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Although brain-computer interface technology is mainly designed with disabled people in mind, it can also be beneficial to
healthy subjects, for example, in gaming or virtual reality systems. In this paper we discuss the typical architecture, paradigms,
requirements, and limitations of electroencephalogram-based gaming systems. We have developed a prototype three-class brain-
computer interface system, based on the steady state visually evoked potentials paradigm and the Emotiv EPOC headset. An online
target shooting game, implemented in the OpenViBE environment, has been used for user feedback. The system utilizes wave
atom transform for feature extraction, achieving an average accuracy of 78.2% using linear discriminant analysis classifier, 79.3%
using support vector machine classifier with a linear kernel, and 80.5% using a support vector machine classifier with a radial basis
function kernel.

1. Introduction

Since the first experiments of electroencephalography (EEG)
onhumans in 1929, the EEGof the humanbrain has been used
mainly to evaluate neurological disorders in the clinical envi-
ronment and to investigate brain functions in the laboratory.
An idea that brain activity could be used as a communication
channel has gradually emerged.Thepossibility of recognizing
a single message or command considering the complexity,
distortion, and variability of brain signals appeared to be
extremely remote. Yet EEG demonstrates direct correla-
tions with user intentions, thereby enabling a direct brain-
computer interface (BCI) communication channel. BCI
requires high computational capacity to analyse brain signals
in detail and in real time, and until recently the requisite
technology either did not exist or was extremely expensive.
The continuing development of computer hardware and
software now supports highly sophisticated online analysis of
many signal channels at high speed. Also, greatly increased
social recognition of the needs and potential contributions of
people with severe neuromuscular disorders such as spinal
cord injury has generated clinical, scientific, and commercial
interest in better communication and control technology. An
interdisciplinary field of research has been created to offer

direct human-computer interaction via signals, generated by
the brain itself.

Brain-computer interface (BCI) technology is a com-
munication channel that enables users to control devices
and applications without the direct use of muscles [1].
The development of cognitive neuroscience field has been
instigated by recent advances in brain imaging technologies
such as electroencephalography, magnetoencephalography,
and functional magnetic resonance imaging. The growing
field of BCI research is relatively new.The first BCI prototype
was created byDr. Vidal in 1973 [2].This systemwas intended
to be used as a promising communication channel for persons
with severe disabilities, such as paralysis, amyotrophic lateral
sclerosis, brain stroke, or cerebral paralysis [3]. Continuation
and acceleration of recent progress in BCI research and
development have begun to address real world applications
spanning activities of daily living, environment control,
exercise, locomotion, and verbal communication [4].

The BCI technology, combined with ambient assisted
living (AAL) systems, can potentially make the home envi-
ronment more intelligent and assistive, providing alternative
communication means for supporting independent life of
elderly people affected by impairments. The quality of life of
persons suffering from severe motor disabilities can benefit
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from the use of BCI-based assistive technology [5]. Despite
recent developments, there are still numerous obstacles to
building a usable and effective BCI system. The biggest
challenges are related to accuracy, speed, price, and usability.
Current BCI systems are inaccurate and have a low infor-
mation transfer rate. This means that the user needs a long
period of time in order to send commands to the device
that is being controlled. Another problem is the high cost
of EEG equipment, such as an EEG cap and amplifiers [6].
Systems with a high sensor count take a long time to prepare
for use and are uncomfortable. Due to these limitations,
no BCI system has become commercially successful to this
date. Sound knowledge of the data acquisition process, EEG
waveform characteristics, signal processing methodologies
for feature extraction, and classification is a prerequisite
before attempting to design and implement a functional BCI
system. These research points have been highlighted by the
BCI development community as being both important and
necessary, for further BCI development [7–9].

Therefore, BCI technology still has many problems to be
solved to transit to feasible assisted living [10] with minimal
training effort and support required for independent use at
home. One approach is to develop BCI applications based on
a user centred design approach to bridge the gap between
BCI systems and their end users [11]. Another approach is
gamification, that is, the use of elements of a game in a serious
nongame context [12]. Redefinition of daily control tasks as
enjoyable multimedia applications could define a new level of
control possibilities for the disabled but also for healthy users
[13].

The goal of this paper is to explore the BCI technology as a
gaming controller option, which can require less EEG quality
and present low risk interactions. By using low cost devices
such as the Emotiv EPOC headset, aimed at consumers
rather than scientists and medics, in the system, we sacrifice
performance for price and comfort of the system user.
Researchers have already applied the Emotiv neuroheadset’s
technology in a variety of ways: Liu et al. [14] compared
the EPOC device to a g.USBamp device in a steady state
visually evoked potential (SSVEP) system with good results.
It is also used in other paradigms, such as the P300-based
system, developed by Duvinage et al. [15]. In this paper we
use and compare linear discriminant analysis (LDA) and
support vector machine (SVM) classifiers with brainwave
data features obtained using wave atom transform (WAT) for
the control of a prototype SSVEP based BCI game.

The structure of the remaining parts of the paper is
as follows. Section 2 discusses applications of BCI tech-
nology. Section 3 describes the typical architecture of BCI
systems. Section 4 discusses the more commonly used BCI
paradigms. Section 6 describes the materials and methods
used. Section 7 presents the experimental results. Finally,
Section 8 presents conclusions.

2. Applications of BCI Technology

BCI design represents a new frontier in science and tech-
nology that requires multidisciplinary skills from fields such
as neuroscience, engineering, computer science, psychology,

and clinical rehabilitation. BCI research has been successfully
used not only for helping the disabled [16], but also as
being an additional data input channel for healthy people.
It can be exploited as an extra channel in game control [17],
augmented reality applications [18], household device control
[19], fatigue and stress monitoring [20], and many other
applications.

The applications of BCI can be divided into two main
categories, medical applications and nonmedical applica-
tions, such as multimedia or virtual reality. The first category
includes the following:

(i) Rehabilitation and Prosthetic Device Control. The BCI
technology is used for patients with moderate to
severemovement disabilities. Although rehabilitation
is impossible in some diseases, such as amyotrophic
lateral sclerosis, some of the patients, that is, stroke
patients, can sometimes regain some or all lost motor
control with effective rehabilitation. Motor imagery
(MI) BCI can be used as a means for rehabilitation.
In studies [21, 22] among others, patients have tried
to grasp objects using BCI controlled robotic pros-
thetic hands. Robotic arms provided feedback for the
patients, aiding their rehabilitation. While rehabili-
tation results show potential, robotic prosthetic limb
control requires a number of control commands, not
achievable by BCI systems. The experiments, there-
fore, are mostly limited to the 1D or 2D movement
control.

(ii) Medical Diagnosis. BCI technology can be used for
developing health monitoring applications that may
periodically screen the user for early indicators of
neural diseases such as epilepsy [23] and suggest the
user to see a doctor for diagnosis.

(iii) Assistive Mobility. The most beneficial devices for
disabled people are those that let them regain mobil-
ity. This is achieved by providing wheelchair control,
by means of BCI. BCI-driven spelling devices are
used to spell letters or words, allowing for disabled
communication. The P300 speller is one of the most
famous BCI paradigms [24].

(iv) BCI Controlled Web and Music Browsers. Internet
access has become themain source of communication
on a global scale. The BCI technology enables the
development, to make the internet accessible for the
disabled. As more aspects of daily life become ac-
cessible online (education, retail, personal finance,
or business), the potential benefit of connectivity
also increases. In a study [25], patients used the
P300 paradigm to navigate text, browse forward and
backward, use bookmarks, and spell text.

(v) Mental State Recognition.Work in this area deals with
the recognition of mental states, such as attention
levels, to treat attention deficit disorder patients [26],
workload, and fatigue [27], useful for an operators
cognitive state assessment.

Although the BCI technology is mainly designed with
disabled people in mind, it can also be beneficial to healthy
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Figure 1: General architecture of an online BCI.

subjects. EEG is particularly suited for this purpose, because
it is noninvasive, portable, has a good temporal resolution of
a few milliseconds, and is relatively low cost. Therefore the
nonmedical applications of BCI include the following:

(i) Gaming. All BCI paradigms have been exploited for
gaming purposes. BCI is used either as a primary
means to control the game or as an extra channel
for in game communication, to perform certain user
actions, whereas the game is primarily controlled by
traditional means. The game examples include a 3-
class motor imagery-based asteroid-dodging game,
described in [28], and a BCI control interface for a
popular game “World of Warcraft” [29]. The SSVEP
based games include a 2-class game called Mind-
Balance [30], P300-based MindGame [31] as well as
Pinball [32], Pacman [33], and Tetris [34].

(ii) Virtual Reality. Most existing works focus on either
rotating the virtual camera or traveling in the virtual
environment. Pineda et al. used a BCI based on the
mu rhythm to interact with a “First Person Shooter”
video game [35]. A high mu rhythm level triggered
left camera rotation, whereas low mu levels triggered
right rotations. Other commands in the game were
issued by using the keyboard.

3. Typical Architecture of BCI Systems

A BCI is an artificial intelligence system that can recognize
patterns in brainwaves in these stages: signal acquisition,
preprocessing or signal enhancement, feature extraction,
classification, and the control interface [36]. Designing a BCI
system is a multidisciplinary task, involving knowledge and
methods adopted from the areas of computer science, signal
processing, neurology, and physiology.

To use a BCI, two stages are required: (1) a training stage,
in which (a) the user is trained to willingly control his brain

potentials (in the case of operating condition BCI), (b) an
offline training stage, which calibrates the training algorithm
(in the case of pattern recognition BCI), and (2) the online
stage, in which the BCI system is used for control.

In the online mode, the BCI system generally performs
a six-step process (see Figure 1): brain activity measurement,
preprocessing, feature extraction, classification, command
translation, and feedback [37].

(1) Brain activity measurement is the step in which
electrodes are used to obtain the user’s EEG at specific
regions on the scalp, to form input for the BCI
system. This step involves determining the number
and location of the channels, amplification, analogue
filtering, and A/D conversion. Channel locations are
selected according to the paradigm used and mental
task performed.

(2) The preprocessing step consists of denoising the
recorded brain signal in order to enhance the relevant
information inside. Denoising can be performed by
channel or artefact rejection, DSP signal filtering
methods. Preprocessing involves the preparation of
the EEG recordings. It is an important stage that
decides the filtering, segmentation, and detrending
methods used to prepare the EEG data for further
stages. Filtering and segmentation (also known as
epoching) are used to identify and maximize the
information over a certain time or frequency range
that is associated with the characteristic brain activity
to be elicited. Most cognitive EEG activity is usually
in the range of 0.2–40Hz; thus filtering outside of
this range reduces noise. A band-pass filter at the
electrical mains frequency is typically performed in
addition. After filtering, the segmentation of EEG
data is performed. This involves splitting the contin-
uous EEG signal into time-locked windows, which
usually overlap or are locked to a stimulus (in case
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of synchronous BCIs). Epoching allows for averaging
and dramatically simplifies the feature extraction and
classification process. Detrending removes any base-
line drift associated with the EEG recordings. This
is important to ensure the quasi-stationarity of small
EEG segments. The sample rate can be converted to
represent the data in as few samples as possible to
reduce the computational demands of processing a
large number of samples. The sampling rate must
be chosen to be at least twice that of the maximum
frequency contained in the data (Nyquist rate [38]). A
sampling rate of 128Hz can record frequencies up to
64Hz, thus capturing the entire range of EEG waves.

(3) Feature extraction is a step to describe the signal
by a few relevant, command-related values known
as “features.” This stage often characterizes the BCI
design approach. Features that describe the signal
in as few components as possible are resilient to
noise and artefacts have to be identified and used.
Identifying and extracting good features from signals
is a crucial step in the design of BCI systems. If
the features extracted from EEG are not relevant
and do not describe the signal well enough, the
classification algorithm which will use these features
will have trouble classifying the mental states of the
user; the correct recognition rates of mental states
will be low, in which case the use of the interface
would be impossible or inconvenient. Thus, even if it
is sometimes possible to use raw signals as the input
of the classification algorithm, it is recommended to
select and extract good features in order to maximize
the performances of the system by making task of the
subsequent classification algorithm easier. Therefore
it is often the case that choosing a good preprocessing
and feature extraction method has more impact on
the final performances than the choice of a good
classification algorithm [39].

(4) Classification is a step which assigns a class label to
a set of features extracted from the signal. This class
label corresponds to the kind of mental state identi-
fied. Classification can be performed in various ways
ranging from simple thresholding or linear models
to complex nonlinear neural network classifiers. The
goal of classification is to assign a correct class label
to a previously extracted feature vector. This class
represents an intention of the BCI user. The key
step for identifying neurophysiological signals in a
BCI is translating the features into commands [40].
In order to achieve this step, one can use either
regression algorithms or classification algorithms, the
classification algorithms being by far themost used in
the BCI community [41, 42].

(5) Translation into a command is performed by issuing
an action, corresponding to the mental state of a user
identified, that is, moving the mouse cursor on a
computer screen, controlling a speller, or moving a
wheelchair.

(6) The feedback step provides the user with information
about his/her mental state. This helps the user to
consciously control his/her brain activity to increase
performance of the executed task.

4. Overview of BCI Paradigms

A variety of BCI paradigms have been exploited, such as
P300 [43], SSVEP [44], ERD/ERS [45], MI [46], slow cortical
potential (SCP) based [47], and hybrid methods [48–50].
We review some of these paradigms in more detail in the
following subsections.

4.1. Spontaneous Potentials. Spontaneous EEG is measured
when there is no stimulus presented to the test subject. In
healthy subjects the spontaneous EEG is measured during
a prolonged time span in which the brain activity changes
constant waves into events with higher or lower frequency.
Characteristics of different cognitive processes, mental states,
and activation processes can be observed in spontaneous
EEG waves. The appearance of certain frequency bands over
a specific brain region can be assigned to a certain mental
task.Theband range limits associatedwith the brain rhythms,
particularly beta and gamma, can be subject to contradiction
and are often further subdivided into subbands that can
further distinguish brain process activity with a frequency
𝑓, where 𝑓 > 30Hz or 𝑓 < 0.5Hz is often assumed to
be of limited clinical utility; although some recent papers
have published the existence of cognitive brain process in
the beta, gamma, and high gamma bands [51], the literature
does not clearly state whether the higher frequency activity
(>30Hz) is of cerebral origin. The EEG rhythms are affected
by different actions, thoughts, andmental states. For example,
the planning of a movement can block or attenuate the mu
rhythm. The fact that mere thoughts affect the rhythmical
activity of the brain can be used as the basis for a BCI system.

4.2. Event Related Potentials (ERP). The event related brain
potentials (ERP) are different from spontaneous brain activity
in the way that they appear while the subject is being
stimulated and are noted by performing the extensive analysis
of the data. The brain generates not only uninterrupted
spontaneous activity but also reacts to certain external or
internal events with a characteristic potential change. On
episodic stimulation, event based activity is registered, which
is not displayed, if no stimulation is presented. By presenting
the subject with an external stimulus (such as a click sound or
a flashing light), a specific reaction and specific EEG compo-
nents are expected to emerge in the ongoingEEGactivity after
the stimulus presentation.These ERP are analysed in the time
domain using triggers, timestamps of stimulus presentation
noted in the EEG. The subject is presented with a stimulus
in constant intervals while his/her EEG is being recorded.
The data encompassing time after the presentation of the
stimulus is then analysed. The arising ERP with amplitude
of 1/10 of the spontaneous brain activity is noise-like and is
barely noticeable in the EEG data. After computer analysis
of time samples following the stimulus and by performing
averaging on the signals, the evoked potential becomes clearly
visible. As most of the oscillations are not of interest, only
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certain frequencies are measured by selecting a time window
of about 100ms to several seconds.Theobserved potential has
amplitude of less than 10𝜇V and duration of around 0.5 s. It
also has a typical form; after a few milliseconds of stimulus
presentation, oscillations with very small amplitude arise.
These potential differences are positive or negative changes
in brain potential, so one can speak of cortical positivity or
cortical negativity [52].

In a typical ERP, first, a small positivity is measured
(called P1), followed by a negativity (called N1 or N100,
appearing after approximately 100ms) and again followed by
a clear positivity (P3), which is observed after approximately
300ms after the presentation of the stimulus, reaching its
peak at about 400ms, and known as a P300 wave [53]. The
P300 and N100 waves are correlative to the stimulus and
therefore observed for medical purposes; that is, in patients
with multiple sclerosis, the P300 wave is often longer than in
healthy patients. It also serves a purpose for diagnosing other
psychological diseases such as schizophrenia, hyperactivity
disorders. Apart from the sensory stimulus, ERP are evoked
by other event related actions, such as imaginative or physical
motorical activity, that is, the movement of arms or legs.

4.3. Evoked Potentials (EP). The evoked potentials (EP) are
a subset of the ERP that occur in response to or dur-
ing attention to certain physical stimuli (auditory, visual,
somatosensory, etc.). They can be considered to result from
a reorganization of the phases of the ongoing EEG signals.
TheEP canhave distinguishable properties related to different
stimuli properties, for example, the visual evoked potential
(VEP) over the visual cortex varies at the same frequency
as the stimulating light [54]. Other EP such as the auditory
evoked potential (AEP) are also used [55].

A distinction is made in the literature between a transient
EP and a steady state EP (SSEP) based on the stimulation
frequency.The former arises when the stimulation frequency
is less than 2Hz. If the stimulus repetition rate is greater than
6Hz, a periodic response called the SSEP will result. The
SSEP are defined by an increase in signal power in the band,
equal to the stimulation frequency or integermultiples of that
frequency. The amplitude and phase of the SSEP are highly
sensitive to stimulus parameters, such as repetition rate,
color contrast or sound tone, modulation depth, and spatial
frequency.The SSEP was also found to be strongly dependent
on spatial attention, being enlarged in the frequency of the
target that has the user’s attention focused on. The increased
SSEP amplitudes reflect an enhancement of neural responses
to a stimulus that falls within the range of spatial attention.
It is this fundamental idea that justifies the use of the SSEP
as a method to identify the attended target among a group of
stimuli with sufficiently different stimulation rates.

There are three main modalities of stimulation:

(i) Auditory One. Signal tones of a specific frequency or
clicks are used as stimuli.

(ii) Visual One. Stimulus is presented as a light with a
specific blinking frequency.

(iii) Somatosensory One. Stimuli are elicited by electrical
stimulation of peripheral nerves.

The sequence of stimulation is arranged into paradigms in
order to study the responses to certain tasks.Themost widely
used are as follows:

(i) No-Task Evoked Potentials. The subjects are relaxed
and instructed to perform no task upon stimulus
reception.

(ii) Oddball Paradigm. The user is requested to attend to
a random sequence composed of two kinds of stimuli
with one of these stimuli being less frequent than the
other. If the rare stimulus is relevant to the user, its
appearance triggers a P300 wave observable in the
user’s EEG.

4.4. Steady State Visually Evoked Potentials (SSVEP). Several
studies [56–58] have demonstrated an increase in neural
activity excited by a visual stimulus when the test subject
directs his attention to the region of visual space containing
the stimulus. The results show that attention acts as a
“spotlight,” enhancing the cortical representation of stimuli
presented in attended regions of visual space relative to
stimuli presented in the unattended regions of visual space.

Studies show that if two or more stimuli with a vary-
ing flicker frequency are presented simultaneously, neural
responses are elicited by the flicker, receiving the subjects
focus. The response generated by the brain corresponds in
frequency to the stimulating frequency and therefore can be
detected using the Fourier analysis of the EEG data. In the
EEG recordings, these steady state responses are called steady
state visually evoked potentials (SSVEP) [59]. If the subject
directs his attention to one visual field and ignores the others
while performing a target detection task, SSVEP elicited by
flicker stimulation in the attended visual field have larger
amplitude than SSVEP elicited by the same stimulus in trials
where the other field is attended.

The use of frequency tagging to study attention has the
obvious advantage of easily separating neural responses
into different classes. How attention modulates the SSVEP
response may depend on various parameters, such as stim-
ulus frequency [57], stimulus spacing [60], color [61], and
shape [62]. It is known that low frequency flickering induces
more intensive SSVEP but might cause the users to feel
uncomfortable and easily tired.

5. Requirements and Limitations of
EEG-Based Gaming Systems

Several other factors have to be taken into account when
designing a BCI system prototype. To design an end user
friendly system, which could be used in everyday activities,
that is, wheelchair ormouse cursor control, the system should
allow its users to send commands at any time. Such a system
must analyse the EEG signals continuously and determine
whether the user is intending to issue control commands to
the system, that is, in the control state (CS) or if he is in a no
control state (NC), indicating that no control commands are
issued. If the system detects the user’s CS state, it must then
decide which control command is being issued. We take this
into account, when designing our BCI system.



6 Computational Intelligence and Neuroscience

The biggest problems with most BCIs are low accuracy,
reliability, information transfer rate, user acceptability [63],
performance variability both within and across subjects [64],
and BCI illiteracy of some subjects [65]. Sometimes the
output of the systemdoes notmatch the input.This, of course,
can be more or less serious depending on the application.
If used for moving the cursor on a computer screen an
erroneous output every now and then might be tolerable,
but if used for controlling the motion of a physical device,
such as a wheelchair, this behaviour becomes unacceptable.
Another problem associated with many BCI paradigms is a
long input-output delay. Today, the most successful systems
work at a transfer rate of less than 30 bits perminute [66].That
might be enough to operate a simple word processor system,
but it is too slow to control a wheelchair. Most research
today therefore focuses on improving the two factors of speed
and accuracy of BCI communication. Even though more
and more BCI applications exist, there are still a number of
problems BCIs needed to overcome to become interesting for
the large public.

The first problem lies with the EEG sensors. Traditional
EEG systems like the Biosemi ActiveTwo consist of a cap and
up to 256 EEG electrodes. The high sensor count and wires
make such a system impossible to use outside the laboratory,
because the setup requires one or several assistants and prepa-
ration time. Another drawback is the fact that conductive
gel needs to be used for leaving residue in the user’s hair.
The g.SAHARA system produced by g.tec does not require
conductive gel, but still needs wires and an electrode cap.

BCI is often the only input modality in applications
which have been developed for research projects. This can
be problematic: having to control a cursor continually by
means of imagined movement results in a high workload.
It would probably be better if BCI was one of the multiple
modalities used to control an application. Examples of such
multimodal applications or hybrid BCIs are the “AlphaWoW”
(Alpha-World of Warcraft) [67], where brainwaves in the
alpha band are combined with keyboard and mouse inputs,
and “Mind the Sheep!” [68], where SSVEP is combined with
mouse input. Other examples include a touchless system [69],
which combines eye gaze for cursor control with a BCI for
making selections, and exergameswith BrainKinect Interface
(BKI) for recording and analyzingmotion capture signals and
EEG signals in order tomonitor motor recovery process [70].

The focus of BCI research should shift from reliability
to usability and user experience [71]. This is necessary to
migrate BCI systems out of the laboratory, into society.
Healthy persons can choose from various alternative input
modalities. So, for healthy persons to choose a BCI, the user
experience and usability must be adequate. Most people have
never used a BCI and the novelty of this new technology
can be a reason for people to decide to use a BCI instead
of alternative input modalities, even if BCI is less reliable
and slower. However, if the usability is not good, people will
choose a different input modality. Due to the fact that the
focus in BCI research has mainly been on the reliability, no
standardized methods to assess the user experience for BCI
exist, yet. Several researchers (see, e.g., Kübler et al. [11]) use
visual analogue scales (VAS) to rate the user satisfaction on

a scale from 0 to 10. Such a rating does not provide any
in-depth information about the source of satisfaction, but it
allows for easy monitoring.

The final limitation to mention here is the amount of
data that a BCI can transfer. The EEG measures a mixture
of signals originating in neural brain activity. The two lowest
functional layers of the brain are mostly locally oriented
[72]. By observing brain areas responsible for these signals,
it is possible to measure a corresponding signal. The higher
sublevels (thoughts, emotions) are assembled on the lower
levels and exist only in an abstract way. To measure physical
processes on these higher layers would require additional
tools to translate the measured low-level signals into the
higher-level context. One needs specific “interpreters” for
such operations. The problem is the interpretation of this
mixture of measured signals. Hence, for the control of highly
complex prostheses, EEG signals are not sufficient and can
never be in the future. The signals necessary to control the
arm, including the consideration of closed loop controls
between the brain and the arm, ideally including the fingers
and integrated touch sensors, would be too blurred to be the
basis for adequate arm movement execution.

6. Materials and Methods

6.1. Hardware. The EPOC headset, designed by Emotiv Inc.,
has been selected as the basis for our system. The Emotiv
EPOC contains 14 electrodes and 2 reference electrodes,
placed in the international 10-10 system [73]; response time
is 250–500ms. The headset is designed as a video game
accessory where developers are interested in using the device
as a controller. The product chosen for this project was
the Research Edition. This provides both the interface for
programming with the headset and access to raw EEG data.
The headset transmits encrypted data wirelessly. The wireless
chip is proprietary and operates in the same frequency range
as 802.11 (2.4GHz). The internal sampling rate of the device
is 2048Hz. The data is then downsampled to 128Hz before
becoming available to the system for capturing the EEG
signals. The captured data contains values for each of the 14
electrodes on the EPOC headset.

There are many advantages for using the Emotiv headset
over other BCI and EEG devices. Many BCI devices are
restrictive due to wiring. The Emotiv headset, however, is
wireless and therefore offers free range of motion allowing
for easy transport and setup, which is very important in an
everyday use setting. Another advantage is that the EPOC
does not require conductive gel for electrodes, making it
easier to put on and use. Users do not have to wash their
hair after using the headset. The main benefit is that it is
relatively inexpensive. There are several disadvantages for
the EPOC headset as well: it only uses 14 sensors, while
many medical grade devices use up to four times that
amount. This results in less data coming in from the brain.
Additionally, more powerful devices have a sample rate of
up to 1000Hz, as opposed to the 128Hz that EPOC runs
at. Since the EPOC headset is not intended for finer signal
detection, the electrodes pick up a lot of noise. Several
techniques can be used to increase the Signal-to-Noise Ratio
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Figure 2: Sensor layout.

(SNR) such as band-pass filtering, averaging or class adaptive
denoising [74], DCT compression [75], signal decomposition
and thresholding [76], or nonlinear signal operators [77].

6.2. Software. The Emotiv Software Development Kit (EDK)
was used for interfacingwith the EPOC. It is primarilywritten
in C, but the company also provides wrappers for accessing
the Application Programming Interface (API) in C++, C#,
Java, and MATLAB. MATLAB provides methods for calling
functions in C code which allows for straightforward access
to the EDK’s API.

OpenViBE [78] is an open source graphical programming
language used to design BCI applications. The aim of the
OpenViBE is to provide open source software for BCI. Key
features of this software are its modularity, high performance,
real time data acquisition and feedback capabilities, compati-
bility with various hardware devices, and multiple scripting
language support. It can be used to acquire, filter, process,
classify, and visualize brain signals in real time.

6.3. Experimental Setting. The objective of the experiment
was to develop a system that utilizes brain activity to offer
control within a real time environment in order to evaluate
signal processing algorithms. A 3-class self-paced BCI design
with a NC (no control) state was chosen, as this system

setup could easily be adapted for wheelchair or mouse cursor
control. The system is based on the OpenViBE platform and
is comprised of 5 individual scenarios, each performed in
sequence. The EEG data is recorded using the Emotiv EPOC
headset. Since the headset does not have any sensors over the
motor cortex, obtaining evenmoderate results with themotor
imagery (MI) approach is very unlikely. Since the sensors
cover the occipital and parietal cortex reasonably, the SSVEP
in themultiple visual stimuli selective attention paradigmwas
chosen for the experiment, due to its well-publicized success
and limited subject training requirements.

6.4. Data Acquisition. Data acquisition is performed by
selecting the channels which will be used for data recording.
This allows for individual sensor contact quality evaluation.
The signals of interest, in the case of SSVEP, are O1, O2, P7,
and P8 (see Figure 2).

The data is acquired in real time by the acquisition client
(see Figure 3). The data is processed in the same way as the
training data, in order to obtain the same feature vectors
that the classifier can then identify. The output of the three
classifiers is then input into a SSVEP voter algorithm, which
decides on the class label of the current signal. If anNC state is
detected, a class label of “0” is assigned to the trial.The control
signal can then be used to move the ship and is passed to the
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Figure 3: Data flow of prototype BCI shooter game.

ship control application. While in the NC state, no action is
performed.

6.5. Data Preprocessing. The signals from the sensors are
averaged and band-pass filtering of the 6–40Hz band is
performed. The signal is then split into epochs of 2 s, with a
0.5 s interval. An average signal value is obtained by averaging
4 epochs, and an FFT is then performed to visualize the
different frequency bands.

Preprocessing steps are then performed in order to
denoise the signal and extract relevant information features
for the classifier. First, data is split into three groups, accord-
ing to their corresponding class label, LEFT, RIGHT, and
CENTER accordingly. This is done so that a binary classifier
could then distinguish whether a trial belongs to a certain
class or not, by using the “one versus all” criteria. This allows
for the NC class, where output is false for all three classifiers.
Next, temporal and spatial filtering is applied to each of
the three groups. Specifically, each group of signals is band-
pass filtered around the target frequency of interest: for the
LEFT class, 29.5–30.5Hz; CENTER, 19.5–20.5Hz; RIGHT,
11.5–12.5Hz. This is done, using a fourth-order Butterworth
filter.

6.6. Feature Extraction. For feature extraction we use wave
atom transform (WAT), a relatively new transform proposed

by Demanet and Ying [79]. WAT performs a multiresolution
analysis of a signal, that is, decomposing a signal into different
frequency subbands.Wave atoms are a variant ofwavelets that
have sharp frequency localization and offer a sparser expan-
sion for oscillatory functions than wavelets. Wave atoms
compose wave fields as a superposition of highly anisotropic,
localized, and multiscale waveforms and capture coherence
of pattern across and along oscillations. WAT has been
previously usedmainly in image processing domain for image
denoising, image watermarking, image hashing, as well as
feature extraction, dimensionality reduction and numerical
analysis [80], and analysis of the electrocardiogram (ECG)
[81] data.

WAT is a promising approach for EEGprocessing because
of its denoising and feature extraction capabilities and is
particularly useful when the signal has discontinuities and
sharp spikes as in case of EEG [82].We expect thatWAT coef-
ficients extracted from EEG data samples can retain enough
information to permit correct classification, while feature
reduction should reduce network training and classification
time. Wave atoms are a variant of 2D wavelet packets that
retain an isotropic aspect ratio. They are well suited for
representing the oscillatory patterns in a signal [80].

To extract features, we first segment the signal, extracting
the 5 s long stimulation period from the trial, since only this
portion of the signal carries relevant information. Next, each
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segment is further divided into epochs of 1 s every 0.2 s, which
provides 80% overlap between neighbouring epochs. Then,
WAT coefficients are obtained for every epoch, and a feature
vector is aggregated. As such, 25 feature vectors are extracted
for every trial. They are then used for classifier training.

As a baseline to compare WAT with, we use the band
power (BP) feature method. BP performs band-pass filtering
a signal in a given frequency band, then in squaring the
filtered signal, and finally in averaging the obtained values
over a given time window [21]. Band power features are
generally computed for several frequency bands previously
determined according to the mental states to be recognized.
Such features have been notably used with success for MI
classification [21] but also for classification of cognitive
processing tasks [51]. Features are extracted by training an
adaptive common spatial pattern (CSP) filter, then band-pass
filtering the signal around the target frequency, as described
above, and then performing band power calculation. The BP
values are then used as features to train a classifier.

6.7. Visual User Stimulation. Visual user stimulation can be
performed by using the LED or an LCD computer monitor.
However, the LEDs need extra hardware to generate a
constant frequency. For the purposes of this experiment, we
prefer to use the LCD monitors. The drawback of using a
monitor is that a stimulus frequency is limited by the refresh
rate.The refresh rate should be multiple times of the stimulus
frequencies; that is, for a monitor with 60Hz refresh rate,
6.67Hz, 7.5Hz, 8.57Hz, 10Hz, 12Hz, 15Hz, and 20Hz are
usually used. When choosing stimulus frequencies it is also
important that a frequency is not harmonic of another chosen
frequency (e.g., 7.5Hz and 15Hz). An SSVEP response can
trigger a large amplitude response not only in the main
frequency, but also in the harmonic frequency, leading to
missclassification. In a 60Hz refresh rate monitor, for a 10Hz
flicker, it reverses the target colour, usually between some
light and dark combination, to produce a flicker, every three
frames; for 12Hz flicker, three frames of dark followed by two
frames of light colour are displayed.Therefore, the sequences
of certain two frequencies could be combined to get three
frequencies with a varying number of frames in each cycle
(e.g., 10Hz and 12Hz produce 10.5Hz, 11 Hz, and 11.5Hz).The
EPOC headset has a sampling rate of 128Hz and therefore
has low resolution at higher frequencies. The experiments
using SSVEP often include stimulation frequencies of up to
60Hz, but these should be avoided while using the EPOC.
Experiments with different frequencies performed showed
that best results for a three- class BCI were obtained by using
30Hz, 20Hz, and 12Hz. Therefore, these frequencies were
chosen for the final experimental setup.

6.8. Training. The training data acquisition procedure is
performed several times, to obtain the training data for each
of the three classes. Since the training session is time-bound
by the system, it requires a lot of attention and concentration
from the user and due to user fatigue has to be limited to
a number of trials. In this experimental setup, a number of
20 trials per class were chosen, totalling 60 trials for a single
dataset. Classifier training was achieved by gathering 4 EEG

StimulationCUE
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Rest

Time (s)0 1 2 3 4 5 6 7 8 9 10

Figure 4: Timing of a single SSVEP trial.

datasets of SSVEP data, acquired from 2 healthy subjects
(28 years). Subjects had very few or no previous experience
in BCI. During the experiments, they were asked to focus
attention on targets, blinking in a defined frequency.

A session was composed of 20 trials of each of the three
classes (LEFT, RIGHT, and CENTER), arranged in a random
order. The timing of the sessions was organized accordingly:
in our protocol, the trial lasted 10 s. First, a yellow arrow
is displayed for 1 s, indicating the target, on which the user
must focus his attention. From second 1 to second 6, the
trial entered stimulation phase. In this phase all three targets
start blinking in their corresponding frequencies. The users
are specifically ordered not to move the head, relax face
muscles, and not to blink during this phase. Stimulation is
then followed by a 4 s resting period, at which the user is
allowed to rest his gaze, blink, or move the head. The EEG
data from this period is not used for classification. This is
illustrated in Figure 4.

The recorded EEG data, together with marked events,
such as class labels for each trial are saved on the computer.
Only relevant channels, in this case, O1, O2, P7, and P8 are
used for analysis.

Since both the SVM and LDA are binary classifiers, while
dealing with the three-class problem in this case (the user has
to select one of the three targets), the classifiers are trained
with a one-versus-all paradigm; that is, the first classifier takes
features from the first frequency stimulation as the target
class and stimulations from the other two frequencies as
nontarget.The same is true for the second and third classifier.
A voting algorithm is then used to select the class from the
three classifier outputs. If all the classifier output a nontarget
condition, then the state is said to be NC (no control).

6.9. Game Interface and Playing. The colour for the flickering
targets was chosen as a combination of white and black.
The study [83] analysed how different colours of the targets
influence classification quality. For our experiments, the
white-black colour combinationwas chosen, since it gives the
highest contrast. The user is presented with an LCD display,
containing 3 blinking targets on a black background and a
yellow arrow. On cue, the targets start blinking at different
frequencies. This is presented in Figure 5(a).

After performing classifier training, subjects are invited
to participate in a video-game-like experiment. During this
game, the subjects are presented with an interface from
Figure 5(b). The “spaceship” comprised two “engines,” the
two rectangles, and a “cannon,” the triangle. The subject is
able to rotate the spaceship by focusing his/her attention on
one of the rectangular targets.
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(a) (b)

Figure 5: BCI game interface: training (a) and playing (b).

The ship is turned left or right according to the target
in the user’s field of attention. By focusing attention on the
middle triangle, the user is able to fire the spaceship cannon.
A red circular target appears next to the ship at a random
location. The aim of the game is to rotate the spaceship and
fire its canon to hit the red target. Once the target is hit, it
disappears to reappear in another position.

Theonline game is executed using theOpenViBE scenario
shown in Figure 6. The data is acquired in real time by the
acquisition client. The data is processed in the same way
as the training data, in order to obtain the same feature
vectors that the classifier can then identify. The output of the
three classifiers is then input into a SSVEP voter algorithm,
which decides on the class label of the current signal. The
control signal can then be issued to move the ship and is
passed to the ship control application. If the NC state is
detected, the control signal is not issued and no action is
performed.

7. Results

To evaluate the system, two datasets have been acquired from
two different subjects, marked S1 and S2. Classification has
been performed using two feature extraction methods for
evaluation, the wave atom transform (WAT) and band power
(BP) features (here used as a baseline method to compare
against). Two kinds of classifiers have been used, linear dis-
criminant analysis (LDA) [84] and support vector machine
(SVM) [85]. The SVM implementation is based on LIBSVM,
available at http://www.csie.ntu.edu.tw/∼cjlin/libsvm/. For
the LDA classifier we used the proprietary implementation
of the LDA in the OpenViBE environment. The system
was implemented using the OpenViBE environment. All
computations were performed on a virtual machine on a PC
with Intel Core I5-3570, 3.4GHz, 4 cores, 3.5 GB RAM.

Since there is a lack of training data, a 10-fold cross-
validation is performed and accuracy is measured on the
same data used for classifier training. The accuracy metric is
chosen for the representation of results, since it is a simple

Table 1: Comparison of classification accuracy.

Classifier Features Accuracy, % 𝐹1 score
S1 S2 S1 S2

LDA WAT 71.5 78.2 0.64 0.67
BP 66.2 73.2 0.56 0.62

sLDA WAT 70.6 77.4 0.64 0.68
BP 68.4 73.5 0.59 0.61

SVM, linear kernel WAT 75.5 79.3 0.64 0.68
BP 74.3 75.1 0.64 0.66

SVM, RBF kernel WAT 78.7 82.2 0.68 0.71
BP 74.0 77.4 0.63 0.67

S1: subject number 1, S2: subject number 2, LDA: linear discriminant analysis,
sLDA: sparse LDA, SVM: support vectormachine, RBF: radial basis function,
WAT: wave atom transform, and BP: band power.

metric that is directly linked to system usability by the
user. It likely overestimates the classification result, since the
classifier has been trained on the same data. The results most
probably indicate higher performances than what the user
will actually have during the online classification. We have
performed classification using three classification methods
and have compared the results.

An evaluation of the system has been conducted using
two näıve subjects, named S1 and S2, unfamiliar with the
BCI technology. Two feature extraction algorithms have been
tested. The first algorithm used wave atom transform (WAT)
coefficients. The second algorithm used the band power (BP)
in the stimulation frequency band. These features were then
used for classifier training.Wemeasured the accuracy and the
𝐹-measure of each subject, while performing classification
with 4 different classifiers (LDA, sparse LDA (sLDA), SVM
with linear kernel, and SVMwithRBF kernel (with parameter
values 𝐶 = 1, gamma = 10)). The results are presented in
Table 1.

The results indicate that the WAT-based feature extrac-
tion method performed better than BP-based one with all
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four classifiers. This method can also be used in the SSVEP
paradigm. Although the best results were achieved by using
the SVM classifier with a linear kernel, results obtained with
other classifiers are very similar. This shows that the choice
of a good feature extraction algorithm is more important in
BCI applications. A nonoptimal classifier can produce good
results, because most models pick up on good feature data.
With good features, one can use a simpler classifier that runs
faster. These results also show that it is possible to develop a
BCI interface system based on low-cost acquisition devices,
such as the Emotiv EPOC, which performs at a reasonable
usability level.

Finally, the training times (for training full dataset) for
LDA and SVM classifiers are compared in Table 2. In this
case, SVM outperforms LDA, too. The processing of 1 s
sample of EEG data is performed in 280ms, which allows the
system to perform in real time.

Table 2: Training time of classifiers.

Classifier Training time, s
LDA 809
SVM 618

The usability of the developed system was evaluated
informally as the number of subjects was too small to perform
formal evaluation using, for example, visual analogue scale
(VAS). Both subjects complained about discomfort due to
the fatigue of eyes after some time of using the system. The
fatigue is caused by low frequency flickering of the game
interface. The problem could be alleviated by increasing the
frequency of flickering; however, it cannot be done due to
the characteristics of the EPOC device. The use of a more
advanced EEG equipment may solve this problem.
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8. Conclusion

We have studied the electroencephalogram (EEG) signal
processing and classification techniques in order to design
brain-computer interface (BCI) systems to be used in the out-
of-the-laboratory setting such as AAL environments or smart
homes, with these main objectives: (1) improving efficiency
in terms of accuracy of the BCI; (2) improving usability
and applicability, therefore moving towards the end user; (3)
designing a user friendly BCI system based on gamification
principles.

We have studied the system performance while using the
steady state visually evoked potential (SSVEP) paradigm. We
have developed a three-class BCI system, based on SSVEP
paradigm and the Emotiv EPOC headset. We have created
a scenario, enabling the user to control a virtual spaceship
in a game by his/her thoughts. The scenario enables the user
to issue 3 control commands and has a no-command (NC)
state, allowing for self-paced control. The created scenario
includes classifier training, signal preprocessing, and feature
extraction.

An online target shooting game, implemented in the
OpenViBE environment, has been used for feedback. The
wave atom transform (WAT) was chosen for feature extrac-
tion. The system achieved an average accuracy of 80.5% for
both subjects, while using a support vector machine (SVM)
classifier with a radial basis function (RBF) kernel. The use
of WAT allowed achieving and improvement in accuracy
of 4.8% when compared to the baseline band power (BP)
features. These results show that BCI can be used as an
interaction technique for complex applications, providing
real time operation and feedback. The results also highlight
that BCI can be feasible even when using low-resolution low-
cost customer-grade EEG acquisition devices. This allows
for reduced system cost, mobility, and subject preparation
time and, consequently, allows for the subject to be prepared
by a nonexpert supervisor. By improving system cost and
ergonomics, the BCI technology can be used for the general
public who can enjoy entertaining applications, games, and
virtual reality.

Concerning the signal processing and classification part
of BCI design, we believe that a better approach would
be to combine, rather than selecting preprocessing, feature
extraction and classification methods. Numerous methods
have been proposed and tested in the BCI domain, and
while some of them have sometimes been proven to perform
better than others, no single method has been identified as
being the best. This is partly due to the differences in system
users. Therefore, we should focus on combining existing
methods together and adapting them to best suit the user.
Since different methods exploit different aspects of EEG,
these methods could be used together in a complementary
way and would probably lead to better results than when
using some “single best” method alone.

In future work we plan to develop a real BCI-based game
and perform experimentations on a larger number of healthy
and motorically impaired subjects as well as performing
usability evaluation using visual analogue scale (VAS).
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[76] R. Damaševičius, M. Vasiljevas, I. Martisius, V. Jusas, D. Birvin-
skas, and M. Wozniak, “BoostEMD: an extension of EMD
method and its application for denoising of EMG signals,”
Electronics and Electrical Engineering, vol. 21, no. 6, pp. 57–61,
2015.

[77] I. Martisius, R. Damasevicius, V. Jusas, and D. Birvinskas,
“Using higher order nonlinear operators for SVM classification
of EEG data,” Electronics and Electrical Engineering, vol. 3, no.
119, pp. 99–102, 2012.

[78] Y. Renard, F. Lotte, G. Gibert et al., “OpenViBE: an open-source
software platform to design, test, and use brain-computer
interfaces in real and virtual environments,” Presence, vol. 19,
no. 1, pp. 35–53, 2010.

[79] L. Demanet and L. Ying, “Wave atoms and sparsity of oscillatory
patterns,” Applied and Computational Harmonic Analysis, vol.
23, no. 3, pp. 368–387, 2007.

[80] A. A. Mohammed, Q. M. Jonathan Wu, and M. A. Sid-Ahmed,
“Application of wave atoms decomposition and extreme learn-
ing machine for fingerprint classification,” in Image Analysis
and Recognition, A. Campilho and M. Kamel, Eds., vol. 6112 of
Lecture Notes in Computer Science, pp. 246–255, Springer, 2010.

[81] H. Xu andG. Zhai, “ECGdata compression based onwave atom
transform,” in Proceedings of the 3rd IEEE International Work-
shop on Multimedia Signal Processing (MMSP ’11), Hangzhou,
China, November 2011.
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