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ABSTRACT: Predicting the assembly of multiple proteins into specific
complexes is critical to understanding their biological function in an organism
and thus the design of drugs to address their malfunction. Proteins are flexible
molecules, which inherently pose a problem to any protein docking
computational method, where even a simple rearrangement of the side
chain and backbone atoms at the interface of binding partners complicates the
successful determination of the correct docked pose. Herein, we present a
means of representing protein surface, electrostatics, and local dynamics
within a single volumetric descriptor. We show that our representations can
be physically related to the surface-accessible solvent area and mass of the
protein. We then demonstrate that the application of this representation into a
protein−protein docking scenario bypasses the need to compensate for, and predict, specific side chain packing at the interface
of binding partners. This representation is leveraged in our de novo protein docking software, JabberDock, which can accurately
and robustly predict difficult target complexes with an average success rate of >54%, which is comparable to or greater than the
currently available methods.

■ INTRODUCTION

Most functions in an organism are governed by interactions of
proteins with specific substrates. To achieve their task, proteins
often form homo- and heteromultimeric complexes. A plethora
of genetic diseases is connected to mutations altering protein
structures and consequently their capacity to interact with their
binding partners.1 Consequently, a great body of research and
development focuses on methods for the elucidation of protein
structures. In this context, computational techniques devised to
predict the complex formed when two proteins bind can be of
great help. In silico techniques can often be significantly
cheaper and quicker than experimental methods, and their
predictive capability can be harnessed to guide subsequent
targeted experiments.
Protein−protein docking is a highly complex optimization

problem, requiring the generation of a considerable number of
candidate arrangements. To accurately discriminate between
correct and incorrect docked poses, an accurate scoring
function is essential. Typical scoring functions used in this
context involve a set of nontrivial physical or empirical terms,
combined with custom weightings. An ideal scoring function
should feature minimum mathematical uncertainty while
accounting for protein structure and dynamics. In order to
navigate the landscape of possible conformations in search of
the specific arrangements that minimize this scoring function, a
highly efficient exploration method is also required. The two
are intimately linked, with the scoring function guiding the
behavior of the navigator.
The simplest and most widespread approaches for protein−

protein docking involve a global, systematic, rigid-body

docking search. Typically, a large number of solutions are
generated from a pair of static molecular structures,2−4 and a
scoring function is then used to identify the most favorable
arrangement. Treating proteins as fully rigid objects, while
simultaneously using a scoring function that accounts for the
specific position of each atom, leads to a modeling process that
is excessively sensitive to the specific packing of atoms at the
interface. In order to cater to protein dynamics, alterations to
how models are built or how the scoring function assesses a
protein arrangement are required. Possible strategies include
rigid-body docking of ensembles of structures,5−7 additional
refinement stages that take place after rigid-body docking,8,9

scoring functions that feature soft potentials to allow minor
molecular overlaps,10,11 pseudo-coarse-grained protein repre-
sentations,12 docking subunits connected by potentials,13

matching protein surfaces represented as a collection of
patches,14 using normal modes to account for flexible
conformational switches,15 and relaxing the interface of
docking poses using techniques such as molecular dynamics
(MD), Monte Carlo (MC), or simulated annealing.10,12,16

Some methods, such as HADDOCK17 and IMP,18 feature
scoring functions that utilize a combination of terms that
describe physical interactions and penalize models that do not
recapitulate the available experimental data. Overall, two
approaches are used to describe amino acid side chains at
the interface. They are either represented explicitly, thus
requiring the docking method to determine their correct
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packing, or their presence is described by means of pseudo-
coarse-grained representations. The first method requires
highly sophisticated optimization procedures that may still
yield suboptimal arrangements, whereas the second method
usually ignores the uncertainty in the position of the side
chains that comes naturally with any time dynamics.
In this work, we describe a new protein volumetric

representation, named spatial and temporal influence density
(STID) maps, capable of simultaneously describing protein
shape, electrostatics, and local dynamics (see Figure 1c). We
demonstrate that the complementarity of these isosurfaces can
help create suitable solutions in a protein−protein docking
scenario. While surface complementarity techniques have been
used for many years,19 the representations from STID maps
are superior to any surface method used to date. STID maps
inherently consider any side chain flexibility by using the
general motion of atomic point charges in time as a building
block for the model. We demonstrate that the key consequence
of this is the retention of accuracy between identified docking
models regardless of their difficulty.
Our STID map-based scoring method is embodied in

JabberDock, a protein de novo docking software. JabberDock
explores the surface complementarity space of two binding
partners by means of a particle swarm optimization (PSO)
algorithm supplied by the POWer optimization environment.20

POWer features a modified version of the PSO algorithm,
explicitly adapted to prevent premature convergence and
maximize the diversity of solutions.
Hereafter, we first outline the theory behind our protein

representation method and then present a set of benchmarks
aimed at testing the accuracy of our protein−protein docking
method in line with the CAPRI blind docking competition
guidelines.21 Results demonstrate that JabberDock can return
models matching the quality of top de novo docking
algorithms currently available.

■ THEORY
The following theory is built upon the principle that a
volumetric map can consider both the structural and dynamical
properties of a protein. It is constructed from the inherent
motion of charged atoms via the time-averaged dipoles forming
within a localized space. The complete methodology,
represented in Figure 1, is summarized as follows:

1. The PDB file of a protein structure is input along with
the desired atomistic force field.

2. The protein is immersed in a water box with Na+ or Cl−

acting as counterions and automatically subjected to
energy minimization, followed by an MD equilibration
and production protocol.

3. A dipole map is derived based on the produced MD
trajectory.

4. The dipole map is converted into a three-dimensional
grid of points, each containing a pseudo-atom with a
characteristic van der Waals radius.

5. Each pseudo-atom is used to define a local Gaussian
distribution, with a standard deviation determined by
the van der Waals radius of the pseudo-atom.

6. A volumetric map is produced by summing, on each grid
point, the value of local and neighboring Gaussians. The
resulting map is finally normalized.

From Protein Structure to Dipole Map. The overall
dynamics of a protein emerge from a combination of slow
large-scale motions and fast local rearrangements. We start by
sampling the fast motions of the side chains by means of a
short MD simulation. Consistent with experimental NMR
evidence,22 we have found that 500 ps is enough for this
purpose (see the Supporting Information and Figures S1 and
S2). We align the resulting protein trajectory according to the
center of mass of the molecule and arrange it within a
stationary, cubic grid, wherein each voxel is 1 Å across in x, y,
and z (a parameter determined quantitatively in a benchmark
shown in Figures S3−S5). We use this information to calculate
the local dipoles on each grid point. To this end, we are
expanding upon the theory laid out by Kirkwood,23 Fröhlich,24

and Neumann et al.,25 which describes the fundamental theory
of dielectrics.
Following the Onsager theory of dielectric polarization, we

represent each voxel, v, as a spherical solute with volume, Vv,
with an internal permittivity, εv, embedded within a uniform
dielectric continuum with permittivity εEx. The charge
distribution inside the voxel is that of several point charges,
with a dipole associated with the center. Point charges within
the neighboring voxels on each Cartesian edge and corner (i.e.,
a total of 26 neighbors, a quantity determined in a benchmark
shown in Figures S3−S5) are also associated with the central
voxel. A sliding window is applied spatially such that a point
charge at a time, t, will contribute to 27 different voxels in total.
Given the fluctuations of the dipole moment of the solute, Mv,
observed over the simulation in a voxel, it is possible to
calculate εv.
The Fröhlich−Kirkwood model states that εv is a function of

the probability distribution of the total dipole’s second
moment, with Mv given by

qM r
i

N

i iv
0

,v ,v∑=
= (1)

where qi,v is the charge of atom i at distance ri,v from the
geometrical center of voxel v. N is the number of atoms that
contribute to a voxel’s dipole moment. The charges are
obtained from the force field used for the simulation. For a
solute with a net charge, which most voxels have, Mv is
dependent on the origin; thus, the grid is fixed in time and
space. Therefore, we can produce a dipole map delivering a
representation of local vectorial electrostatic characteristics of a
region of space occupied by a molecule (see Figure 1b).

From Dipole Map to STID Map. We can now leverage on
the obtained dipole map to derive volumetric information on a

Figure 1. Pipeline for the generation of STID maps. (a) Super-
imposition of multiple structures from the MDs simulation of
ribonuclease A (PDB: 9RSA), clouded by secondary structure (α
helices as blue, 310 helices as light purple, β sheets as red, unstructured
coils as white, and turns as gray). (b) Superimposed dipole map
generated from the simulation. For clarity, only dipoles greater than
0.8 D are shown. (c) Final STID map, derived from the dipole map.
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molecule, i.e., a quantity that is easy to visualize and to use in a
protein−protein docking context. To this end, it is necessary to
convert its dipolar vectorial representation into a scalar
quantity. Under the Fröhlich−Kirkwood model, we can relate
the fluctuations of each dipole moment, Mv, to the voxel’s
dielectric, εv
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where Tv is the temperature in a voxel, which we approximate
as the temperature of the system. Solving for εv
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Each εv value derived from the dipole map now encodes
information on the local dynamics and atomic charges. Our
next step is to convert the resulting dielectric map into a
quantity that relates to a pseudo-electron density. To do so, we
place a pseudo-atom at the center of each voxel and calculate
its polarizability, αv, using the Clausius−Mossotti equation
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where Nv is the number density inside the voxel. Because Nv is
derived from the number of pseudo-atoms inside a voxel; that
is, 1, we can simply set it as the inverse of Vv. The αv values can
then be related to the van der Waals radii RvdW by a scaling
relationship identified by Fedorov et al.,26 based on the
quantum Drude oscillator model

R 2.54vdW v
(1/7)α= (5)

where the constant 2.54 is a universal scaling factor between
electron density and atomic volume at RvdW in atomic units.
Although Fedorov et al. note that a full derivation of this
constant is still incomplete, they demonstrate that the
relationship in eq 5 gives theoretical quantities closer to
experimental data than previous models based on classical
hard-sphere representations.
The electrostatic and dynamic information encapsulated in

the local RvdW values is now suitable to be transformed into a

quantity encoding a pseudo-electron density. To this end, we
assume that each pseudo-atom radius is equal to the full width
at half-maximum of a decaying function, here defined as a
three-dimensional Gaussian, with the maximum at the voxel’s
center. This allows each pseudo-electron density to “leak” into
neighboring voxels, which is reasonable given that a central
voxel’s behavior is characterized by the atoms in its
neighborhood.
Contributions from any Gaussians with a nonzero value

present within a voxel are then summed, and the resulting map
is finally normalized (an isosurface example is shown in Figure
1c), yielding a molecular representation called spatial and
temporal influence density (STID) maps. Because of this
methodology, the regions inside the protein’s conformational
space that are visited often or are highly charged will have
greater associated STID values. This property makes STID
maps a useful representation in a protein−protein docking
scenario, with the electrostatics arising from rapid side chain
motions, often ignored with other docking software, now
accounted for.

■ RESULTS

STID Map Cutoff Values and Solvent-Accessible
Surface Area of the Protein Are Related. The global
average STID, Davg., provides us with a direct comparison
between the different structural and dynamic characteristics of
a protein. The presence of both rigid and highly charged
regions within a protein contributes greater STID values to
their respective voxels than a flexible or apolar residue. This is
shown in Figure 2a, where only the core regions of the protein
are observed at greater isosurface cutoffs, but the more flexible
regions can be seen at lower isovalues. Furthermore, we found
that, while having a greater relative quantity of charged or polar
residues did indeed increase the Davg., time-averaged dynamics
and the structure had a considerably larger impact on the
maps’ topography.
We sought to determine whether a link exists between the

characteristic Davg. of each protein and any of their physical
quantities that are easily measurable. For this test, we select
118 proteins with various sizes, shapes, and secondary
structures and observed that the ratio between SASA and
molecular weight, Sm, is anticorrelated with Davg. (see Figure

Figure 2. (a) Ribonuclease A (PDB: 9RSA) embedded in its associated STID map. Two isosurface selections are shown. The transparent
isosurface, at an isovalue of 0.43, shows how the local side chains contribute to the isosurface’s topography. The opaque one, at 0.8, illustrates
primarily the core secondary structure features and charged residues. (b) Bottom left: variation of average nonzero STID value vs the protein’s
SASA divided by its molecular weight (shown in palatinate). The fitted gray line was found via a linear least-square fit, with a Pearson correlation
coefficient of −0.80. Top: residual between the points and the fitted line. Bottom right: representation of the points as the STID average against
number density in palatinate, with a nonlinear least-square fitted Gaussian shown in gray.
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2b). The relationship could be fitted via a linear least-square fit
(Pearson correlation coefficient equal to −0.80)

D S0.34 0.59avg. m= + (6)

Thus, each STID map is associated with a characteristic
cutoff value, determined by the SASA and molecular weight of
the protein. Important topographical features of the STID
maps are entirely independent of the protein: core secondary
structure features are always visible in and around an isovalue
of 0.8, and highly charged atoms become isolated from the
body of the protein at more stringent cutoffs beyond 0.9. This
direct link between the structural characteristics of a protein
and its associated volumetric isosurface’s shape makes STID
maps an appropriate way of representing how a protein will be
perceived by its immediate surroundings, such as a binding
partner.
STID Maps are Effective to Score Protein−Protein

Interactions. STID maps encapsulate information on the
local dynamics of the atomic charges in a protein. This feature
is particularly attractive in a protein−protein docking context,
as it circumvents the need of determining the specific atomic
position of each side chain at the interface between two
binding partners. We, therefore, used this representation within
a docking protocol, where the scoring function is determined
by the surface complementarity of ligand and receptor STID
map isosurfaces (see Methods section). Benefitting from the
fact that the structural characteristics reported by each STID

map isovalue are protein-independent, we determined that an
isovalue of 0.43 is the most appropriate to report on all
electrostatic and dynamic features of any protein within our
surface complementarity scheme (see the benchmark in
Figures S6 and S7).
We implemented this calibrated STID map-based scoring

into our de novo protein docking algorithm: JabberDock. The
program utilized the PSO algorithm within the POWer

environment to explore the energy landscape associated with
the arrangement of two binding partners, in search of the
arrangement maximizing our complementarity score. We
assessed the performance of JabberDock against all the 230
test cases featured in the most recent iteration of the standard
protein−protein interaction benchmark27 (six cases excluded
for the presence of nonstandard amino acids). According to
the root-mean-square deviation (rmsd) between unbound and
known bound state, 151 of these cases are classified as rigid-
body (easy), 45 as medium, and 34 as difficult (see Methods
section). To gather further information on the relationship
between docking quality and the conformational change
proteins undergo upon binding, we selected a diverse subset
of 32 cases (20 easy, 7 medium, and 5 difficult) that were also
treated as bound cases. In these cases, the subunits used to
predict the assemblies were proteins extracted from the known
complex. We classified the quality of all our modeling runs
according to the three CAPRI categoriesacceptable,
intermediate, and high (see the definition in Methods section).

Figure 3. (a) (1) STID map of two binding partners is calculated using their respective MD simulations. (2) STID map representation of both
binding partners is leveraged by JabberDock, our de novo protein docking algorithm, to accurately predict the complex. The image shows the
intermediate quality model of ribonuclease A complexed with its inhibitor (PDB: 1DFJ). (b) Quality of best models within the top 10 results for
every docking case. For each case, the lowest α carbon rmsd between prediction and crystallized complex is presented, against their associated
native residue fraction ( f nat). Point colors indicate the case difficulty, while the dark- to light-shaded regions represent the criteria for high,
intermediate, and acceptable quality results, respectively. Thus, a point landing in one of these regions indicates that the corresponding success was
found within the top 10 ranked JabberDock solutions. The top and right adjoining subplots show, respectively, the distribution of rmsds and f nat
across the models. (c) Percentage of test cases yielding an acceptable (top) and intermediate (bottom) success, as a function of the number of
ranked structures considered as candidate models. Data are reported independently, in different colors, per case difficulty. The region
corresponding to the top 10 models is shaded and magnified in the insets. In this region, JabberDock’s success rate is consistent vs easy, medium,
and difficult docking cases. In the larger pool of 300 models, an acceptable solution is always found for the easy cases.
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Hereon, we qualify a test case as a success if at least one model
in the top 10 ranked solutions is at least of acceptable quality.
Against the 32 bound cases, JabberDock was successful in

85.0% of the easy, 71.4% of the medium, and 20.0% of the
difficult cases. Challenged with the full unbound benchmark
set, JabberDock yielded successful predictions for 56.3% of the
easy, 60.0% of the medium, and 54.9% of the difficult cases.
Although no high-quality predictions were found for any of the
test cases, intermediate quality results were found for 29.2% of
the easy, 22.2% of the medium, and 25.8% of the difficult cases.
Overall, these results indicate that JabberDock performance is
mostly unaffected by the case difficulty (full details are
provided in Table S1). These results compare favorably against
four of the most commonly used protein−protein docking
algorithms: SwarmDock,15 pyDock,28 ZDOCK,2 and HAD-
DOCK.17 As reported by Vreven et al. while setting the
benchmark set used in this work,27 their acceptable success
rate for rigid-body cases ranges between 31 and 50%, whereas
for the medium and difficult cases, substantially lower success
rates (between 4 and 22%) are observed. Regarding
intermediate success rates, 13−18% success rates are reported.
It is only when considering the percentage of high-quality
models, where success rates <6% are reported, that JabberDock
is outperformed.
The reason behind JabberDock’s consistent performance

throughout cases of different difficulties lies in its ability to
correctly identify interfacial amino acids. Indeed, while the
rmsd of models versus the known complex is lower for cases
with more flexible subunits, the average ratio of correct contact
residues ( f nat) remains nearly unaltered (Figures 3b and S8).
The relationship between the number of candidate models
selected from JabberDock’s ranked solutions and the resulting
success rate features an initial steep gradient (Figure 3c). This
indicates that the ranking of JabberDock’s first successful
model is most likely to be high. Still, by increasing the number
of candidate models to 100, results with significantly smaller
rmsd and higher f nat can be found (Figure S8). Thus, while
most successful models usually rank high according to our
scoring function, better models may well be available when we
consider a larger pool of solutions. For instance, in 98.6% of
easy cases, our full data sets of 300 solutions always contain at
least one acceptable pose (Figure 3c).
By aligning each monomeric subunit to their counterpart in

the complex and assessing the score achieved by such a pose,
we observed that four of the easy and one of the difficult cases
yielded scores higher than anything found by JabberDock (see
Table S1). One example is the xyloglucan-specific endo-β-1,4-
glucanase (PDB: 3VLB), where the two binding partners are
highly interlocked. In this case, failure was not caused by an
unsuitable scoring function, but by an underperforming
optimizer, which was unable to navigate into the complex
binding site. Many of the successful unbound cases feature
interlocked arrangements. In such cases, if the optimizer can
identify the narrow set of roto-translation allowing the binding
partners to interlock, the resulting model will have a high
score. A successful example is that of the β-lactamase TEM1
(PDB: 1BTL)ribonuclease A (PDB: 9RSA) complex,
involving a significantly large and complex contact region,
whereby almost the entire circumference of β-lactamase’s
STID map is buried (see Figure 3a).
Unsuccessful cases, such as the profilin−β-actin complex

(PDB: 2BTF), most often feature a flat binding site. In these
cases, the surface complementarity score alone struggles to

discriminate between binding and nonbinding regions because
of a lack of characteristic surface features, and thus successful
models do not rank high. Addressing these cases requires
capturing additional properties of protein−protein interactions.
To this end, we explored the possibility of reranking
JabberDock models accounting to the vectoral alignment of
neighboring dipoles at the interface via the dipole maps used to
build the STID maps (see the Supporting Information).
Preliminary results indicate that such a post-processing
reranking, while not increasing the overall success rate,
significantly improved the quality of poses for 12% of the
data set.
The most flexible model for which we had a successful

prediction was the histone chaperone CIA/ASF1-double
bromodomain complex (PDB: 3AAD), with an rmsd between
the known unbound and bound state of 4.37 Å. The 46 kDa
complex formed by thioredoxin reductase (thioredoxin) and
the NADP+ analogue AADP+ (PDB: 1F6M) was more
flexible, exhibiting domain movements associated with an rmsd
of 4.9 Å. As no top 10 model produced by JabberDock had an
rmsd lower than 10 Å from the known bound state, this case
was declared unsuccessful. However, a top 10 model featured
an fnat of 0.419 (rank 7, see Table S1), indicating that the
binding site was partially identified. Thus, while in terms of
rmsd several cases were unsuccessful, JabberDock could still
identify their binding site (see Figure 3b).
Following from this, an interesting unbound case is that of

the UBA domain from Cbl-b ubiquitin ligase (PDB: 2OOA), a
small 11 kDa protein. Although it is crystallized as a
homodimer, it is its monomer that participates in the
formation of a heteromultimer (PDB: 2OOB) with ubiquitin.
Simulating a 2OOA monomer and using its associated STID
map within JabberDock to predict the 2OOB complex yielded
no successful results. On the other hand, generating a STID
map using a monomer extracted from the simulation of its
dimer gave intermediate quality results. This indicates that the
dynamics of a Cbl-b ubiquitin ligase as part of a homodimer or
a heteromultimer were similar, and this similarity could be
harnessed to improve the predictive power of our surface
complementarity scoring. This approach was also tested with
the significantly larger integrin I domain of complement
receptor 3 complex (PDB: 4M76), but in this scenario, no
good pose was found. Thus, protein docking involving small
proteins, and possibly very flexible ones, may benefit from the
information about their bound dynamics extracted from other
known complexes these proteins are part of.

■ DISCUSSION AND CONCLUSIONS
We have presented STID maps, a strategy to represent how a
molecule is perceived by its immediate surroundings. Our
physical formalism encompasses the localized electrostatic
nature of the space occupied by a molecule, and the dynamics
of the protein itself, into a series of local dipole vectors, which
is ultimately cast into a volumetric representation.
We have demonstrated that the average STID quantity of

each protein is linearly anticorrelated with the ratio between
protein SASA and molecular weight, Sm, and that typical
structural elements are always discernible at the same isovalue,
independently from the protein under study (Figure 2b). This
means that proteins with a similar mass and aspect but a
different secondary structure will have a different Davg. value.
This is because different secondary structure elements
contribute to the STID voxel system in different ways,
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determined by their characteristic structure and dynamics. For
instance, a greater number of unstructured coils will produce a
greater number of occupied voxels as the protein explores a
relatively greater region of the available space, but these will
have smaller associated nonzero STID values, decreasing Davg..
In previous electron density modeling and 3D reconstruction
software yielding volumetric representations, the choices of
isovalue cutoff to display isosurfaces have been arbitrary.29

Their choice is often chosen based on what is deemed by the
authors to be most appropriate for the work, with no clear link
made between a defining characteristic of a protein and the
isosurface shown. In contrast, this work has shown that our
STID map-based representations can be directly related to a
physical and easily measurable quantity.
We have then shown that STID map representations are

suitable for the definition of an accurate protein−protein
docking scoring function. To this end, we have performed a
comprehensive set of benchmarks to determine the optimal
value of each parameter required for the construction and
usage of STID maps for protein docking. The results show that
JabberDock can provide predicted complexes on par with a
competitive range of blind protein−protein docking software
and is highly robust across a range of difficult casesan
achievement not observed in other docking algorithms. The
strength of JabberDock to yield comparable results across the
data set indicates that the ability of the STID maps to
encapsulate high-frequency atomic motions accommodates for
different amounts of flexibility in interacting proteins. In the
case of complexes characterized by flat and relatively
featureless binding sites, the surface complementarity function
is likely to fail in highlighting a single most suitable docking
position. On the other hand, when an interface is exceedingly
complex, small perturbations about the docked pose are likely
to lead to clashes, hindering the optimizer in its exploration of
this region of the energy landscape. These represent
JabberDock’s boundary conditions. The successful (and most
typical) docking cases feature topographical complexities that
enable both the scoring function and the optimizer to work
harmoniously and effectively. This is the significant middle
ground where the coupling of POWer and STID maps provides
excellent results, as indicated by the prediction of accurate
protein complexes for most of the benchmark. These
observations are expected to hold for any complex not
requiring refolding or domain-level movements at the interface
between binding partners.
JabberDock utilizes two individual PDB files with a well-

parameterized force field to generate STID maps. These are
used to guide the docking process, at the end of which all
candidate models, typically several thousand, are clustered and
returned to the user (in this work, 300 solutions are returned).
The models themselves are built using the last snapshot from
the pool of conformations explored by the binding partners in
their respective MD simulations. Combinations of other
conformations within the monomers’ simulations (see Figure
S9) and dimeric arrangements within the full collection of
candidate assemblies may be closer to that found in the
crystallized bound state. In future versions of JabberDock, we
will explore the possibility of leveraging on this additional
source of structural information to provide the user with more
accurate models.
We have observed that using a protein’s STID map reporting

on its dynamics when bound to an alternative complex can
improve JabberDock’s performance. While our benchmark

shows that docking proteins represented by the STID map of
their monomeric state yield a good number of successes, more
accurate predictions may be obtained by harnessing the
dynamics of the bound complex. Other areas of future
investigation will include the adoption of different functions
as a model for the pseudo-electron density (e.g., a Lorentzian),
using JabberDock for rescoring models predicted by other
protein docking methods, a reranking process building upon
our preliminary results on the usage of a dipole complemen-
tarity score, the use of a different atomistic force field
(including a polarizable one) to explore the impact on the
STID maps, and an additional post-processing step based on
MD or MC techniques to refine the best docking poses. In this
context, we also foresee that the use of optimization algorithms
requiring no weighting could be beneficial.30 Overall, enhance-
ments in the scoring function and solutions reranking will help
improve the performance of JabberDock against cases with low
interface complexity, while refining the optimization engine
will reinforce its performance against cases with highly complex
ones.

■ METHODS
Molecular Dynamics. All simulations are run on the

GROMACS31 MDs engine, with Amber14sb force field.32

Systems are prepared by immersing the protein of interest in a
TIP3P water box, neutralized with Na+ or Cl− counterions.
The system is then energy-minimized using a steepest descent
algorithm, with a tolerance threshold set to 200 kJ mol−1 nm−1.
The initial step size is set to 1 pm, the maximum number of
allowed steps to 5 × 106. The cutoffs for both Coulombic and
van der Waals interactions are set to 1.2 nm.
The protein is then equilibrated for 500 ps within a

canonical ensemble, with T set to 310.15 K with 2 fs step size
and the constraint algorithm LINCS applied to the bonds.33 A
particle mesh Ewald summation is used to treat long-range
interactions and a velocity-rescale temperature coupling
method applied separately to protein and nonprotein atoms;
the coupling constant is set to 0.1 ps. Velocities are randomly
assigned from a Boltzmann distribution of velocities at T.
Finally, production occurs over a 500 ps timescale, for

reasons shown in Figure S1, in an isothermal−isobaric
ensemble. T is set as mentioned above; the pressure is set to
1 bar. Berendsen temperature and pressure coupling methods
are used, again keeping the protein and nonprotein groups
separate. The temperature coupling is as mentioned above,
with the pressure coupling constant set to 10 ps. The
compressibility for both is set to 4.5 × 10−5 bar−1. Atomic
coordinates are saved every 5 ps.

Particle Swarm Optimization. An initial starting point
with the two input monomers’ center of mass centered at the
origin is used prior to generating any models. JabberDock uses
a seven-dimensional space for implementation comfort when
roto-translating the STID maps: three dimensions define
ligand translation in the Cartesian space, three dimensions
define an axis of rotation for this ligand, and one dimension
defines a rotation angle around this axis. The translation values
are limited by the size of the receptor, the axis of rotation is
normalized (and thus has values ranging from −1 to 1), and
the rotation angle in radians ranges between 0 and 2π.
In order to navigate the potential energy surface (PES)

associated with the scoring function (see the next section) and
produce an ensemble of possible docked poses, JabberDock
leverages a distributed heuristic global optimization algorithm
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featured in the POWer optimization environmentPSO “kick
and reseed” (PSO-KaR).20 PSO-KaR was used to explore the
PES over 300 iterations using 80 randomly initialized agents
(“particles”). According to the “kick and reseed” procedure,
particles converging to a local minimum (i.e., with a velocity
decaying to less than 4% of the search space dimension in each
direction) were randomly restarted, and a repulsion potential
placed at their convergence location. The whole optimization
process was repeated three times, with the memory of previous
repulsion potentials retained from one repetition to the next.
In sum, this docking procedure requires the evaluation of
72 000 docking poses. To obtain a diverse ensemble of
solutions, 300 poses were finally selected as representatives
from the pool of poses having a positive score using a K-means
clustering algorithm on the seven-dimensional coordinates
associated with each model.
JabberDock’s Scoring Function. JabberDock uses a

surface complementarity assessment that takes advantage of
the STID maps to generate the PES explored by the PSO
algorithm implemented in the POWer optimization engine.
Following a roto-translation of a model requested by the

optimizer, a quick test is first performed to identify poses
featuring no contact or unphysical atomic overlaps between the
ligand and the receptor. Suitable poses, featuring a negative
Lennard-Jones potential between the α carbon atoms of
receptor and ligand, are scored according to their surface
complementary S. The shape of the isosurfaces analyzed by
JabberDock is determined by an isovalue cutoff, and an
appropriate value of 0.43 was chosen based on the benchmark
discussed in Figures S6 and S7. The score between the STID
of the receptor and that of the ligand is given by

S
S S

2
AB BA=

{ } + { }
(7)

where the curly brackets indicate that we used the median of
the score for protein A into B and vice versa, where the scores
are given by

S w
V

n n x x( )exp( )AB A B A A
2 A

A

ν
= · ′ − | − ′ |

(8)

where nA is the normal from a region of interest on A’s surface
and nB′ the antinormal from the closest point on B to that point
on A. w (0.5 Å−2) is an arbitrary weighting found by Lawrence
& Coleman34 and |xA − xA′ | is the physical distance between the
two points. νA is the total number of successful contact points
on A in contact with B inside some arbitrary distance cutoff,
and an optimal cutoff of 1.6 Å was chosen based on the work
discussed in Figures S3−S5. VA is the total number of points
describing the surface of A. These last two terms are used to
avoid minor contact points providing good scores. The larger
the S, the better the fit; thus, the optimizer is set up to
maximize the score. Only positive scores are accepted by
POWer. Figure S10 provides examples of how these scores
match with a corresponding rmsd and f nat for three complexes.
STID Benchmark. Totally, 118 nonredundant proteins

(maximum 30% homology) were extracted from the PDB-
REDO databank.35 All structures were soluble proteins
featuring solely standard amino acids, none required the
application of a biomatrix, and all were composed of more than
30 amino acids.
The SASA of each structure in the benchmark set was

calculated using the Shrake−Rupley algorithm,36 with the
solvent probe radius set to 1.4 Å to represent that of water. For

each protein, we report the average SASA over 500 ps
production cycle (one structure every 5 ps, excluding the first
50 ps). Molecular weights were calculated accounting for all
atoms present in the atomic structures.

Case Difficulty Classification. Protein−protein docking
cases are classified under three levels of difficulty which is
associated with their flexibility and the rmsd difference
between the Cα atoms at the interface after superposing the
bound and unbound interfaces. Cases can be classified as either
rigid-body (or easy), medium difficulty, or difficult. Easy cases
are those with minimal difference between the unbound
crystallized structures and the bound: usually <1 Å difference.
In medium cases, the rmsd difference is between 1 Å and ∼2.5
Å. Finally, difficult cases can be anything greater than 2.5 Å.
Thus, the difficult cases are accordingly significantly more
difficult than the other two, particularly given that the
requirements for an acceptable success are close to the upper
boundaries that define the difficult cases.

Assessment of Model Accuracy. We use three metrics to
determine the quality of a model: the ratio of correct contact
residues (a valid contact defined as an atom within 5 Å of the
binding partner) to the number of residues in the predicted
complex, fnat, the rmsd between the α carbons of the known
crystal pose and the predicted pose, and the rmsd of the two
poses between the α carbons at the interface (defined as within
10 Å of the binding partner). CAPRI guidelines specify four
levels of possible success criteria: (1) incorrect, where rmsd >
10.0 Å and interfacial rmsd > 4.0 Å OR f nat < 0; (2) acceptable
quality, where rmsd ≤ 10.0 Å or interfacial rmsd ≤ 4.0 Å and
0.1 ≤ f nat < 0.3 OR fnat ≥ 0.3 and rmsd > 5.0 Å and interfacial
rmsd > 2.0 Å; (3) intermediate quality, where rmsd ≤ 5.0 Å or
interfacial rmsd ≤ 2 Å and 0.3 ≤ f nat < 0.5 OR f nat ≥ 0.5 and
rmsd > 1.0 Å and interfacial rmsd > 1.0 Å; and (4) high
quality, where rmsd ≤ 1.0 Å and interfacial rmsd ≤ 1.0 Å and
f nat ≥ 0.5. The protocol for applying this list of inequalities
follows the order provided, beginning with defining the
incorrect predictions. In the text, we qualify the result of a
test as of high, intermediate, or acceptable quality if at least one
in the top 10 ranked models matches the criteria above.

Software Implementation. Software to generate STID
maps is developed in Python, using numpy, scipy, and cython
packages. An automated bash script that prepares all the
necessary GROMACS files and runs them is used to generate
the trajectories. JabberDock is implemented as a POWer

Python module. All software is freely available at github.-
com/degiacom/JabberDock.
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