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Implicit Learning Seems to Come Naturally for Children With
Autism, but not for Children With Specific Language Impairment:
Evidence From Behavioral and ERP Data

Fenny S. Zwart , Constance Th.W.M. Vissers, Roy P.C. Kessels, and Joseph H.R. Maes

Autism spectrum disorder (ASD) and specific language impairment (SLI) are two neurodevelopmental disorders charac-
terized by deficits in verbal and nonverbal communication skills. These skills are thought to develop largely through
implicit—or automatic—learning mechanisms. The aim of the current paper was to investigate the role of implicit learn-
ing abilities in the atypical development of communication skills in ASD and SLI. In the current study, we investigated
Response Times (RTs) and Event Related Potentials (ERPs) during implicit learning on a Serial Reaction Time (SRT) task
in a group of typically developing (TD) children (n 5 17), a group of autistic children (n 5 16), and a group of children
with SLI (n 5 13). Findings suggest that learning in both ASD and SLI are similar to that in TD. However, electrophysio-
logical findings suggest that autistic children seem to rely mainly on more automatic processes (as reflected by an N2b
component), whereas the children with SLI seem to rely on more controlled processes (as reflected by a P3 component).
The TD children appear to use a combination of both learning mechanisms. These findings suggest that clinical inter-
ventions should aim at compensating for an implicit learning deficit in children with SLI, but not in children with ASD.
Future research should focus on developmental differences in implicit learning and related neural correlates in TD, ASD,
and SLI. Autism Res 2018, 11: 1050–1061. VC 2018 The Authors Autism Research published by International Society for
Autism Research and Wiley Periodicals, Inc.

Lay Summary: Autism and Specific Language Impairment (SLI) are two disorders characterized by problems in social
communication and language. Social communication and language are believed to be learned in an automatic way.
This is called “implicit learning.” We have found that implicit learning is intact in autism. However, in SLI there
seems different brain activity during implicit learning. Maybe children with SLI learn differently, and maybe this dif-
ferent learning makes it more difficult for them to learn language.
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Introduction

Social and communication skills, including language,

are thought to develop largely through implicit learn-

ing processes. Implicit learning refers to incidental

learning that leads to knowledge that we are not con-

sciously aware of, and is debatably believed to be dis-

tinctively different from explicit (or conscious) learning

[e.g., Abrahamse, Jim�enez, Verwey, & Clegg, 2010;

Reber, 1967, 2013]. We use this implicit learning system

to master grammar rules of our mother tongue [e.g.,

Saffran, Aslin, & Newport, 1996], and to learn how to

deal with our highly complex social environment [Lie-

berman, 2000]. It is therefore not surprising that

implicit learning is often studied in developmental dis-

orders characterized by deficits in these language and

social communication skills, such as autism spectrum

disorder (ASD) and specific language impairment [SLI;

see Obeid, Brooks, Powers, Gillespie-Lynch, & Lum,

2016; Zwart, Vissers, Kessels, & Maes, 2017].

At a neurobiological level, implicit and explicit learn-

ing can be dissociated, although some overlap and

interactions have also been reported. Implicit learning

is subserved by widespread neural networks depending

on the experience at hand [as reviewed by Reber, 2013].

Implicit skill learning often involves perceptual-motor

learning and therefore engagement of the basal ganglia

and the cerebellum [e.g., Janacsek, Fiser, & N�emeth,
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2012; Krishnan, Watkins, & Bishop, 2016]. Explicit

learning relies mainly on the Medial Temporal Lobe,

including the hippocampus, with connections to other

brain areas such as the prefrontal cortex [e.g., Reber,

2013]. However, it has been found that in some situa-

tions the hippocampus is also involved in implicit

learning [e.g., Hannula & Greene, 2012; Poldrack &

Rodriguez, 2003], and that the neural networks of

implicit and explicit learning interact [Destrebecqz

et al., 2005; Ullman, 2004]. Thus, the different neural

networks involved in implicit and explicit learning can

overlap and interact depending on the learning task.

Implicit learning is commonly investigated using the

Serial Reaction Time (SRT) task [Nissen & Bullemer,

1987]. In this task, participants are asked to respond to

visual stimuli as fast as they can by pressing a button.

Unknown to the participants, these stimuli follow a

repeating sequence. Often, random stimuli or blocks of

random stimuli are inserted in the task, giving the task a

probabilistic character (i.e., the stimuli follow the

sequence only with a certain probability). Implicit learn-

ing is present if responses to sequenced stimuli are faster

than those to random stimuli, despite the lack of task

instruction that would have encouraged a deliberate

seeking of underlying rules and participant awareness.

Although the SRT task reliably evokes learning, it is chal-

lenging to guarantee the implicit nature of the learning.

The implicit learning definition entails two different

aspects: the incidental nature of the learning (the pro-

cess) and the unconscious nature of the knowledge [the

product; e.g., Abrahamse et al., 2010; Perruchet, 2008;

Reber, 1967]. In the SRT task, it is assumed that learn-

ing is incidental in nature, because there is no instruc-

tion to learn. However, it cannot be ruled out that

participants have an intrinsic intention to learn. Partici-

pant awareness of the sequence (knowledge) is usually

measured by a verbal interview at the end of the experi-

ment, in which the participants are asked whether they

noticed the sequence, but it can also be estimated by

analyzing large drops in Response Times [RTs; “RT-

drops”; Haider & Rose, 2007]. It has been found that a

substantial part of the participants show signs of (partial)

awareness on the SRT task [e.g., Haider & Rose, 2007]. It

is believed that awareness can be prevented by using a

probabilistic sequence rather than a (simple) determinis-

tic sequences [e.g., Jim�enez, M�endez, & Cleeremans,

1996], and a probabilistic task might therefore be partic-

ularly sensitive to deficits in implicit learning.

Evidence for different neural mechanisms during inci-

dental and intentional learning on the SRT task has been

found [e.g., Ferdinand, Mecklinger, & Kray, 2008;

Fletcher et al., 2004; R€usseler, Hennighausen, M€unte, &

R€osler, 2003]. Studies using Event Related Potentials

(ERPs) measures on the SRT Task have repeatedly found a

negative deflection called the N2b component, followed

by a positive deflection called the P3 component. Several

studies have shown that the components are more

strongly enhanced when explicit knowledge is present

compared to when it is absent, and therefore concluded

that both N2b and P3 may be markers of explicit learning

[e.g., Eimer, Goschke, Schlaghecken, & St€urmer, 1996;

Miyawaki, Sato, Yasuda, Kumano, & Kuboki, 2005; Schla-

ghecken, St€urmer, & Eimer, 2000]. However, Fu, Bin,

Dienes, Fu, and Gao [2013] have argued that these stud-

ies may not have been sensitive enough to implicit learn-

ing, because: (a) their measures of implicit sequence

knowledge may have been contaminated with sequence

parts that were not learned at all; and (b) the studies may

have been underpowered. By adding a more sensitive mea-

sure for implicit knowledge, the authors found that the

N2b component is particularly pronounced during implicit

learning, whereas the later P3 component is related to

explicit learning [Fu et al., 2013], in line with similar claims

by other authors [Ferdinand et al., 2008; Zwart, Vissers, Van

der Meij, Kessels, & Maes, 2017]. Although the exact inter-

pretation of the N2b and P3 can be debated, the latency of

the components suggests that the early N2b component

reflects lower level cognitive processes, such as the auto-

matic detection of deviations in the environment, com-

pared to the later P3 component, which may reflect more

controlled or conscious ways of processing.

The majority of studies that used the SRT task to inves-

tigate implicit learning in ASD show intact implicit per-

formance [Foti, De Crescenzo, Vivanti, Menghini, &

Vicari, 2015; Obeid et al., 2016; Zwart, Vissers, Kessels,

et al., 2017]. However, several studies find evidence for

(subtle) impairments in learning on the SRT task in ASD

[Gordon & Stark, 2007; Mostofsky, Goldberg, Landa, &

Denckla, 2000; Sharer, Mostofsky, Pascual-Leone, &

Oberman, 2016; Travers, Kana, Klinger, Klein, & Klinger,

2015]. It has been suggested that autistic participants

rely more on explicit learning than nonautistic partici-

pants, perhaps as a compensatory mechanism for a defi-

cit in implicit learning [e.g., Klinger, Klinger, & Pohlig,

2007]. In line with this, ERP findings of our previous SRT

task study suggested a greater reliance on (intrinsic)

intentional learning mechanisms in autistic adults (as

reflected by a P3 component) compared to nonautistic

adults (who showed an enhanced N2b component),

whereas behavioral performance was intact [Zwart, Viss-

ers, van der Meij, et al., 2017]. Similarly, a recent fMRI

study found different neural correlates for autistic partic-

ipants compared to TD individuals, while their behav-

ioral performance was similar [Sharer et al., 2015]. Thus,

behavioral learning on the SRT task seems intact in ASD,

but there is some evidence for different neural substrates,

perhaps reflecting an altered underlying learning

mechanism.

Implicit learning has also been studied widely in SLI, a

developmental disorder characterized by language
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impairments in the absence of sensory, medical, or intel-

lectual deficits [Bishop, 1992; Tomblin et al., 1997]. It has

been proposed that these language impairments, in partic-

ular the grammar difficulties, result from a deficit in over-

all procedural (or implicit) learning [Ullman & Pierpont,

2005] or from a more specific deficit in implicit sequence

learning [Hsu & Bishop, 2014]. Indeed, most studies

reported impaired implicit learning on the SRT task in SLI

[Lum, Conti-Ramsden, Morgan, & Ullman, 2014; Obeid

et al., 2016; Zwart, Vissers, Kessels, et al., 2017], although

several studies demonstrated intact performance [e.g.,

Gabriel, Maillart, Guillaume, Stefaniak, & Meulemans,

2011; Lum & Bleses, 2012]. Similar to ASD, a compensatory

role of explicit learning has been suggested in SLI too [Lum

et al., 2014], but it is still debated whether this explicit

learning is fully intact [e.g., Hsu & Bishop, 2014; Ullman &

Pierpont, 2005]. Supporting this are findings that grammar

abilities were associated with implicit learning in TD chil-

dren, whereas they were associated with explicit learning in

children with SLI [Lum et al., 2014]. To the best of our

knowledge, no studies to date have investigated neural sub-

strates of implicit learning in SLI. A recent study did show

altered ERPs in subgroups of SLI during a language task

[Haebig, Weber, Leonard, Deevy, & Tomblin, 2017].

The aim of the current study is to investigate implicit

learning and the possible (compensatory) role of explicit

learning in children with ASD and SLI, by behavioral

(RTs) and ERP measures from an SRT task. Based on previ-

ous literature, we expected that TD children would tend

to use mainly automatic processes during sequence learn-

ing, and that this would be reflected by an N2b enhance-

ment, whereas autistic and SLI children would show more

intentional or top-down learning, reflected by a P3

enhancement. We hypothesized that these different learn-

ing styles would lead to intact behavioral performance

(measured in RTs) in ASD, but to impaired behavioral per-

formance in SLI on a probabilistic part of the task, for

which we assumed implicit processes to be dominant. Fur-

thermore, we expected similar behavioral performance for

ASD, SLI, and TD on a deterministic part of the task, for

which we assumed that both incidental and intentional

processes can be effective. In addition, we explored how

these different learning strategies affect explicit knowledge

as measured by verbal reports and RT-drops. Differentiat-

ing developmental communication disorders (e.g., in ASD

and SLI) in terms of cognitive processes, such as learning

processes, is necessary for tailored assessment and treat-

ment [Vissers & Koolen, 2016].

Methods
Participants

Sixteen children with an ASD diagnosis, 13 children

with an SLI diagnosis, and 17 typically developing (TD)

children without a history of psychiatric disorder were

recruited (see Supporting Information Appendix 1 for

details on drop-out). The three groups were matched on

age, IQ and sex (see Table 1 for details). ASD and SLI

diagnoses were made by a clinical psychologist or psy-

chiatrist. Most SLI children (11/13) were diagnosed by a

multidisciplinary team from Dutch centers specialized

at communication disorders (i.e., Royal Dutch Kentalis).

Data from one autistic girl and one boy with SLI could

only be used for the behavioral and EEG-analyses regard-

ing the probabilistic condition due to logistic reasons. All

children were free of major neurological disorders and

had (corrected-to) normal vision. Informed consent was

obtained from the parents before participating.

Procedures

General procedures. The children were tested at their

schools or at their usual clinical practice in two short ses-

sions or one longer session. The abbreviated Wechsler

Nonverbal Scale of Ability [WNV; Wechsler & Naglieri,

2006] was administered to estimate IQ. The parents were

asked to complete the Social Responsiveness Scale [SRS;

Constantino & Todd, 2005], a questionnaire consisting of

65 items with 4-point Likert-scale answer options, which

measures the children’s levels of social impairments

related to ASD.

SRT task. A Dell Latitude 5,450 laptop was used for

the SRT task. The task stimuli were centered in order to

reduce eye movements in EEG recordings. The children

were asked to respond as fast as possible by button press

to a picture of a plane pointing in one of four direc-

tions; each direction was mapped onto one of four col-

ored response keys on a Logitech G510s keyboard (Fig.

1). Unknown to the child, the orientations and mapped

colors of the planes followed a sequence.

Table 1. Groups’ Demographic Characteristics

TD group ASD group SLI group

P-valuea Post hoc

(n 5 17) (n 5 16) (n 5 13)

M (SD) M (SD) M (SD)

Age (years) 11.2 (0.76) 11.3 (0.93) 11.3 (0.64) 0.83 –

Sex (F:M) 9:8 7:9 4:9 0.48 –

IQb 105.4 (13.4) 96.6 (13.5) 99.9 (10.4) 0.15 –

SRSc 47.3 (9.6) 67.7 (11.5) 70.0 (18.6) <0.001 TD<ASD

5 SLI

a P-value of statistical tests comparing ASD, SLI, and TD group (i.e.,

one-way ANOVA’s with Group (TD, ASD, SLI) as between-subject factor

for age, IQ and SRS; and a Chi-square test for sex).
b Based on subtests matrices and spatial span of the Wechsler Nonver-

bal Scale of Ability (WNV).
c Social Responsiveness Scale (SRS) was missing from 5 TD, 2 ASD,

and 3 SLI children.
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The SRT task consisted of a practice task (48 trials not

following a sequence) and five target tasks with short

breaks in between, in which two sequences were

repeated. The experiment started with 60 repetitions of

the first sequence ‘2-1-3-4-3-2-4-1’ (tasks 1 and 2, and

first half of task 3), directly followed by 60 repetitions

of the second sequence ‘4-3-4-1-3-2-1-2’ (second half of

task 3, and tasks 4 and 5). Both sequences were second-

order in nature: two subsequent elements uniquely pre-

dicted the next element. We ensured both sequences

contained (a) no repeating elements; (b) only one

‘serial’ triplet (e.g., 1-2-3); and (c) only two ‘alternating’

triplets (e.g., 1-2-1). The first sequence was probabilistic

in nature, including a ‘deviant’ trial in every sequence

repetition at a semi-randomized position (to minimize

its predictability). Deviant trials had a random direction

under the constraints that the trial did not repeat the

direction of adjacent stimuli and that each stimulus

was equally often presented. These randomized posi-

tions of the deviant trials were in turn randomized

across children. The second sequence was deterministic

in nature, that is, not including deviant trials.

Response-to-stimulus interval was set at 500 ms.

After the experiment, a short verbal interview was

administered to assess subjective explicit knowledge of

the deterministic sequence. This started with: “Did you

notice anything about the experiment?.” If the answer

was negative, children were told that planes followed a

sequence, and they were asked to describe this sequence

and encouraged to guess. They were allowed to point at

the buttons instead of describing the sequence in words.

EEG recordings. EEG was recorded using 32 active

electrodes (10–20 arrangement), referenced online to

the left mastoid. Data were referenced offline to both

mastoids. To control for horizontal and vertical eye

movements, electrooculogram (EOG) was recorded from

the outer ocular canthi and the left sub- and supraor-

bital ridges. EEG and EOG signals were sampled at 500

Hz, filtered online between 0.016 Hz and 1000 Hz.

Statistical Analyses

For all analyses, the alpha level was set at 0.05. Green-

house Geisser correction was applied where the spheric-

ity assumption was violated. EEG data analyses were

performed using the FieldTrip MATLAB toolbox devel-

oped at the Donders Institute for Brain, Cognition, and

Behavior, Nijmegen [Oostenveld, Fries, Maris, & Schof-

felen, 2011; http://www.fieldtriptoolbox.org].

To correct for multiple comparisons when investigating

significant interaction effects from the main analyses, a

Bonferroni adjusted alpha level of 0.05/85 0.00063 was

used for the 8-follow-up t-tests in the behavioral analyses

and an adjusted alpha level of 0.005 (5 0.05/10) was used

for the 10-follow-up t-tests in the ERP analyses.

Data preparation. For the behavioral analyses, the

trials of each sequence (i.e., probabilistic and determin-

istic) were split into 3 blocks of 20 sequences (160 tri-

als) to assess learning over time. Extreme outliers were

determined for standard trials as RTs 1.53 Interquartile

Range (IQR) 1/2 the median RT of each block, and for

deviant trials as 1/21.5 3 IQR over 2 blocks. Trials

with erroneous responses and the subsequent trial as

well as trials after a deviant trial were removed.

Major EEG artifacts were detected by visual inspec-

tion; electrodes with artifacts in more than 20 trials in

the probabilistic condition were discarded entirely. Tri-

als that were overlapping due to premature responses

were discarded (i.e., if a child responded within 150 ms,

the next stimulus would be presented within the P3

time window; mean number of trials removed per child

<2). Subsequently, eye movement artifacts were removed

using independent component analyses (ICA). After ICA,

further outliers were removed using a semi-automatic pro-

cedure. On average 149 (out of 210) standard trials and

24 (out of 30) deviant trials were included in each half of

the probabilistic condition for ERP analyses. The groups

did not differ in number of included trials (P 5 0.87) or

channels (P 5 0.52).

Behavioral probabilistic and deterministic lear-

ning. Behavioral learning was investigated with a

Group (ASD, SLI, TD) 3 Trial Type (Standard, Deviant)

3 Block (3) repeated measures ANOVA with mean RT as

dependent variable for the probabilistic condition, and

a Group (ASD, SLI, TD) 3 Block (3) ANOVA for the

plane 2

plane 1

plane 3

plane 4

plane 3

plane 2

plane 4

plane 1

Figure 1. In the current SRT task, the child is asked to give a
motor response to a picture of a plane pointing in one of four
directions. Unknown to the child, the direction of the arrow is
determined by a repeating 8-element sequence (i.e., 2-1-3-4-3-
2-4-1).
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deterministic condition. Although not the focus of the

current paper, similar ANOVAs were conducted on

mean number of errors, in which the number of errors

on standard trials in the probabilistic condition was

divided by seven, because there were seven times more

standard trials than deviant trials.

Explicit knowledge: RT-drops and verbal reports.

Explicit knowledge was assessed by number of RT-drops

[similar statistical procedures as in Wessel, Haider, &

Rose, 2012]. Investigating awareness using RT data is

premised on the notion that as soon as a participant

develops awareness of learned information, RTs will

drop steeply and abruptly (i.e., RT-drop), which is not

seen in implicit knowledge. Learning a sequential struc-

ture is a gradual process, in which elements rather than

the whole sequence are learned [e.g., Schlaghecken

et al., 2000]. In the current task, the sequence can be

split into eight elements or triplets. RT-drops can be

determined by comparing these eight triplets. For each

of the eight triplets, we first concatenated the RTs of all

their member trials into a single pseudo time series,

which was subsequently smoothed by applying a

median filter of lag 3. Afterward, this time series was

made monotonically decreasing by replacing every RT

by the minimum of itself and all preceding RTs, starting

from the first RT. These new pseudo time series of each

of the eight triplets were then aligned for the purpose

of finding RT-drops. RT-drops occurred when (a) the

lowest RT (of eight RTs) at each aligned pseudo time

point was smaller than the 99% confidence interval

(99% CI) calculated using the median and standard

deviation of the other RTs, and (b) when the subse-

quent two RTs of the pseudo time series of this triplet

were below the upper bound of the CI of the current

RT (using a standard deviation of the median filtered

data of that triplet.

The verbal reports of the deterministic condition

were rated based on the number of recalled triplets.

Because many children reported incorrect elements too,

a verbal score was computed by multiplying the num-

ber of recalled triplets by the number of correct triplets

divided by the total number of recalled triplets. For

example, if a child reported two correct triplets, and

three incorrect triplets, it’s score was 2 3 2/5 5 0.80.

Between group (TD, ASD, SLI) differences in number

of RT drops and the verbal score were investigated by

Kruskal–Wallis H tests.

Spearman correlations were used to explore how

explicit knowledge measured in number of RT drops

and verbal reports contributed to overall learning per-

formance in the deterministic condition.

ERPs. A baseline of 2100 ms up to stimulus presenta-

tion was used for ERPs. ERP enhancements for deviant

trials compared to standard trials were investigated over

two halves of the probabilistic condition. No ERPs were

analyzed for the deterministic condition because this

condition did not include deviant trials.

Based on our previous findings in adults, we were

mainly interested in N2b and P3. In our analysis of the

children’s data we took into account the developmental

differences in ERP morphology, amplitudes, and laten-

cies that have been reported previously [e.g., Johnstone,

Barry, Anderson, & Coyle, 1996; van Dinteren, Arns,

Jongsma, & Kessels, 2014]. Based on findings of a gen-

eral decrease in latencies with age [e.g., Jost, Conway,

Purdy, Walk, & Hendricks, 2015; Ridderinkhof & van

der Stelt, 2000], we selected later time windows com-

pared to our adult study: N2b: 350–500 ms post stimu-

lus, and P3: 450–650 ms. A peak search in these time

windows was done for each child individually (mean

amplitude 620 ms around the peak) for Fz, Cz, and Pz

electrodes separately, with the exception for the N2b in

Fz for which a broad negativity without a clear peak

was found [see Fig. 3; similar to findings in children

from Johnstone et al., 1996], and we therefore used a

mean amplitude over the time window (350–500 ms)

for analyses.

To explore between group differences, Group (ASD,

SLI, TD) 3 Trial Type (Standard, Deviant) 3 Half (First

Half, Second Half) ANOVAs were conducted.

Because of our within-group hypotheses we have

focused on within-group Electrode (Fz, Cz, Pz) 3 Trial

Type (Standard, Deviant) 3 Half (First Half, Second

Half) ANOVAs. The effect of interest was a Trial Type

effect, which would reflect an ERP enhancement for

deviant compared to standard trials. In order to reduce

the number of statistical tests, and hence the probabil-

ity of a Type I error, we only conducted additional t-

tests for (interaction) effects of interest, that is, not for

Electrode or Half, which would only reflect an overall

amplitude change over location (Electrode) or time

(Half), irrespective of learning.

Results
Behavioral Results

Probabilistic learning. A Group (TD, ASD, SLI) 3

Trial Type (Standard, Deviant) 3 Block (3) ANOVA

revealed a main Trial Type effect, P<0.001, with slower

responses to deviant trials (M 5 927 ms) compared to

standard trials (M 5 819 ms), reflecting sequence learn-

ing (see Fig. 2; see Supporting information Appendix 2

for statistical details of behavioral analyses). A main

Block effect at trend level was found, P 5 0.061. A sig-

nificant Trial Type 3 Block interaction, P 5 0.015, with

follow-up t-tests suggesting an effect of Trial Type
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present at each Block (all P-value’s<0.00063 Bonferroni

adjusted alpha level). No main Group effect was found,

P 5 0.084, suggesting similar response speed across

groups. No other significant (interaction) effects were

found (P-values�0.19), suggesting no group difference

in probabilistic learning.

An ANOVA on errors revealed a main Trial Type

effect (F(1,43) 5 7.62, P 5 0.008, partial g2 5 0.15), with

a higher number of errors for deviant (M 5 1.51) com-

pared to standard trials (M 5 1.14). No other (interac-

tion) effects were found (P-values�0.29).

Deterministic learning. A Group (TD, ASD, SLI) 3

Block (3) ANOVA revealed a main Block effect,

P<0.001, following a linear trend, P<0.001, reflecting

a decrease in RTs over time and hence deterministic

learning. A main Group effect was found, P 5 0.046,

with follow-up t-tests revealing overall slower responses

in SLI (RTs: M 5 841 ms) compared to ASD (M 5 661

ms), P 5 0.029, but this difference lost statistical signifi-

cance against a Bonferroni-corrected alpha of 0.00063

(5 0.05/8). No other group differences were found: SLI-

TD: P 5 0.20; ASD-TD: P 5 0.12. No Group 3 Block

interaction was found, P 5 0.26, suggesting similar

learning effects across groups.

Regarding number of errors, no significant (interac-

tion) effects were found (all P-values�0.61).

Explicit knowledge. Explicit knowledge was mea-

sured by number of RT-drops and verbal reports. A

Kruskal–Wallis H test with Group (TD, ASD, SLI) as fac-

tor and RT-drops as dependent variable revealed no dif-

ferences between groups, P 5 0.96. A group difference at

trend level was found for verbal reports, v2(2) 5 5.80,

P 5 0.055 (see Supporting Information Tables S3 and S4

in Appendix 3 for details on explicit knowledge mea-

sures). Follow-up Mann–Whitney U-tests showed a dif-

ference between ASD and TD group, raw P 5 0.033, in

favor of the ASD group, but this difference lost statisti-

cal significance when a Bonferroni adjusted alpha level

of 0.00063 was used. No differences between ASD/TD

and SLI were found (P-value’s�0.073).

Overall deterministic learning, defined as the mean

RTs of the first block minus the mean RTs of the last

block, correlated significantly with both verbal reports,

rs(44) 5 0.48, P 5 0.001, and RT drops, rs(44) 5 0.31,

P 5 0.043 (across groups).

Electrophysological Findings

Visual inspection. Visual inspection of the grand

averages (Fig. 3) shows a broad negativity at Fz, differ-

ent from the (expected) N2b peak. One potential cause

for this relatively unexpected finding could be linked to

complex (i.e., diagonal) eye movements despite thor-

ough cleaning of the eye artefacts using ICA (see Meth-

ods). However, comparing a subset of children with

many eye movements to a subset with only a few eye

movements did not substantially change the broad

morphology of the ERP at Fz (see Supporing Informa-

tion Appendix 4). Hence, it seems unlikely that this

pattern is driven by eye movements.
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Visual inspection of the grand averages within groups

(Fig. 4) and the scalp distribution (Fig. 5) suggest a cen-

tral negativity in the TD and ASD group and a fronto-

central positivity in the SLI group.

Negativity 350–500 ms (fz, cz, pz)

Across groups. A Group (TD, ASD, SLI) 3 Electrode

(Fz, Cz, Pz) 3 Trial Type (Standard, Deviant) 3 Half

(1,2) ANOVA revealed a main Electrode effect,

P<0.001, mean amplitudes: Fz: M 5 25.95 mV; Cz:

M 5 21.67 mV; Pz: M 5 4.80 mV (see Supporting Informa-

tion Table S2 for full statistical details on the N2b and

P3 across groups analyses). Furthermore, a main Half

effect (P 5 0.002), with lower amplitudes during the sec-

ond (M 5 21.75 mV) than during the first Half

(M 5 20.12 mV), and an Electrode 3 Trial Type interac-

tion, P 5 0.009. Follow-up t-tests revealed that the Trial

Type effect was only found for the Cz electrode,

P 5 0.005, with more negative amplitudes for deviant

(M 5 22.37 mV) compared to standard trials (M 5 20.97

mV; other P-values�0.085). No other statistical signifi-

cant (interaction) effects were found (P-values�0.075)

Analyses within groups. Figures 4 and 5 show the

within-group Grand Averages at Cz and the ERP scalp

distribution respectively.

TD group: a main Electrode effect was found,

P<0.001, mean amplitudes: Fz: M 5 26.91 mV; Cz:

M 5 21.66 mV; Pz: M 5 6.09 mV (see Supporting Informa-

tion Table S6 in Appendix 5 for full statistical details on

ERP analyses in TD). Furthermore, a main Half effect

was found, P 5 0.025, with lower amplitudes during the

second (M 5 21.59 mV) than during the first Half

(M 5 20.062 mV). A Trial Type 3 Half interaction effect

was also significant P 5 0.026, with follow-up analyses

revealing a Trial Type only during the second half,

P 5 0.035, reflecting a stronger negativity for deviant

(M 5 22.47 mV) compared to standard trials (M 5 20.71

mV), but this effect lost significance when Bonferroni-

corrected alpha of 0.005 was applied. No other (interac-

tion) effects were found (P-values�0.14).

ASD group: a main Electrode effect was found,

P<0.001, mean amplitudes: Fz: M 5 26.84 mV; Cz:
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M 5 21.81 mV; Pz: M 5 4.01 mV (see Supporting Informa-

tion Table S4 in Appendix 5 for statistical details on

ERP analyses in ASD). A main Half effect was found

P 5 0.012, with lower amplitudes during the second

(M 5 22.39 mV) compared to the first Half (M 5 20.70

mV). Furthermore, a main Trial Type effect, P 5 0.065,

and an Electrode 3 Trial Type, P 5 0.052, were found at

trend level. Follow-up t-tests revealed a Trial Type effect

at Cz electrode only, P<0.002 (Bonferroni adjusted

alpha level: 0.005), with stronger negativity for deviant

(M 5 22.97 mV) compared to standard trials (M 5 20.64

mV). No other (interaction) effects were found (P-

values�0.47).

SLI group: a main Electrode effect was found,

P<0.001, mean amplitudes: Fz: M 5 23.58 mV; Cz:

M 5 21.51 mV; Pz: M 5 4.09 mV (see Supporting Informa-

tion Table S5 in Appendix 5 for statistical details on

ERP analyses in SLI). No other (interaction) effects

reached statistical significance (P-values�0.085).

In sum, across groups, an N2b enhancement was

found at Cz. Within groups, this effect was present only

in ASD, and during the second half in TD, but the latter

lost statistical significance when alpha levels were Bon-

ferroni adjusted. No N2b effects were found in SLI.

P3 450–650 ms (fz, cz, pz)

Analyses across groups. A Group (TD, ASD, SLI) 3

Electrode (Fz, Cz, Pz) 3 Trial Type (Standard, Deviant)

3 Half (1,2) ANOVA revealed a main Electrode effect:

P<0.001, mean amplitudes: Fz: M 5 21.40 mV; Cz:

M 5 26.63 mV; Pz: M 5 12.59 mV. Furthermore, a main

Trial Type effect was found, P 5 0.005, with higher

amplitudes for deviant (M 5 6.57 mV) compared to stan-

dard trials (M 5 5.31 mV), reflecting P3 enhancement. A

main Half effect, P<0.001, with higher amplitudes dur-

ing the first (M 5 7.04 mV) than during the second Half

(M 5 4.84 mV) was also found. No other (interaction)

effects were found (P-values�0.075)

Analyses within groups. TD group: a main Elec-

trode effect was found P<0.001 mean amplitudes: Fz:

M 5 22.68 mV; Cz: M 5 5.75 mV; Pz: M 5 12.8 mV. A

main Half effect, P 5 0.008, with higher overall ampli-

tudes during the first (M 5 6.37 mV) compared to the

second Half (M 5 4.19 mV), and a Trial Type 3 Half

interaction, P 5 0.034, were found. Follow-up t-tests

revealed a Trial Type only during the first half,

P 5 0.013 (Bonferroni adjusted alpha-level: 0.005),

reflecting a stronger positivity for deviant (M 5 6.76 mV)

compared to standard trials (M 5 5.49 mV). No other

(interaction) effects were found (P-values�0.19).

ASD group: a main Electrode effect was found,

P<0.001, mean amplitudes: Fz: M 5 21.61 mV; Cz:

M 5 7.35 mV; Pz: M 5 12.8 mV. Furthermore, a main Half

effect was found, P 5 0.007, with higher amplitudes

during the first Half (M 5 7.17 mV) compared to the sec-

ond Half (M 5 5.19 mV). No other (interaction) effects

were found (P-values�0.24).

SLI group: a main Electrode effect was found

P<0.001, mean amplitudes: Fz: M 5 0.53 mV; Cz:

M 5 6.90 mV; Pz: M 5 12.1 mV. Furthermore, a main Trial

Type effect was found, P 5 0.031, with stronger positiv-

ity for deviant (M 5 7.60 mV) compared to standard tri-

als (M 5 5.41 mV), reflecting a P3 enhancement. No

other (interaction) effects were found (P-values�0.11).

Thus, across groups, a P3 enhancement was found.

Within groups, this effect was found in SLI, and during

the first half in TD. No P3 effects were found in ASD.

Discussion
Aim

The aim of the current paper was to investigate implicit

learning in ASD and SLI using both behavioral and ERP

measures on the SRT task, and to explore the potential

role of a compensatory explicit learning system in both

disorders.

Implicit Learning in ASD

The autistic children showed similar behavioral learn-

ing as TD children, in line with the majority of findings

in ASD [Foti et al., 2015; Zwart, Vissers, Kessels, et al.,

2017]. Scores on the post-experimental interviews
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Figure 5. Visualization of the amplitude differences between
deviant and standard trials for the N2b time window (upper)
and the P3 time window (lower) for the TD (left), ASD (middle),
and SLI (right) group. Note the frontal positivity in SLI, com-
pared to the central negativity in TD and ASD.
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indicate that autistic children may have more verbal

explicit knowledge than TD children, although this dif-

ference was only weak. Furthermore, no group differ-

ences were found in the RT-drop measures of explicit

knowledge.

Electrophysiologically, probabilistic learning in autis-

tic children was reflected by a central negativity (350–

500 ms) enhancement, most likely reflecting an N2b

component. Within-group analyses showed that while

this negativity was present during both early and late

learning stages in ASD, it was only present during late

learning in TD, and not at all in SLI children. An N2b

effect has been associated with implicit learning pro-

cesses on the SRT task [e.g., Fu et al., 2013], although

others have found an N2b for both implicit and explicit

learners and defined it more broadly as an error moni-

toring process [Ferdinand et al., 2008]. These findings

suggest that autistic children use automatic processes to

detect deviants in regularities, and this may be inter-

preted as a reflection of intact implicit learning.

This strong negativity effect in autistic children con-

trasts our previous findings in adults, in which we

found probabilistic learning to be characterized by an

N2b in TD, and rather by a P3 in ASD [Zwart, Vissers,

van der Meij, et al., 2017]. Taken together, these find-

ings suggest that autistic adults rely more on inten-

tional or effortful learning strategies (as suggested by

the P3), while autistic children show signs of more

automatic processes similar to TD children (as suggested

by the N2b). It is believed that the declarative (explicit)

learning mechanism starts to become more prominent

after the age of 12 years [e.g., Janacsek et al., 2012]. Per-

haps, the suggested compensatory role of intentional

learning in ASD [e.g., Klinger et al., 2007] only becomes

prominent in adolescence.

Implicit Learning in SLI

The SLI children showed similar behavioral learning as

the TD children, which was unexpected based on the

majority of literature [Obeid et al., 2016; Zwart, Vissers,

Kessels, et al., 2017]. However, some studies report a

deficit only in retention of learning, not in initial

sequence learning [e.g., Desmottes, Maillart, & Meule-

mans, 2017; Hedenius et al., 2011]. Furthermore, a sub-

stantial number of other studies have also reported

comparable learning in SLI on the SRT task [Gabriel

et al., 2011; Gabriel, Meulemans, Parisse, & Maillart,

2015; Gabriel, Stefaniak, Maillart, Schmitz, & Meule-

mans, 2012; Lum & Bleses, 2012]. The current findings

also suggest that overall responses might be slower is

SLI compared to ASD, and variance in the response

times seems to be high. These findings may be related

to overall motor problems in SLI, but it is important to

note that motor deficits could not have adversely

affected behavioral and ERP findings of learning, as the

learning effects concerned within-subject factors (i.e.,

Trial Type effect and/or Block effect). No differences

between SLI and TD in explicit knowledge as measured

by verbal reports or RT-drops were found.

Contrary to the ASD results, probabilistic learning in

SLI was not reflected by an early negativity, but by a

fronto-central positivity enhancement (450–650 ms),

most likely reflecting a P3-like component. Although

overall this effect did not differ from the findings in the

other groups, within-group analyses showed that while

this positivity enhancement was present during both

early and late stages of learning in SLI, it was only pre-

sent during early learning in TD, and not at all in ASD.

As discussed earlier, the P3 is associated with updating

working memory [e.g., Linden, 2005], and on the SRT

task with intentional learning [e.g., Ferdinand et al.,

2008]. The fronto-central positivity finding is likely to

reflect more controlled processes compared to the ear-

lier negativity found in ASD, and could therefore be in

line with the idea of a compensatory role of intentional

learning in SLI [Lum et al., 2014]. Thus, it seems that

the children with SLI use more effortful strategies and

that these strategies are needed throughout the task.

The current ERP findings in SLI also fit in the theoret-

ical framework of an implicit learning deficit in SLI

developed by Ullman and Pierpont [2005]. Ullman

described that language learning involves both proce-

dural (or implicit) memory involving frontal/basal gan-

glia circuits, particularly the nigro-striatal system, and

declarative (or explicit) memory mainly relying on hip-

pocampal structures [Ullman, 2004]. Based on findings

of a Go-NoGo study including patients with basal gan-

glia disorders, it has been suggested that the N2 is asso-

ciated with the nigo-striatal system for pre-motor

inhibition, whereas the P3 is more associated with the

mesocortico-limbic system involved in outcome moni-

toring [Beste, Willemssen, Saft, & Falkenstein, 2010]. In

line with this, intracranial findings suggest that

hippocampal-frontal networks are involved in a frontal

P3 component [Knight, 1996]. Thus, it could be specu-

lated that our ERP findings in SLI reflect impaired basal

ganglia learning (reflected by the absence of the N2b)

which is compensated for by hippocampal learning

(reflected by the frontal P3) in line with the procedural

learning deficit from Ullman and Pierpont [2005].

Limitations and Future Research

The small sample sizes of the current study might have

contributed to the lack of overall group differences in

ERP findings even though the within-group analyses

suggested different patterns. The (particularly) small

size of the SLI group might have contributed to no sta-

tistically significant difference in behavioral learning
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compared to TD. Alternatively, or in addition, our

behavioral analyses with relatively large blocks of trials

might not have been sensitive enough to pick up subtle

deficits in learning, such as a slower rate of learning.

Investigating smaller blocks of trials could reveal if chil-

dren with SLI need more blocks of training before learn-

ing occurs.

Identifying the ERP components N2b and P3 in the

current data proved to be challenging, as the number

of previous studies examining these components in

school-aged children is very limited. We have chosen

later time windows for our ERP search in children com-

pared to our previous adult study, based on general

findings of a decrease in ERP latencies with age [e.g.,

Fuchigami et al., 1993; Johnstone et al., 1996; Polich,

Ladish, & Burns, 1990; Ridderinkhof & van der Stelt,

2000; van Dinteren et al., 2014; but also see Tom�e, Bar-

bosa, Nowak, & Marques-Teixeira, 2015]. It could be

argued that the current findings reflect later ERP com-

ponents than the N2b and P3, which might also par-

tially explain the broad frontal negativity in our

findings (rather than the peak-like N2b). For example,

our negativity findings may be interpreted as an N400,

which has been associated to meaning processes in ver-

bal and nonverbal language studies [see Kutas & Feder-

meier, 2011]. The N400 is thought to reflect processes

relatively outside awareness [e.g., Curran & Cleary,

2003; Kutas & Federmeier, 2011], although the modu-

lating role of selective attention in the N400 suggest

that it is not fully automatic [Kutas & Federmeier,

2011]. Because of the nature of our task (i.e., a sequence

of monotomous stimuli) and the previous findings of

N2b and P3 components on similar tasks [e.g., Ferdi-

nand et al., 2008; Jost, Conway, Purdy, & Hendricks,

2011; Zwart, Vissers, van der Meij, et al., 2017], our

findings most likely reflect an N2b and P3, but it is

important to note that questioning the terminology of

the ERP findings would not change the overall interpre-

tation of an earlier negativity as a reflection of a largely

automatic detection of deviants, and a later positivity

as a reflection of more controlled processes.

The ambiguity in identifying ERP components in

children is not unique to our study, and the field of

developmental changes in ERPs could greatly benefit

from future research on age related changes in ERP

characteristics. Currently, it is questionable whether the

few individual child studies have identified the same

ERPs. For example, one child study using a statistical

learning paradigm identified a P3 peak in a time win-

dow of 190–350 ms [Jeste et al., 2015], while another

study using a similar paradigm investigated a P3 peak

between 400 and 700 ms [Jost et al., 2015]. Hence, in

order to reach consensus, studies including different

age groups investigating popular ERPs (such as the N2b

and the P3) on the same paradigm are needed.

Conclusions and Clinical Implications

The current study shows that implicit statistical learn-

ing is intact in autistic children, both in behavioral as

well as in electrophysiological respect. The potential

overreliance on explicit strategies might still play a role

later in development during adolescence, when inten-

tional learning mechanisms start to become more

prominent. However, at least for children with ASD,

interventions should not solely rely on intentional

learning. A more implicit way of teaching a skill can be

found in errorless learning techniques, in which the

skill is trained while minimalizing error making [e.g.,

Terrace, 1963]. In ASD, this approach has been success-

fully applied to improve social engagement, in which a

desired social interaction was created followed by a

gradual removal of prompts from the situation [Steven-

son, Krantz, & McClannahan, 2000].

In contrast, learning seems different for children with

SLI, as our electrophysiological findings suggest that

these children use more controlled, effortful strategies

to reach the same behavioral performance. This might

be due to the use of intentional learning to compensate

for an implicit learning deficit [Ullman & Pierpont,

2005]. Interventions for children with SLI could aim at

compensating for the limited implicit learning abilities,

by offering more explicit training in learning statistical

regularities, such as grammar and social situations.
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