upward
movement, rotation of the S9 β-sheet, and rotation of the T7 loop in the β-chain of tubulin
was demonstrated. The transition of these secondary elements is impossible to the position
characteristic of the straight tubulin conformation in the assembled microtubule because the
EAPCs occupy the physical space between the α- and β-chains. Therefore, EAPCs-bound
free tubulin molecules cannot assemble into organized microtubules (Figure 11). Our
molecular modeling data was a proper fit with the biological activities observed for EAPCs.
Indeed, we found that EAPC-67 and -70 effectively inhibited tubulin polymerization. As
an outcome of EAPC-induced failure of assembly of microtubules, we observed a robust
cell cycle arrest in the G2/M phase and the accumulation of cells in the M-phase. This
was evidenced by the substantial increase of pH3 Ser10 and pNuMA Ser395 expression in
cancer cells treated with EAPCs (Figure 2). As a result of the mitotic arrest, EAPCs-treated
cells underwent apoptotic cell death, which was evidenced by a substantial increase of
the cleaved forms of caspase-3 and PARP in the vast majority of cancer cell lines and also
a significant increase of Annexin V-positive cells after EAPC treatment (Figures 4 and 5,
respectively). Collectively, new synthesized EAPCs compounds, in particular EAPC-67
and EAPC-70, can be used as a potential scaffold for the development of new and more
promising MTAs targeting the colchicine-binding site.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
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