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Mefloquine is a quinoline derivative antimalarial which demonstrates promise for the treatment of
schistosomiasis. Traditionally employed in prophylaxis and treatment of chloroquine-resistant
Plasmodium falciparum malaria, recent changes to the approved European and U.S. product labeling for
mefloquine now warn of a risk of permanent and irreversible neurological sequelae including vertigo, loss
of balance and symptoms of polyneuropathy. The newly described permanent nature of certain of these
neurological effects challenges the conventional belief that they are due merely to the long half-life of
mefloquine and its continued presence in the body, and raises new considerations for the rational use
of the drug against parasitic disease. In this opinion, it is proposed that many of the reported lasting
adverse neurological effects of mefloquine are consistent with the chronic sequelae of a well character-
ized but idiosyncratic central nervous system (CNS) toxicity syndrome (or toxidrome) common to certain
historical antimalarial and antiparasitic quinolines and associated with a risk of permanent neuronal
degeneration within specific CNS regions including the brainstem. Issues in the development and
licensing of mefloquine are then considered in the context of historical awareness of the idiosyncratic
CNS toxicity of related quinoline drugs. It is anticipated that the information presented in this opinion
will aid in the future clinical recognition of the mefloquine toxidrome and its chronic sequelae, and in
informing improved regulatory evaluation of mefloquine and related quinoline drugs as they are explored
for expanded antiparasitic use and for other indications.
� 2014 The Authors. Published by Elsevier Ltd. on behalf of Australian Society for Parasitology Inc. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Mefloquine is a 4-quinolinemethanol antimalarial and antipar-
asitic drug that is structurally related to quinine. Although increas-
ingly investigated for its promising antischistosomal properties
(Keiser et al., 2010; Basra et al., 2013), mefloquine is associated
with a diverse range of adverse neurological effects (Croft,
2007a) which, together with the drug’s neuropsychiatric contrain-
dications (Wooltorton, 2002), have limited the drug’s utility for its
original antimalarial indications, particularly for prevention of dis-
ease (Arznei-Telegramm, 2013b; Bisoffi et al., 2013).

According to recent European product labeling (Hoffmann-La
Roche, 2013a) and the results of a randomized blinded trial
(Overbosch et al., 2001), commonly reported neurological effects
from mefloquine which occur in 1–10% of prophylactic users
include vertigo and visual difficulties. Additional idiosyncratic
neurological effects reported in both European and U.S. product
labeling include balance disorder, peripheral neuropathy,
paresthesias, tremor, and ataxia (Hoffmann-La Roche, 2013b,
2014; Roxanne Laboratories, 2013). Case reports also describe
dysesthesias (Félix et al., 1985; Jha et al., 2006), disequilibrium
(Patchen et al., 1989), nystagmus (Nevin, 2012a), and photophobia
(Caillon et al., 1992).

Although adverse neurological effects had previously been con-
sidered fully reversible (Arznei-Telegramm, 2013a), diminishing in
intensity with the slow elimination of the drug (Nevin, 2013), in
2012, the U.S. Food and Drug Administration (FDA) announced it
was reevaluating mefloquine specifically for concerns of an associ-
ation with lasting vestibular disorder based on new signals
detected from its FDA Adverse Event Reporting System (FAERS)
(U.S. Food and Drug Administration, 2012). In 2013, European
regulators updated the drug’s core safety profile to warn that
symptoms of polyneuropathy developing during mefloquine use
were associated with risk of an irreversible neurological condition
(Bundesinstitut für Arzneimittel und Medizinprodukte, 2013), and
FDA updated the U.S. product labeling with a boxed warning that
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other neurological effects including vertigo and loss of balance
could be permanent in some cases (Arznei-Telegramm, 2013b;
McGuire and Wilson, 2013).

Originally developed by the U.S. military and first licensed in
Europe over a quarter century ago by F. Hoffmann-La Roche as Lar-
iam� (Croft, 2007a), the innovator product was recently with-
drawn from the U.S. market without explanation (Strauch et al.,
2011). Generic formulations of mefloquine remain recommended
in the U.S. (Centers for Disease Control and Prevention, 2013),
but are decreasingly prescribed for the drug’s original antimalarial
indications (LaRocque et al., 2012; Kersgard and Hickey, 2013).
Similarly, while the innovator product remains licensed in many
European countries (Arznei-Telegramm, 2013a), certain authorities
now recommend its use only as a drug of last resort (Arznei-
Telegramm, 2013b; Bisoffi et al., 2013).

Although the adverse neurological effects of mefloquine have
been known for nearly a quarter century (World Health
Organization, 1989a), the recent emphasis by regulatory authori-
ties of the permanent nature of some of these effects challenges
the conventional belief that they are due merely to the long half-
life of the drug (Schlagenhauf et al., 2010) and its continued pres-
ence in the body. The possibility of permanent neurological seque-
lae from the use of mefloquine introduces important new
considerations for the continued rational use of the drug and calls
for an improved effort to better characterize the pathophysiology
of these effects.

In this opinion, it is proposed that many of the lasting adverse
neurological effects of mefloquine are consistent with the chronic
sequelae of a well characterized but idiosyncratic central nervous
system (CNS) toxicity syndrome (or toxidrome) common to a num-
ber of historical antimalarial and antiparasitic quinolines and asso-
ciated with a risk of permanent neuronal degeneration within
specific CNS regions including the brainstem. Issues in the develop-
ment and licensing of mefloquine are then considered in the con-
text of historical awareness of the CNS toxicity of related
quinoline drugs.

It is anticipated that the information presented in this opinion
will aid in the future clinical recognition of the mefloquine toxi-
drome and its chronic sequelae, and in informing improved regula-
tory evaluation of mefloquine and related quinoline compounds,
particularly as these drugs are investigated for expanded use
worldwide for antiparasitic and other indications.
2. Historical evidence of quinoline CNS toxicity

Although not well described in the contemporary literature, the
neurological toxidrome observed with mefloquine appears not to
be unique to the drug, but instead shares a number of clinical char-
acteristics in common with idiosyncratic CNS toxicity syndromes
produced by certain related quinoline derivatives, including drugs
that had historically been widely employed as antimalarials and
antiparasitics.

While the naturally occurring cinchona alkaloid quinolines
were historically well known to cause seemingly reversible neuro-
logical effects including symptoms of cinchonism (Taylor and
White, 2004), the potential for lasting neurological effects from
quinoline drugs was recognized in the mid 1940s, when certain
synthetic quinoline antimalarials were found to cause irreversible
CNS toxicity. In particular, the synthetic 8-aminoquinolines pama-
quine and plasmocid, then both in common use as antimalarials
(Manwell, 1949; Benazet, 1963), were linked to an idiosyncratic
neurological syndrome accompanied by direct histopathological
evidence of CNS neuronal degeneration in human and animal sub-
jects. These drugs induced in the most extreme cases ‘‘highly local-
ized degenerative changes in the (CNS) associated with functional
derangement’’ (Smith and Schmidt, 1947). Nearly three decades
later the synthetic hydroxyquinoline clioquinol, then in common
use as an antiparasitic (Kono, 1971), had also been linked to a
related idiosyncratic neurological syndrome again accompanied
by histopathological evidence of CNS neuronal degeneration
(Shiraki, 1971; Kono, 1975).

In the following sections, the clinical manifestations and histo-
pathological findings associated with idiosyncratic intoxication
with these three drugs are reviewed. Although comparable effects
have been observed with a large number of other synthetic quino-
line derivatives (Schmidt and Schmidt, 1951; Schmidt, 1983), the
well-characterized and fairly conserved nature of the extensive
CNS neuronal degeneration caused by these three drugs, together
with their widespread historical use in antimalarial and antipara-
sitic therapy, are of greatest relevance in demonstrating the poten-
tial for lasting but previously unrecognized neurological effects
from mefloquine.

2.1. Pamaquine

Pamaquine, known chemically as 8-(4-diethylamino-1-meth-
ylbutylamlno)-6-methoxyquinoline, originally developed by the
Germans (British Medical Journal, 1926; The Science News-Letter,
1926) and also known as praequine, plasmochin, or plasmoquine,
was initially thought to be free of cinchona-like neurological
effects. In use as an antimalarial since the late 1920s (Hardgrove
and Applebaum, 1946), a large review of 258 cases of toxic reac-
tions to the drug failed to identify any symptoms suggestive of
CNS toxicity (Hardgrove and Applebaum, 1946). However, pama-
quine was found in some users to induce similar symptoms of ver-
tigo and photophobia (U.S. Army Medical Department, 1943;
Hardgrove and Applebaum, 1946) and visual disturbance (West
and Henderson, 1944) to those commonly attributed to the cin-
chona alkaloids. Benign perceptions of the safety of pamaquine
were challenged when a fatal case of human overdose, marked
by blurred vision and facial paresthesias, was found at autopsy to
have significant neuronal degeneration within specific brain struc-
tures including the brainstem. Careful histopathological study
revealed extensive focal degeneration of the pontine nuclei, with
mild to moderate degeneration of the vestibular nuclei, particu-
larly the medial vestibular nuclei, as well as the nuclei of cranial
nerves III, IV, and VI (Loken and Haymaker, 1949).

Although comparable neurological reactions to pamaquine
observed in rhesus monkeys had been characterized as reversible
(Schmidt and Smith, 1947), on histopathological testing, the drug
in small doses was found to produce strikingly similar effects to
those observed later in man (Loken and Haymaker, 1949), causing
swelling and subtle degeneration in scattered neurons throughout
various brainstem nuclei including within the vestibular, supraspi-
nal, ruber, ambiguus, dorsal motor, lateral cuneate, and lateral
reticular nuclei, as well as those of cranial nerves III, IV, and VI
(Schmidt, 1947). At higher doses, the drug produced more exten-
sive degeneration in these areas (Schmidt, 1947; Schmidt and
Schmidt, 1951).

2.2. Plasmocid

The related 8-aminoquinoline plasmocid, known chemically as
8-(3-diethylaminopropylamino)-6-methoxyquinoline, originally
developed by the Russians (Findlay, 1950a) and also known as rho-
doquine or Fourneau 710 (Findlay, 1950b) was also found in early
human use to cause cinchona-like neurological effects including
vertigo, paresis and diplopia (Decourt, 1936). A 1945 review of
the foreign literature cited a diverse range of more serious neuro-
logical effects including severe ataxia, convergence disorder,
smoothing of the nasolabial fold, and deviation of the tongue
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(Board for the Coordination of Malarial Studies, 1945) suggestive of
focal brainstem dysfunction. A review of 76 human cases of neuro-
logical effects attributed to plasmocid toxicity found a range of
lasting deficits, including in equilibrium, coordination, and eye
muscle movement; some of these symptoms ‘‘persisted for months
or years after termination of treatment’’ (Schmidt and Schmidt,
1949).

In the absence of published neurohistopathological testing of
fatal human cases of plasmocid intoxication, early neurological
effects were commonly attributed to cerebellar ataxia, polyneuri-
tis, and optic atrophy (Findlay, 1950b). However, histopathological
testing in rhesus monkeys following administration of high doses
of plasmocid revealed almost complete destruction of the nuclei
of cranial nerves III, IV, and VI and of the vestibular nuclei; further
administration produced variable patterns of injury extending into
other brainstem nuclei (Schmidt and Schmidt, 1947; Lyle and
Schmidt, 1962), with highly scattered lesions extending through-
out the medulla, pons, striatum, and limbic system (Schmidt and
Schmidt, 1948; Sipe et al., 1973). Authors speculated that ‘‘the
effect of plasmocid on the human brain would be quite similar’’
to that observed in monkey (Sipe et al., 1973), and that multiple
human cases of CNS toxicity were ‘‘doubtless similar to these in
origin’’ (Schmidt, 1983).
2.3. Clioquinol

By the early 1970s, accumulating evidence with the antiparasitic
hydroxyquinoline clioquinol, known chemically as 5-chloro-7-
iodo-8-quinolinol, had demonstrated a similar propensity for CNS
toxicity to that observed with antimalarial 8-aminoquinolines.
Although idiosyncratic cases of human toxicity, labeled subacute
myelo-optic neuropathy (SMON) (Kono, 1971) are characteristically
associated with symptoms attributable to peripheral neurotoxicity,
cases of SMON have also featured disequilibrium (Ferrier and Eadie,
1973), visual disturbances (Kaeser, 1984), paresthesias and gait dis-
turbances (Tsubaki et al., 1971), and vertigo and nystagmus
(Yamasaki and Shibuya, 1968) equally attributable to CNS causes.

Although the neurohistopathology of SMON has been more typ-
ically characterized by extensive degeneration within the dorsal
columns and the optic nerve, extensive evaluation of autopsy cases
has also revealed degeneration of brainstem structures including
the inferior olive and nucleus ruber (Kono, 1975); the roots of cra-
nial nerves V, VIII, and X (Shiraki, 1971); and the nucleus gracilis
(Ricoy et al., 1982). On histopathological study across animal mod-
els, the drug produces scattered and highly variable degenerative
lesions including within the distal optic nerve and dorsal funiculus
of the spinal cord (Hoover et al., 1981) and fasciculus gracilis
(Tateishi et al., 1972a) in beagle dogs; the optic tract and fasciculus
gracilis in cats (Tateishi et al., 1972b); and the nucleus gracilis in
rats (Arasaki and Nakanishi, 1989).
3. Evidence of mefloquine CNS toxicity

The most prominent neuropsychiatric effects identified during
the development of mefloquine including vertigo initially resem-
bled those of cinchonism induced by quinine (Stockwell, 1982;
World Health Organization, 1989b). Presumably due to lack of
direct histopathological evidence of quinine neurotoxicity and
the presumed transient nature of neurological effects from drugs
of the 4-quinolinemethanol class (Schmidt et al., 1978a,b), the drug
appears to have been assumed free of the known permanent CNS
toxicity of pamaquine, plasmocid, and clioquinol.

The neurotoxicity of mefloquine was only first reported in
papers published more than three decades after the drug’s
reported synthesis (Ohnmacht et al., 1971), following experiments
in cultured rat neuroblastoma and embryonic rat neuron cell lines
(Dow, 2003) over a range of neurophysiologically plausible concen-
trations (Dow et al., 2003). In subsequent years, confirmatory evi-
dence of the drug’s neurotoxicity was also obtained (Dow et al.,
2004, 2005; Caridha et al., 2008).

In direct histopathological testing in a rat model, high dose mef-
loquine induced neuronal degeneration evocative of the effects of
clioquinol in the nucleus gracilis, nucleus cuneatus, and solitary
tract (Dow et al., 2006), and was accompanied by ‘‘anxiousness/
hyperactivity’’ and functional changes in motor activity (Dow
et al., 2006). Study authors noted that the brainstem injury induced
by mefloquine was ‘‘permanent in nature’’ (Dow et al., 2006). Inde-
pendent authors subsequently demonstrated mefloquine neuro-
toxicity in rat cortical neurons (Hood et al., 2010; Milatovic et al.,
2011) and in human neuronal cell lines (Geng et al., 2010; Shin
et al., 2012). While recommended confirmatory human neurohis-
topathological testing has yet to be performed (Nevin, 2009), clin-
ical observations following intoxication from mefloquine at
prophylactic doses have demonstrated lasting deficits consistent
with brainstem lesions or dysfunction in the vicinity of the oculo-
motor and vestibular nuclei (Nevin, 2012a).

While a variety of pathological mechanisms may be evoked to
explain many of the signs and symptoms associated with meflo-
quine use, CNS neuronal degeneration similar to that observed in
the animal model and similar to that caused by pamaquine and cli-
oquinol in humans provides a highly parsimonious theoretical
explanation for many of the drug’s reported chronic neurological
effects, including lasting cases of vertigo (Grupp et al., 1994), dis-
equilibrium (Nevin, 2012a), and paresthesias (Lobel et al., 1998).

For example, although mefloquine is a known peripheral oto-
toxicant (Yu et al., 2011; Ding et al., 2013), focal neuronal degener-
ation in the vicinity of the oculomotor and vestibular nuclei (Nevin,
2012a), as observed at human autopsy with pamaquine and in ani-
mal models from plasmocid, provides a parsimonious pathophysi-
ological explanation for at least some of the reported chronic
vestibular effects of mefloquine. Similarly, while symptoms of mef-
loquine neuropathy have frequently been attributed to peripheral
causes (Watt-Smith et al., 2001; Jha et al., 2006) including to
C-fiber irritation (Chester and Sandroni, 2011), the lack of direct
evidence of specific peripheral neurotoxicity, together with the
drug’s demonstrated degenerative effects in the animal model in
areas of the brainstem involved in the processing of sensory inputs
including the nucleus gracilis, cuneatus and solitary tract (Dow
et al., 2006) suggest that CNS toxicity, analogous to that observed
historically with clioquinol, may provide a more plausible and
parsimonious pathophysiological explanation for these symptoms.

In spite of the large and growing body of neurotoxicity data
from in vivo and in vitro studies, broader acceptance of the possibil-
ity of clinically significant CNS neurotoxicity from mefloquine has
remained strangely elusive in the literature, possibly owing to the
absence of published human neurohistopathology studies (Nevin,
2009). Interestingly, in the absence of comparable human neuro-
histopathology, and on the basis of animal studies alone, clinically
significant human CNS neurotoxicity from plasmocid was never
seriously contested and was even deemed ‘‘doubtless’’ by leading
historical authorities (Sipe et al., 1973; Schmidt, 1983). In contrast,
some contemporary authors have appeared less inclined to
acknowledge the possibility of similar effects from mefloquine,
particularly at the relatively low doses encountered during
prophylactic use, claiming that extrapolation of high dose
neurotoxicity data from animal studies to human cases still
requires the ‘‘bridging of a large knowledge gap’’ (Schlagenhauf
et al., 2010).

Fortunately, human neuropharmacokinetic data is available that
may effectively bridge this gap. For example, human autopsies have
demonstrated mefloquine CNS accumulation at prophylactic dosing
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rates (Jones et al., 1994; Clifford et al., 2013) to concentrations com-
parable to those after treatment (Pham et al., 1999) and well beyond
in vitro human cell line neurotoxicity thresholds (Geng et al., 2010;
Shin et al., 2012). Additional in vivo (Barraud de Lagerie et al.,
2004) and pharmacogenetic studies (Aarnoudse et al., 2006) provide
further neuropharmacokinetic insights into known CNS drug trans-
port (Pham et al., 2000) and metabolism (Fontaine et al., 2000) path-
ways that may plausibly mediate idiosyncratic accumulation in CNS
to neurotoxic concentrations during routine use.

Despite both toxicological and pharmacokinetic plausibility,
demonstrating incontestable evidence of mefloquine CNS toxicity
in individual clinical cases remains challenging. With use of meflo-
quine at higher doses for treatment of malaria, the possible con-
founding of signs and symptoms of CNS toxicity by those of
comorbid cerebral malaria (Weiss, 1985) creates challenges for
their attribution uniquely to the drug. Similarly, with use of meflo-
quine at lower prophylactic doses, a lack of sensitive prospective
ascertainment, particularly in resource-constrained settings, may
result in neurological effects not being identified (Rønn et al.,
1998). Even when such effects are identified, demonstrating incon-
testable evidence of CNS toxicity may be made challenging by the
microscopic and highly focal nature of most expected neuronal
degeneration (Dow et al., 2006), which as with presumed cases
of clioquinol CNS toxicity (Kimura et al., 2011), would be fre-
quently undetectable by conventional neuroimaging. Despite these
limitations, reports of highly specific clinical findings, including
central vestibulopathy (Nevin, 2012a) occurring among those
without any history of malaria or other plausible neurological eti-
ologies establishes mefloquine CNS toxicity as a probable patho-
physiological entity worthy of significant further investigation,
particularly as the drug is considered for expanded use against par-
asitic disease and for other indications.
4. Mefloquine CNS toxicity in historical context

The long delayed recognition of the possibility of clinically sig-
nificant CNS toxicity from mefloquine calls for an examination of
the historical context of the drug’s development and licensing as
an antimalarial. Although the first synthesis of mefloquine, known
chemically as 2,8-bis(trifluoromethyl)-(2-piperidyl)-4-quinoline-
methanol, was reported in 1969 (Ohnmacht et al., 1971), the drug
was very closely related to the synthetic 4-quinolinemethanol
compound 4-quinolyl-a-piperidylcarbinol first reported over three
decades earlier in 1938 (Ainley and King, 1938). Mefloquine differs
from this previously synthesized compound (later known as SN
2549) (Berliner et al., 1946, p. 1062) solely by addition of two tri-
fluromethyl groups (CF3) at the 2 and 8 positions of the quinoline
nucleus.

During early human testing of the 4-quinolinemethanols during
the U.S. military’s World War II era drug discovery program (Alving
et al., 1948) these drugs exhibited some evidence of the CNS toxic-
ity observed from related synthetic quinoline compounds (Schmidt
and Schmidt, 1951), including producing visual photosensitivity or
photophobia (Pullman et al., 1948). One particularly efficacious 4-
quinolinemethanol known as SN 10,275 induced headache and
visual photosensitivity (Pullman et al., 1948) but also induced
phototoxicity which may have masked recognition of underlying
CNS effects. Presumably owing to concerns of phototoxicity
(Rozman and Canfield, 1979; World Health Organization, 1984),
investigation of 4-quinolinemethanols as antimalarials was for-
mally abandoned in favor of the more promising 4-aminoquino-
lines (Schmidt et al., 1978a).

However, by the early 1960s (Tigertt, 1969), owing ostensibly to
concerns of rising resistance to the 4-aminoquinoline chloroquine,
the U.S. military had initiated a new large scale drug discovery pro-
gram (Modell, 1968), during which time hundreds of thousands of
compounds were evaluated for their antimalarial activity. Over 300
4-quinolinemethanols were evaluated in this effort, including
some that had been previously tested during the earlier wartime
program (Schmidt et al., 1978a). Mefloquine (initially known as
WR 142,490) quickly emerged as the favored of these drugs based
the results of limited human testing in prisoners (Rieckmann et al.,
1974; Trenholme et al., 1975) that suggested the drug was free of
serious side effects. Soon after its first reported synthesis, meflo-
quine had been singled out by the U.S. military for larger-scale syn-
thesis (Ohnmacht et al., 1971) and commercialization by F.
Hoffmann-La Roche (Maugh, 1977). So rapid was the testing of
the drug in field settings that one researcher noted ‘‘Phase II clini-
cal trials threatened to outstrip needed Phase I testing’’ (Reba,
1977).

When the experimental 4-quinolinemethanol compounds WR-
184,806 and WR-226,253 were noted in the early 1970s to evoke
lightheadedness and difficulties in focusing (Schmidt et al.,
1978b), these symptoms appear not to have been taken as evi-
dence of possible CNS toxicity of the 4-quinolinemethanol class.
Similarly, during testing of mefloquine, early and frequent reports
of vertigo (Harinasuta et al., 1983; Björkman, 1989), ‘‘dizziness’’
(Trenholme et al., 1975; Harinasuta et al., 1983; Reisinger et al.,
1985), and rare but sentinel reports of formication (Harinasuta
et al., 1983), psychosis (Harinasuta et al., 1983; Björkman, 1989),
confusion (Harinasuta et al., 1985; Nosten et al., 1987; Bernard
et al., 1989; Björkman, 1989), amnesia (Lapras et al., 1989), and
gait disturbance (Harinasuta et al., 1983) were seemingly also
not considered in the context of earlier publications as evidence
of potentially permanent CNS toxicity (Schmidt et al., 1978a).
Importantly, and in marked contrast to the extensive testing con-
ducted during earlier wartime drug development efforts
(Schmidt and Coatney, 1955), no significant histopathological test-
ing appears to have been undertaken prior to the U.S. licensure of
mefloquine to rule out the drug’s potential neurotoxicity.

Despite the lack of specific neurohistopathological testing, there
nonetheless appears to have been clear awareness of the drug’s
potentially serious CNS effects. The original 1989 U.S. product
insert acknowledged a risk of ‘‘disturbed sense of balance’’, and
‘‘visual disturbances’’, and cautioned that during prophylactic
use, ‘‘if signs of unexplained anxiety, depression, restlessness or
confusion are noticed, these may be considered prodromal to a
more serious event’’ (emphasis added). Although this critical phrase
was left undefined, the product insert warned of a risk of CNS dis-
turbances including ‘‘encephalopathy of unknown etiology’’ during
prophylactic administration (Hoffmann-La Roche, 1989). In subse-
quent years, absent empiric understanding of the molecular basis
of mefloquine’s CNS effects, multiple authors posited imaginative
but ultimately untested theories to explain the drug’s marked neu-
ropsychiatric toxicity (Croft and Herxheimer, 2002; Nevin, 2009;
Mawson, 2013).

Although evidence suggestive of the neurotoxicity of meflo-
quine was published in 1996 (Lee and Go, 1996), it was only in
2003, 14 years after the drug’s U.S. licensure, that the first results
of neurotoxicity testing in rats were published by U.S. military
affiliated researchers (Dow et al., 2003). Recent attempts to miti-
gate mefloquine neurotoxicity, including efforts sponsored by the
U.S. military to develop a human ‘‘safety test’’ (Walter Reed
Army Institute of Research, 2006) to identify individuals with idio-
syncratic susceptibility, have thus far failed to yield satisfactory
results. Notwithstanding recent confusion over the absolute con-
figuration of the currently marketed drug (Ding and Hall, 2013;
Schützenmeister et al., 2013), randomized trials of enantiomeric
mefloquine (Knight et al., 2011), originally thought less likely to
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induce CNS effects owing to slightly lower average brain accumu-
lation (Baudry et al., 1997; Dow et al., 2011), have also demon-
strated a propensity similar to the currently licensed racemic
mixture to induce idiosyncratic ‘‘centrally mediated’’ symptoms
of ‘‘dizziness’’ and difficulties in concentration (Tansley et al.,
2010).

With rising awareness of the drug’s neurotoxicity, by 2009, the
U.S. military had prohibited the widespread use of mefloquine for
prophylaxis (Milatovic and Aschner, 2011), and had returned to a
policy of first-line use of doxycycline (Nevin, 2012b), the drug of
choice prior to the U.S. licensing of mefloquine 20 years earlier
(Sánchez et al., 1993). In response to the FDA boxed warning,
senior U.S. military officials recently emphasized that mefloquine
should be used for prophylaxis only as a ‘‘drug of last resort’’
(Woodson, 2013), while elite U.S. military units prohibited such
use of the drug outright (Reactions Weekly, 2013).

While never explicitly addressing the potential implications of
permanent CNS toxicity from the drug, senior U.S. military medical
authors have acknowledged that mefloquine’s neuropsychiatric
effects might ‘‘confound the diagnosis and management of post-
traumatic stress disorder and traumatic brain injury’’ making
‘‘the continued routine use of mefloquine less desirable’’ (Magill
et al., 2012), and noting that ‘‘with the availability of better-toler-
ated drugs, there is no need to use mefloquine for treatment unless
other options are unavailable’’ (Magill, 2006).

The near complete withdrawal of mefloquine within the U.S.
military both for prophylaxis and treatment clearly marks the
demise of the drug for the military indications for which it was ori-
ginal developed (Croft, 2007a). Interestingly, in 1978, a leading
authority involved in the development of mefloquine had noted
that the drug ‘‘promises to be broadly useful’’ in the treatment
and prophylaxis of malaria, but that ‘‘[if] this promise is not real-
ized, it will doubtless not be for lack of antimalarial activity, but
rather because of toxicological attributes not identified in the
small-scale studies pursued to date’’ (Schmidt et al., 1978a). Two
decades earlier, during testing of related 8-aminoquinoline anti-
malarials (Schmidt and Coatney, 1955), this same authority had
presciently cautioned that since ‘‘. . .in doses well below the lethal
level [these drugs] produced striking symptoms of [CNS] injury
associated with severe lesions in the principal nuclei of the propri-
oceptive, visual-reflex, and vestibulo cerebellar pathways. . . their
capacity to evoke reactions which might mask symptoms of low
grade neuronal injury, plus the likelihood of their widespread use
in malaria therapy, make a detailed search for CNS lesions highly
desirable’’ (Schmidt and Schmidt, 1951). With awareness of the
potential for lasting CNS toxicity finally emerging over 40 years
after mefloquine’s initial development, it appears worthy of further
investigation to determine precisely why such a ‘‘highly desirable’’
search was never performed, and why pre-licensure testing
appears to have been limited only to ‘‘small-scale’’ studies.

5. Conclusions

In this opinion, it has been argued that many of the idiosyncratic
chronic neurological sequelae associated with mefloquine use not
only have a solid biological basis, but are consistent with a more
generalized CNS toxicity syndrome common to certain historical
quinoline drugs and associated in both animal and human studies
with a risk of neuronal degeneration particularly within specific
brainstem nuclei. In the four decades since the development of mef-
loquine, and absent seeming awareness of its potential to induce
permanent CNS toxicity, many of the drug’s most severe idiosyn-
cratic neuropsychiatric effects have been attributed by influential
authors to the stresses of travel or to latent or pre-existing mental
illness (Lobel, 1996; Schlagenhauf et al., 1997; Schlagenhauf, 1999;
Schlagenhauf and Steffen, 2000), or to ‘‘media hype’’ (Schlagenhauf,
1996). With the benefit of the insights presented in this opinion,
these prior explanations for many of mefloquine’s reported adverse
effects now appear unsatisfactory.

The recent emphasis by regulatory authorities of the potential
for permanent neurological effects from mefloquine, coming four
decades too late to rationally inform most antimalarial use of the
drug, underscores the need for sensitive prospective evaluation
(Rønn et al., 1998) of neurological endpoints during clinical testing
as the drug is repositioned for possible widespread antiparasitic
use, including in the treatment of schistosomasis. However, given
the clinically occult CNS toxicity that may result from use of mef-
loquine, the insights of this opinion also underscore the critical
importance of better characterizing the molecular basis of quino-
line neurotoxicity, and emphasize the need to ensure comparable
neurohistopathological testing (Schmidt and Schmidt, 1951) is per-
formed in appropriate animal models prior to the future licensing
of related quinoline drugs.

Such testing appears particularly needed for tafenoquine
(Nasveld et al., 2010), an 8-aminoquinoline initially developed by
the U.S. military (Kitchen et al., 2006) and related structurally both
to pamaquine and plasmocid, and associated in pre-licensing trials
with a similar risk of vertigo as mefloquine (Nasveld et al., 2010).
While tafenoquine has been eagerly anticipated for its utility
against vivax malaria (Baird, 2012) and potentially against leish-
maniasis (Manzano et al., 2011a,b), the recent granting by the
U.S. FDA of Breakthrough Therapy (Sherman et al., 2013) status,
in the absence of any published neurohistopathological testing,
risks recreating the sense of urgency that contributed to the
approval of mefloquine in the absence of appropriate CNS safety
data (Croft, 2007a,b).

Lastly, although of incidental interest to the parasitology com-
munity, these insights also suggest the need for caution as meflo-
quine (Nevin, 2011) and other currently licensed antiparasitic and
antimalarial quinoline drugs are increasingly evaluated for treat-
ment of neuropsychiatric and neurologic conditions, including
behavioral dyscontrol (Daly and Caplan, 2012), affective dysregula-
tion (Stahl, 2013), chorea (Ondo, 2012), progressive multifocal leu-
koencephalopathy (Clifford et al., 2013), multiple sclerosis (Nevin,
2012c), and glioblastoma (Geng et al., 2010), which might plausi-
bly mask or make difficult the recognition of CNS toxicity and
low grade neuronal injury.

Disclaimer

The author has been retained as a consultant and expert witness
in legal cases involving claims of antimalarial drug toxicity.
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