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Abstract
Bronchopulmonary dysplasia (BPD) is a common long-term complication of preterm birth. The chest radiograph appear-
ance and survivability have evolved since the first description of BPD in 1967 because of improved ventilation and clinical 
strategies and the introduction of surfactant in the early 1990s. Contemporary imaging care is evolving with the recognition 
that comorbidities of tracheobronchomalacia and pulmonary hypertension have a great influence on outcomes and can be 
noninvasively evaluated with CT and MRI techniques, which provide a detailed evaluation of the lungs, trachea and to a 
lesser degree the heart. However, echocardiography remains the primary modality to evaluate and screen for pulmonary 
hypertension. This review is intended to highlight the important findings that chest radiograph, CT and MRI can contribute 
to precision diagnosis, phenotyping and prognosis resulting in optimal management and therapeutics.
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Introduction

Throughout the world there are an estimated 15 million 
preterm births annually [1]. In the United States, 450,000 
babies are born prematurely each year [2], with a 10–12% 
rate of premature birth. For comparison, most other modern, 
affluent countries have rates in the 5–8% range. Reduction of 

preterm birth is a national public health priority. Yet, after 
years of decline, preterm birth rate has climbed for the last 
5 years [2].

Imaging has played a role in the care of preterm births for 
decades in the form of radiographs, US, fluoroscopy, CT, 
MRI and to a lesser extent nuclear medicine and angiography. 
Preterm birth affects all organs, although most of the morbid-
ity and mortality is related to the respiratory system: lungs, 
airways and pulmonary vascular components. Infants born 
too early develop infantile respiratory distress syndrome, 
which is also called surfactant deficiency disorder, and in 
older literature hyaline membrane disease. Clinical care pri-
oritizes keeping the infants alive so they can continue to grow 
and mature their organs, but the necessary respiratory support 
strategies expose the lungs to oxygen, mechanical ventilation 
pressures, excessive inflation and atelectasis. These traumas 
and lung development outside the uterus result in aberrant 
respiratory system development and growth arrest, causing 
chronic changes called bronchopulmonary dysplasia (BPD) 
or chronic lung disease of prematurity [3].

Since BPD was first described in 1967, respiratory care 
has evolved, modes of respiratory support have improved 
and surfactant therapy has been introduced [4]. This has 
resulted in improved survival in ever younger and smaller 
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preterm babies. As a result, the rate of preterm births devel-
oping BPD still affects a substantial portion of preterm 
infants who require respiratory support or have respiratory 
morbidity after discharge [5].

Portable chest radiograph and chest CT in the evaluation 
of these children has always been used as a problem-solving 
tool. However, recent studies have begun to show that CT 
and MRI of the respiratory system can provide information 
that is not evident on chest radiograph, thereby providing 
diagnostic and prognostic information that influences care 
[6]. Additionally, over the last 20 years, efforts to reduce 
radiation dose of CT have improved the risk-to-benefit 
equation [7] and MRI is now becoming a viable method of 
evaluating the lungs because of ultrashort echo-time (UTE) 
and other three-dimensional (3-D) high-resolution, proton-
density-weighted methods [8, 9]. In this review, we discuss 
the literature and present information that radiologists can 
use in evaluating the respiratory system in preterm infants in 
the post-surfactant era with chest radiograph, and the added 
value of CT and MRI.

Bronchopulmonary dysplasia, defined

A persistent challenge in the study and treatment of BPD 
is the lack of an effective definition, in part because of the 
multifactorial mechanisms of this unique disease. BPD was 
first described by Northway et al. [10] based on radiographic 
(Fig. 1) and pathological evidence of pulmonary disease 
(opacification, atelectasis, cysts, lucencies). While vary-
ing definitions have been proposed since then, they remain 
mostly operational, relying on degree and duration of oxygen 
requirement rather than pathophysiological condition [11].

In 1988, Shennan et  al. [12] followed 600 preterm 
infants with birth weights <1,500 g for 2 years and deter-
mined that an oxygen requirement at 36 weeks post-men-
strual age (PMA) was predictive of abnormal pulmonary 
function in the first 2 years after birth. However, there was 
increasing recognition through the 1990s that improve-
ments in antenatal and postnatal treatment strategies 
were changing the pathophysiology of BPD (so-called 
new BPD) — namely, very-low-birth-weight infants with 
seemingly mild lung disease in early neonatal life were 
developing increasing ventilatory needs and undergoing 
pronounced alveolar and vascular “growth arrest” [13]. 
In response, a new diagnostic definition was proposed at 
a workshop in 2000 sponsored by the National Institutes 
of Health (NIH) National Heart, Lung and Blood Institute 
(NHLBI) and published in 2001 [13]. This 2001 consensus 
definition included graded severity levels based on gesta-
tional age and level of required respiratory support. Specif-
ically, infants diagnosed with BPD require oxygen therapy 
for at least 28 cumulative days, with mild, moderate and 

severe grades determined by degree of respiratory sup-
port required at 36 weeks of post-menstrual age; while 
initially helpful in delineating severity, many infants even-
tually became unclassifiable with updated clinical prac-
tices such as high-flow nasal cannula with 21% oxygen or 
low-flow with 100% oxygen. Although additional clinical 
definitions have attempted to improve upon this definition 
(e.g., a physiological challenge of supplemental oxygen 
withdrawal) [14–16], the 2001 consensus definition has 
been implemented most widely, despite the inconsistent 
relationship between various BPD definitions and clinical 
outcomes [17–19].

A new definition was proposed in 2018 at a conference 
conducted by the NIH Eunice Kennedy Shriver National 
Institute of Child Health and Human Development (NICHD) 
to incorporate newer modes of noninvasive ventilation and 
address several deficiencies, including institutional vari-
ability, lack of evidence-based guidelines, and unclassified 
status of prematurity-related deaths prior to 36 weeks of 
post-menstrual age [3]. This 2018 definition asserts that a 
premature infants (<32 weeks of gestational age) with BPD 
have persistent parenchymal disease and use respiratory sup-
port at 36 weeks of post-menstrual age (grades I, II or III 
based on fraction of inspired oxygen [FiO2] range/oxygen 
level/oxygen concentration). Importantly, this refined BPD 
grading system reincorporated radiographic confirmation of 
parenchymal lung disease. Like previous definitions, this 
2018 workshop definition struggles with early identification 
of infants who will eventually have severe chronic lung dis-
ease of prematurity; imaging performed early in the neonatal 

Fig. 1  Typical appearance of bronchopulmonary dysplasia (BPD). 
Anteroposterior (AP) chest radiograph of a girl born at 25 weeks of 
gestation who is now post-menstrual age 36  weeks (11  weeks old) 
with severe BPD. The girl is still intubated and has a ductus arterio-
sus closure device. The lungs are characterized by overall hyperinfla-
tion, with mixed areas of density and hyperlucency characteristic of 
the AP chest radiograph appearance of severe BPD
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intensive care unit (NICU) might allow clinicians to apply 
targeted therapies to the most at-risk infants.

Chest radiograph

Chest radiograph has always been at the forefront of deci-
sion-making in infants with respiratory distress. Northway 
et al. [10] first reported four stages of chest radiograph find-
ings that can occur in preterm infants and coined the term 
BPD. By today’s standards the preterm infants were rela-
tively large and at relatively advanced gestational ages. Since 
that time, treatment of mothers at risk of preterm birth and 
infants born preterm has evolved greatly and continues to 
evolve, as does the appearance of the chest radiograph.

The use of chest radiographs in infants for problem-
solving is well established. However, over the years chest 
radiography has been proposed as part of the BPD defini-
tion and used to predict clinical outcomes such as growth, 
respiratory distress and gas exchange [20, 21]. In 1984, Toce 
et al. [21] developed a scoring system that included lung 
expansion, interstitial densities, focal emphysema (cysts) and 
cardiovascular abnormalities. Interestingly, they suggested 
that 2 weeks after birth is the most specific time to diagnose 
BPD [21]. Several authors in the 1980s noted that the evo-
lution of chest radiography was nonlinear and appeared to 
be resulting from the changing treatments, including use of 
antenatal steroids in mothers, changing ventilation strategies 
and postnatal steroid treatments.

However, the most major change was noted when exog-
enous surfactant became clinically available in the early 
1990s [22, 23], as described by Swischuk et al. [24]. The 
first radiograph demonstrated the granular appearance 
typically associated with preterm birth and surfactant defi-
ciency, and 76% of infants cleared the granular opacities 
by 1 day old (Fig. 2). Subsequently, 45% remained clear 
and did well, but these also tended to be the larger infants 

with a more mature gestational age. The remaining 55% 
of infants developed hazy to opaque density in the lungs 
(Fig. 2) by the second week after birth, termed “leaky 
lung syndrome.” Only 11% of these became clear again. 
Lungs that did not clear went on to develop the cystic 
bubbly lucencies that are now typically associated with 
BPD (Fig. 1) [24].

Chest radiography studies looking at future growth 
noted that hyperinflation worsened along with focal areas 
of emphysema and interstitial opacities at 1 year compared 
to 1 month [25–27]. Moya et al. [28] investigated the abil-
ity of the chest radiograph obtained at 36 weeks of post-
menstrual age to predict BPD by using a grading system 
and found that low scores were less reliable in predicting 
BPD outcome, but prediction improved with increasing 
scores. Kim et al. [29] found that an interstitial or coarse 
interstitial pattern (Fig. 2) at day 7 after birth was predic-
tive of BPD developing with high specificity but low sen-
sitivity, but that birth weight, gestational age and invasive 
ventilation were much more sensitive. More recent studies 
have related the cystic bubbly changes to a higher need for 
oxygen therapy [30], and a large study by Arai et al. [31] 
with a cohort of more than 8,000 infants showed that bub-
bly/cystic changes at 28 days was more predictive of home 
oxygen therapy than gestational age, birth weight, chorio-
amnionitis or any other factor. Those without the bubbly/
cystic changes had only 2% rate of home oxygen. Bubbly/
cystic change is also associated with wheezing [32, 33].

In sum, the chest radiograph of preterm infants starts 
with a granular pattern on day 1, often clears with adminis-
tration of surfactant and then a substantial number of pre-
term infants develop diffuse opacity in the second week. 
As that diffuse opacity evolves into an interstitial, coarse 
or bubbly pattern, it becomes more predictive of BPD and 
outcomes after hospitalization. Although the coarse, inter-
stitial bubbly pattern is specific, it lacks sensitivity.

Fig. 2  Evolving lung appearance on radiography in a premature new-
born. a Anteroposterior (AP) chest radiograph in a 1-day-old boy 
born at 24 weeks of gestation shows diffuse, fine granular opacities 
throughout the lungs, often with air bronchograms. b AP chest radio-
graph of the same boy at 2  days old. Surfactant had been adminis-

tered and the boy was extubated. At this time the lungs appear clear 
and better inflated. c AP chest radiograph in the same boy at 4 days of 
age shows that his lungs have become much more opaque and coarse, 
with mixed lucent and opaque areas resulting in reintubation
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Computed tomography

The role of chest CT in preterm infants during their period of 
neonatal intensive care is largely based in problem-solving 
for more complex cases (and the same is true later in life), 
but numerous studies have evaluated the lung parenchyma 
and related the findings to severity of BPD or outcomes. 
These studies are split between early life and later life. The 
lung findings of BPD on CT are a recapitulation of those 
on chest radiograph, but with greater detail and richness 
(Fig. 3). Several studies laid the groundwork for CT scor-
ing [34–38]. We focus here on the more recent CT studies 
because they reflect the current post-surfactant era of care.

The common thread among all of these CT studies was 
the objective findings on either high-resolution CT or chest 
CT. Researchers brought these all together in a relatively 
simple scoring system that related the score to the severity 
of BPD and, to a lesser degree, outcome [39, 40]. Hyper-
aeration of the lung, including global and focal air-trapping 
and mosaic perfusion, has been a common theme of all of 
these studies [34–40] and continues to be a primary theme 
[41–51]. A second category is “emphysema,” which Ochiai 
et al. [40] described as a sharply demarcated area of low 
attenuation. However, later-in-life reports of “emphysema” 
are variable as to the presence of this finding and descrip-
tion [37, 38]. There is also speculation that the emphysema 
identified in older children and young adults might be pro-
gressive [47, 48], but there is not proof of this. The third cat-
egory is structural change, which includes linear opacities, 
triangular subpleural opacities and atelectasis/consolidative 
opacities [40, 47].

There is a substantial difference between the appear-
ance of the lungs early in life [5, 40, 41, 49] when the 
infants first become stable enough for imaging, and later 
in life when the lungs have had time to heal and further 
develop. In general, the size and number of pulmonary 
opacities decrease as the child matures [49]. Simpson et al. 
[48] reported bronchial wall thickening and exposure to 
tobacco smoke as the most significant predictors of pul-
monary functional decline in school-age children with a 
history of preterm birth, hypothesizing that the thickening 
reflected more inflammation or bronchial reactivity.

Dynamic-volume CT or cine CT is a method of using 
CT to look at the lung over a short period of time using a 
very low dose for each rotation of the CT to collect imag-
ing data. The advantage is that this type of CT can show 
changes in the lungs and large airway over a respiratory 
cycle [52, 53]. This has been described as a method for 
choosing positive end-expiratory pressure in children with 
BPD and tracheobronchomalacia [52], which is a critical 
component related to preterm morbidity [53] and can also 
be used to evaluate regional lung ventilation [54].

The use of CT early in BPD is most limited by trans-
portation of unstable infants to the CT scanner and to a 
lesser extent by concern about radiation. However, the 
association of CT findings to clinical course, pulmonary 
function and disease progression suggests that CT could 
play an increasing role in evaluating preterm babies that 
goes beyond problem-solving. A non-contrast chest CT 
performed at discharge from the NICU with a non-sedated 
feed-and-swaddle technique has the potential to provide 
information that would identify suspected findings, predict 
the early clinical course, and potentially decrease hospi-
talization in the first year after birth [8, 55].

Fig. 3  Lung findings of bronchopulmonary dysplasia on radiogra-
phy and CT. a Anteroposterior (AP) chest radiograph of a premature 
infant girl born at 23  weeks of gestation, now post-menstrual age 
38  weeks (15  weeks old). Portable chest radiograph shows diffuse 
increased density throughout the lungs but no evidence of air-trap-

ping or cystic changes. b Coronal oblique minimum-intensity projec-
tion reconstructed CT image demonstrates hyperlucent lung in the left 
upper lobe and small cysts throughout the lungs. CT also suggested 
tracheomalacia was present (not shown)

646 Pediatric Radiology (2022) 52:643–660



1 3

Chest magnetic resonance imaging

In recent years, chest MRI in preterm infants has been 
implemented to provide clinically meaningful information 
using readily available sequences, such as a fast gradient 
echo (GRE) and spin echo, that can evaluate lung tissue 
in infants with lung disease without requiring ionizing 
radiation [56, 57]. Walkup et al. [56] showed that GRE 
images demonstrate a significantly greater volume of 
high-intensity lung (putatively combinations of fibrosis, 
edema, consolidation and atelectasis) in infants with BPD 
compared with full-term infants and preterm infants who 
were not diagnosed with BPD. However, the volume of 
low-intensity lung did not discriminate clinical BPD diag-
noses, despite the established presence of low-density lung 
pathologies in BPD such as alveolar simplification, cysts, 
emphysema and air-trapping. This is likely attributable to 
that fact that conventional Cartesian sequences typically 
cannot achieve minimum echo times (TE) below the lung 
parenchymal T2* (~ 0.5–3 ms at typical field strengths) 
and thus do not provide sufficient image contrast between 
short-T2* tissues and true cystic/air-trapped regions 
[58]. Even so, radiologic reader scores from a modified 
Ochiai system that evaluates parenchymal abnormalities 
(discussed in detail later) [40] significantly delineated all 
three groups of preterm infants with BPD, preterm infants 
without BPD, and term infants.

Recent technical developments in sequence acquisition 
have opened the door to pulmonary MRI using center-
out 3-D k-space acquisitions with ultrashort echo times 
(UTE) and zero echo times (ZTE) [9, 59–63]. Unlike Car-
tesian sequences, these center-out sequences are inherently 
robust to subject motion, reducing the need for sedation/
anesthesia. Further, these short-TE acquisitions have 
strong proton-density weighting, allowing for more accu-
rate visualization and quantification of both hyper- and 
hypodense lung parenchymal tissue. Nozawa et al. [64] 
demonstrated the potential for ZTE MRI (pointwise encod-
ing time reduction with radial acquisition, or PETRA) 
to acquire CT-like proton-density-weighted pulmonary 
images in two infants with congenital cystic lung disease, 
which is likely to be similarly effective when implemented 
in infants with lung disease of prematurity. Further, our 
Center for Pulmonary Imaging Research at Cincinnati 
Children’s Hospital has demonstrated that regional lung 
intensity on UTE MRI is quantitatively comparable to 
lung density on chest CT (Fig. 4) in individual neonates 
with lung disease who underwent both MRI and CT [65]. 
Using this UTE MRI method, Higano et al. [65] exam-
ined whole-lung density distributions in 38 infants with 
and without BPD and found that the percentage of lung 
volume with abnormally hyperdense and hypodense tissue 

density (defined as >+1σ or < –1σ, respectively, compared 
to an average control distribution) correlated moderately 
with clinical BPD severity diagnosis  (R2 = 0.21) but more 
strongly with respiratory support at discharge from the 
NICU  (R2 = 0.45). In an additional study, Higano et al. 
[66] showed that modified Ochiai scoring of paired UTE 
and GRE lung images from neonates with BPD (Fig. 5) 
correlated with duration of various respiratory support 
levels more strongly than any individual clinical measure 
(ventilator support,  R2 = 0.86; positive pressure ventila-
tion,  R2 = 0.91; any support,  R2 = 0.77).

As MRI strategies emerge to evaluate neonatal lung struc-
ture, so, too, do complementary MRI strategies for measur-
ing lung function. UTE MRI sequences inherently acquire 
the center of k-space  (k0) at every acquisition, which can 
be exploited as a self-navigating signal for respiratory gat-
ing (Fig. 6) that allows raw data to be binned and selec-
tively reconstructed at different phases of the respiratory 
cycle [67–71], often from a child who was scanned during 
tidal breathing. Advanced reconstruction strategies, such as 
iMoCo (iterative motion-compensation reconstruction) UTE 
MRI, have demonstrated high-scanning efficiency, sharper 
anatomical lung structures and higher apparent signal-to-
noise ratio compared to other motion-correction methods in 
free-breathing pulmonary MRI of adults and pediatrics. Zhu 
et al. [72] showed the feasibility of neonatal iMoCo UTE 
in one non-sedated 10‐week‐old with pulmonary intersti-
tial glycogenosis, demonstrating the ability to capture and 
reject non-compliant bulk motion. Using dynamic images 
throughout the breathing cycle, various respiratory met-
rics of interest have been measured in neonates with lung 
disease, including tidal volume, hyperexpansion, global 
minute ventilation, degree of central airway collapse and 
tracheal work of breathing [69, 73–76]. By measuring local 
changes in signal intensities or anatomical deformation 
throughout the breathing cycle, dynamic pulmonary MRI 
strategies also open the door to quantitative lung ventilation, 
similar to techniques used with chest CT [77], but during 
free-breathing and without ionizing radiation. Capaldi et al. 
[78] recently implemented convolutional neural networks 
in deep learning to generate synthetic ventilation images 
from free-breathing pulmonary MRI in adults with various 
lung diseases, with a correlation between ventilation defect 
percentage from MRI and forced expiratory volume in 1 s 
 (FEV1) from spirometry (P < 0.001); similar strategies might 
be readily translatable to evaluating pulmonary function in 
the neonatal population.

While tidal-breathing 1H chest MRI strategies are emerg-
ing to indirectly measure regional ventilation, hyperpolar-
ized inhaled noble-gas (3He and 129Xe) MRI has been used 
for several years as a more direct ventilation metric, with 
established safety [79–81] and numerous applications in a 
variety of adult and pediatric lung disorders [82–84]. Altes 
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Fig. 4  Comparison of five 
neonates’ matched axial CT and 
axial ultrafast echo-time (UTE) 
MRI slices obtained at a similar 
time visually demonstrates 
the similarity of tissue density 
and lung findings. Subject A is 
a neonate with severe bron-
chopulmonary dysplasia (BPD). 
The quantitative density of UTE 
is highly correlated with CT 
density in the lung. Note the dif-
ferent appearance in the spinal 
canal on the MRI caused by the 
different T1 and  T2* properties 
in the spinal canal compared 
to the lung tissue. Reproduced 
with permission [64]
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et al. [85] recently developed a gas ventilation imaging pro-
tocol for MRI acquisition sequences and gas-delivery strat-
egies in a proof-of-concept study with seven non-sedated 
children younger than 4 years, including one healthy infant, 
three infants with cystic fibrosis, and one infant born pre-
maturely at 28 weeks of gestation; in this small feasibility 
study, focal ventilation defects were clearly identified in chil-
dren with respiratory disease. Hyperpolarized gas MRI can 
also probe the length-scales of microstructural alveolar air-
spaces by detecting Brownian airspace diffusion of inhaled 
gas particles [86]. This technique has been implemented 
in older pediatric survivors of preterm birth [87] and in an 
explanted neonatal lung specimen with filamin-A mutation 
(closely representing BPD lung disease) [88], with signifi-
cantly elevated apparent diffusion coefficient (ADC) values 
in children with disease compared to age-matched controls 
demonstrating enlarged gas-exchange units. While not yet 
implemented in live neonates, inhaled gas diffusion MRI 
has strong potential to elucidate abnormal and interrupted 
alveolar development in infants born preterm.

Trachea and large airways

In addition to the arrest in development of the pulmonary 
parenchyma, neonates who are born prematurely have dis-
ruption in development of the central airway. The net impact 
of preterm birth is that the central airway is smaller, more 
compliant and more susceptible to airway injury, especially 
in neonates who require endotracheal intubation and posi-
tive pressure ventilation [89–92]. Consequently, disease of 
the central airway is quite common in neonates with BPD. 

Central airway disease can be divided into dynamic and 
fixed central airway pathology and results in increased res-
piratory morbidity in these fragile infants.

Dynamic airway lesions such as tracheobronchomalacia 
are identified in 10–48% of neonates with BPD undergoing 
bronchoscopy, which is the reference standard for diagnosis 
[53, 75, 93, 94]. However, the true prevalence is unclear 
because children undergoing bronchoscopy are a heav-
ily biased subset, and many neonates who do not undergo 
bronchoscopy have dynamic airway collapse (Fig. 7) based 
on advanced imaging techniques [74]. Tracheobronchoma-
lacia is associated with increased morbidity during the ini-
tial hospital admission with prolonged need for mechanical 
ventilation, longer hospitalization and increased need for tra-
cheotomy [53]. Following discharge, children with tracheo-
bronchomalacia require more medical therapies and feeding 
support [53] and have increased frequency of rehospitaliza-
tion, particularly during respiratory illnesses [95].

Fixed airway lesions such as subglottic stenosis are also 
common in those neonates who require invasive mechanical 
ventilation. The cricoid is the narrowest portion of the airway 
and is particularly susceptible to injury from intubation in 
neonates. The prevalence of post-intubation subglottic steno-
sis in neonates is 0.9–8.3% [96] and is likely higher in those 
with BPD than the general neonatal population because of the 
small airway size, need for prolonged intubation, and multi-
ple intubation attempts [97]. As with tracheobronchomalacia 
subglottic stenosis is diagnosed by bronchoscopy and utilizes 
the Myer-Cotton scale (Fig. 8), which grades severity based 
on the largest endotracheal tube that permits an air leak at 
20 cm  H2O [98]. Depending on the severity of subglottic ste-
nosis, treatment options range from observation or endoscopic 

Fig. 5  Axial ultrashort echo-time (UTE) MRI and modified Ochiai 
score. a–c Examples of preterm female born at 26 weeks of gestation, 
now post-menstrual age 38 weeks (12 weeks old) with mild (a), pre-
term female born at 25 weeks of gestation, now post-menstrual age 
41 weeks (16 weeks old) with moderate (b) and preterm male born at 
23 weeks of gestation, now post-menstrual age 40 weeks (17 weeks 

old) with severe (c) bronchopulmonary dysplasia on axial UTE MR 
images of the lung based on the modified Ochiai score. The mild 
patient (a) was scored as 1 out of 14, the moderate patient (b) 6 out of 
14 and the severe patient (c) 12 out of 14. Increasing score was posi-
tively correlated with greater need for respiratory support and short-
term clinical outcomes
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balloon dilation for milder stenosis to open airway surgery or 
tracheotomy for more severe disease [99, 100].

Despite the impact of central airway disease on children 
with BPD, our understanding is limited because the diagno-
sis typically relies on direct visualization with bronchoscopy. 
However, recent advances in imaging technologies such as CT 
and MR can provide a noninvasive way to assess the neonatal 
airway without sedation. In the case of MR, this can be done 
without ionizing radiation and thus might be suitable for lon-
gitudinal population studies of central airway disease in BPD.

Central airway magnetic resonance imaging

Magnetic resonance imaging has been used to noninva-
sively investigate airway abnormalities such as tracheo-
bronchomalacia and subglottic stenosis in neonates and 

animal models of neonates [101–103]. Retrospective 
respiratory gating of UTE MRI, the same sequence that 
evaluates the lung parenchyma, simultaneously allows 
measurement of 3-D dynamic changes in lumen size [74]. 
Assessing the cross-sectional area of the tracheal lumen 
based on UTE MRI (Fig. 9) has been shown to diagnose 
tracheomalacia with equivalent accuracy to bronchoscopy 
[75].

Until recently, MRI has only been used to depict anatomy 
and the significance of the tracheomalacia has been inferred, 
but tracheomalacia likely has a profound effect on energy 
needs of these tiny preterm babies. Using MRI as a tech-
nique for imaging airway anatomy and motion, computa-
tional fluid dynamics can calculate airflow parameters such 
as airway resistance or pressure gradients based on airway 
anatomy, motion and MRI-derived tidal volumes (Fig. 10). 
Using this approach, Gunatilaka et al. [76] demonstrated that 

Fig. 6  Preterm female born 
at 27 weeks of gestation, now 
post-menstrual age 36 weeks 
(9 weeks old). Self-navigating 
signal obtained from the center 
of ultrashort echo-time (UTE) 
MRI k-space  (k0). a Graph illus-
trates the difference in the signal 
between the signal obtained in 
quiescent tidal breathing (multi-
colored line) and when the child 
is moving significantly (dark 
blue). This allows data from 
bulk motion to be discarded. b 
Graph is a magnification of a 
smoothed and binned signal of 
the quiescent tidal-breathing 
signal. The colors of the seg-
ments in the line correspond 
to the phases of respiration. 
Blue is end-expiration and dark 
maroon is end-inspiration. c 
Each respiratory bin can then 
be reconstructed into an image 
during a different phase of res-
piration, which is shown in the 
line of coronal UTE MRI lung 
images. The movement of the 
diaphram and chest wall, and 
the change in lung density, is 
illustrated. This has been shown 
to have potential for regional 
ventilation maps
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neonates with tracheomalacia used more than 10 times the 
energy to breathe that they would have with static airways.

A similar approach of imaging based computational fluid 
dynamics has also been used to assess the effect of subglottic 
stenosis on neonatal breathing, revealing that the increased 
airway resistance caused by the stenosis is associated not 
only with the degree of stenotic narrowing [104, 105] but 
also with the axial position of the stenosis [75].

Central airway computed tomography

As a more readily available modality, CT is much more com-
monly used to assess for tracheobronchomalacia and other 
central airway anatomies in infants with BPD, using a rela-
tively low radiation dose, with airway abnormalities detected 
from scans exposing subjects to less than 2 mSv [106].

Various studies have used CT to diagnose tracheobron-
chomalacia in infants with and without BPD with sensitivity 
values ranging 75–100% (and as low as 37.5% for tracheo-
malacia alone) and specificity of 48–97% [107–109]. Dif-
ferences in these results stem from differences in the age 
range of children, the use of static or dynamic CT, the phase 
of breathing or breathing maneuver in which imaging was 
acquired, and the technique used to determine the presence 
of tracheobronchomalacia from CT images. The change in 
tracheal lumen cross-sectional area at the point of great-
est collapse is higher in infants with tracheobronchomala-
cia than in those without tracheobronchomalacia [55, 110, 
111]. However, another study found CT is less sensitive than 
tracheobronchography in the diagnosis of tracheomalacia in 
ventilator-dependent infants and exposes them to a higher 

radiation dose [112]. In addition to the detection of tracheo-
bronchomalacia, dynamic CT provides enough fidelity in 
airway measurement to be used to set ventilator-positive 
end-expiratory pressure settings [52].

Pulmonary vasculature and pulmonary 
hypertension

Bronchopulmonary dysplasia is associated with pulmonary 
vascular disease and pulmonary hypertension because of 
alterations in development of pulmonary parenchyma and 
vasculature [113–115]. The presence of cor pulmonale was 
noted by Northway et al. [10] in the autopsy specimens of 
five long-term survivors of preterm birth. Currently, there 
is a renewed interest in BPD-associated pulmonary hyper-
tension. The incidence of BPD–pulmonary hypertension 
increases with severity of BPD, with 20–40% incidence of 
pulmonary hypertension in infants with severe BPD [95, 
116]. Infants with BPD-associated pulmonary vascular dis-
ease and pulmonary hypertension have worse outcomes, 
including longer duration of respiratory support [95, 114, 
117], increased incidence of respiratory disease in early 
childhood [113] and increased mortality [94, 114, 117–120] 
compared to infants with BPD but without pulmonary vas-
cular disease or pulmonary hypertension. The increased 
morbidity and mortality associated with BPD pulmonary 
vascular disease and pulmonary hypertension has resulted 
in research focused on the early identification and diagno-
sis, risk stratification and pharmacological therapy for these 
children [3].

Fig. 7  Airway pressure imaging in a preterm boy born at 25  weeks 
of gestation, now post-menstrual age 31  weeks (6  weeks old). a, b 
Axial CT demonstrates the difference in the appearance of the lungs 
and trachea when imaged with 14  cm of water-positive end-expira-
tory pressure (PEEP) (a) and without PEEP (b). Airway pressure sup-

port is often needed but can mask tracheobronchomalacia when it is 
present. Removing the pressure support at the time of imaging can be 
very helpful in evaluating the lungs and the airway when performing 
CT
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While cardiac catheterization remains the gold standard 
for diagnosing pulmonary hypertension [121], echocardiog-
raphy is the predominant modality for screening and moni-
toring BPD–pulmonary hypertension. Echocardiographic 
evidence of pulmonary vascular disease at 7 days of age 
was associated with respiratory disease in early childhood 
[114], and current guidelines recommend screening in all 

infants at the time of BPD diagnosis [122]. Echocardiogra-
phy evaluation of BPD-associated pulmonary hypertension 
should include a complete anatomical survey; assessment 
of right and left ventricular size, function and hypertrophy; 
right ventricular pressure; and presence of any anatomical 
shunts [122]. In particular, the presence and size of a pat-
ent ductus arteriosus is of particular importance. Evaluation 

Fig. 8  The Myer-Cotton scale. 
a–e Endoscopic images of 
infants with bronchopulmonary 
dysplasia (BPD) demonstrate a 
normal subglottis (a) followed 
by examples of the Myer-Cotton 
subglottic stenosis grading 
system. Grade 1 is defined 
as < 50% obstruction (b), grade 
2 as 51–70% obstruction (c), 
grade 3 as 71–99% obstruction 
(d) and grade 4 as complete 
100% obstruction (e)
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for BPD-associated pulmonary hypertension should focus 
on quantitative indices of right ventricular pressure includ-
ing tricuspid regurgitant jet velocity, shunt gradient and left 

ventricular eccentricity index and right ventricular function, 
including tricuspid annular plane systolic excursion, right 
ventricular fractional area change, and right ventricular lon-
gitudinal strain [123]. Comprehensive echocardiographic 
evaluation should also include screening and evaluation of 
pulmonary venous return, especially presence of stenosis. 
Isolated or multi-vessel stenosis might be more common in 
the premature infant and is an independent predictor for, and 
an additional pathological driver of, the development of pul-
monary vascular disease. It is critically important that these 
echocardiographic parameters be assessed in full during 
each echocardiographic study if possible [124, 125]. Nev-
ertheless, assessment of these anatomical and physiological 
markers is often limited secondary to lung hyperinflation, 
cardiac malposition and poor imaging windows. Often, pro-
viders rely on qualitative markers of right ventricular hyper-
tension (including interventricular septal flattening, which 
is sensitive but not specific for pulmonary hypertension and 
subject to interobserver variability) and qualitative assess-
ment of right ventricular function.

Because of these limitations, additional diagnostic stud-
ies including lung perfusion scan, cardiac catheterization, 
chest CT or cardiac MRI should be considered when diag-
nostic uncertainty persists. Lung perfusion scan provides 
for assessment of maldistribution of pulmonary blood flow, 
which can result in increased pulmonary vascular resistance, 
and is an adjunctive diagnostic study for evaluating pulmo-
nary vein stenosis [126]. Cardiac catheterization should be 
performed whenever there is concern regarding the degree 
of intracardiac shunting, branch pulmonary artery and pul-
monary vein anatomy, left ventricular diastolic dysfunction, 
presence of aortopulmonary collaterals, and certainly prior 
to escalation of pulmonary vasodilator therapy [121]. Acute 
vasodilator testing is also performed during cardiac cath-
eterization and might help guide therapy [127].

Fig. 9  Assessing the cross-
sectional area of the tracheal 
lumen based on ultrashort 
echo-time (UTE) MRI in a 
preterm girl born at 25 weeks of 
gestation, now post-menstrual 
age 38 weeks (13 weeks old) 
with severe bronchopulmonary 
dysplasia and tracheomalacia. 
Bronchoscopic axial UTE MR 
images (left) and three-dimen-
sional (3-D) surface-rendered 
images (right) show a relatively 
round trachea at end-inspiration 
(top row) and inward bow-
ing of the posterior trachealis 
membrane on end-expiration 
(bottom row)

Fig. 10  Using MRI-derived images and airflow volume, the trachea 
can be modeled as a non-dynamic structure (static airway, left) and a 
dynamic structure (dynamic airway, middle). The dynamic structure 
modeling results in a high-velocity jet formed in the middle of the 
trachea caused by narrowing during expiration, which increases work 
of breathing. The static airway represents the largest airway for that 
subject observed during breathing and represents breathing without 
tracheomalacia, which provides the least work of breathing. Arrows 
indicate the airflow direction from the main bronchi to nasopharynx. 
Velocity key is on the right
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Imaging with chest CT is used in both adult and pediatric 
populations to assess for evidence of vascular malforma-
tions, pulmonary veno-occlusive disease, interstitial lung 
disease and chronic thromboembolic disease at the time 
of pulmonary hypertension diagnosis [121]. Additionally, 
chest CT has been used to assess morphological markers 
of pulmonary hypertension including the main pulmonary 
artery size and main pulmonary artery to aorta (PA/AO) 
ratio (Fig. 11) [128–130]. No studies have investigated the 
role of chest CT in the diagnosis of BPD-associated pul-
monary hypertension. However, del Cerro and colleagues 

[131] found that 19/29 (66%) infants with BPD-associated 
pulmonary hypertension had aortopulmonary collaterals, 
pulmonary vein stenosis, atrial septal defect or patent ductus 
arteriosus diagnosed with CT or catheterization. Addition-
ally, CT was shown to aid in the diagnosis of pulmonary vein 
stenosis in infants with BPD in a multicenter retrospective 
study [124]. These data suggest that CT could have a clini-
cal role in identifying vascular pathology or characterizing 
shunt lesions prior to surgical or percutaneous intervention 
in the BPD-associated pulmonary hypertension population.

Cardiac MRI allows for evaluation of cardiac morphol-
ogy, ventricular size and function, cardiac output, and pul-
monary blood flow distribution. Assessment with cardiac 
MRI is used in the adult and pediatric pulmonary hyper-
tension populations where MRI-derived right ventricular 
function has been associated with mortality [132, 133]. In 
a cohort of 52 infants, the PA/AO ratio was associated with 
BPD severity, duration of respiratory support, hospitali-
zation length and need for pulmonary vasodilator therapy 
[134]. In that study, ventricular size, ventricular function, 
cardiac output and pulmonary blood flow could be deter-
mined but were not associated with BPD severity or short-
term clinical outcomes.

Cardiac MRI markers of right ventricular afterload have 
been associated with invasive hemodynamics in the pediatric 
pulmonary hypertension population [135, 136]. Left ven-
tricular eccentricity index (Fig. 12), a quantitative marker 
of interventricular septal flattening that is typically meas-
ured at end-systole, was associated with duration of respira-
tory support, hospitalization length and need for pulmonary 
vasodilator therapy in infants with BPD [134, 137]. Further, 
interventricular septal curvature (Fig. 13), which provides 
a quantitative evaluation of septal flattening throughout the 
cardiac cycle, demonstrated improved discrimination of 

Fig. 11  Morphological markers of pulmonary hypertension in a girl 
born at 26 weeks of gestation with MRI performed at post-menstrual 
age 38 weeks (12 weeks old). Axial MRI bright-blood image through 
the main pulmonary artery and the ascending aorta demonstrates a 
9-mm main pulmonary artery and a 6-mm aorta, resulting in a ratio 
of 1.5:1. A ratio of 1.3:1 or greater, in the absence of a larger left-to-
right shunt, is very specific for pulmonary hypertension

Fig. 12  Left ventricular eccentricity index in a boy born at 24 weeks 
of gestation and imaged at post-menstrual age 40  weeks (16  weeks 
old). a, b MRI short-axis cine steady-state free precession (SSFP) 
slice at the level of the papillary muscles shows diastole (a) and sys-

tole (b). During systole, the interventricular septum is clearly flat-
tened, creating a D-shape left ventricle. A left ventricular eccentricity 
index greater than 1.3:1 is diagnostic of pulmonary hypertension
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need for pulmonary vasodilator therapy compared to other 
clinical and cardiac MRI indices [137].

Management of BPD-associated pulmonary hypertension 
focuses on providing adequate respiratory support; treat-
ment of hypoxia, infection, aspiration and airway disease; 
followed by treatment with pulmonary vasodilator therapy 
if pulmonary hypertension persists [121]. Cohen et al. [138] 
reported on a cohort of 269 pediatric patients treated with 
sildenafil, including 135 infants with BPD-associated pul-
monary hypertension. Mortality in recent BPD-associated 
pulmonary hypertension cohorts was improved compared 
to historical cohorts [121, 138, 139]. Additionally, 45% of 
these children were able to discontinue sildenafil therapy 
after improvement in pulmonary hypertension. While these 
results are encouraging, infants with BPD-associated pulmo-
nary hypertension remain at risk for developing pulmonary 
vascular disease and pulmonary hypertension later in life. 
Recently preterm birth, in the absence of BPD, has been 
associated with pulmonary vascular disease in asymptomatic 
children and young adults [140, 141] supporting lifelong 
monitoring for pulmonary vascular disease and pulmonary 
hypertension in this at-risk population.

Summary — putting it all together

Chronic respiratory disease of prematurity is best thought 
of as a disease that affects all components of the cardiopul-
monary system: the lung parenchyma, small airways, large 
airways, pulmonary vasculature and heart. This creates the 
ability to “phenotype” infants based on the disease pres-
ence and severity of each component [55]. Among children 
with severe BPD, tracheobronchomalacia and pulmonary 
hypertension are also likely to be present, but a child with 
mild lung disease could also have tracheobronchomalacia 

or pulmonary hypertension. Such a child could be predicted 
to have a more difficult course after discharge than a pre-
term baby without an additional comorbidity. Therefore, 
knowledge of the child’s phenotype from imaging is very 
important.

Chest radiograph is very limited in its ability to character-
ize all three aspects of disease — BPD, tracheobronchoma-
lacia and pulmonary hypertension — but a bubbly cystic 
appearance with coarse opacities intermixed with hyperlu-
cent areas does predict severity and is now part of the BPD 
definition [3]. However, it does not provide much informa-
tion about the airway or cardiovascular involvement that can 
have such an important impact on outcomes.

On the other hand, chest CT can provide detailed evalua-
tion of the lungs for air-trapping, cysts, mosaic perfusion and 
opacities, which can range from linear bands and small trian-
gular opacities against the pleura to large confluent opacities. 
Additionally, on CT the trachea is well evaluated for the 
presence or absence of tracheobronchomalacia. There are 
several methods to perform the chest CT: inspiration/expira-
tion CT, inspiration only or during tidal breathing. Several 
papers in the review used inspiration/expiration techniques, 
but that usually requires sedation or general anesthesia [5]. 
Our recommendation based on experience is to image dur-
ing tidal breathing using either feed-and-swaddle technique 
or minimal sedation if needed. Temporary removal of any 
sort of airway pressure support reveals the true nature of the 
trachea and bronchi.

The addition of contrast agent to a chest CT can be con-
sidered. Advantages are that the vessels can be visualized. 
The PA/AO ratio could indicate the presence of pulmonary 
hypertension, a ductus arteriosus or other left-to-right shunt, 
and could even help to evaluate interventricular septal flat-
tening. The disadvantage of giving contrast agent is the 
potential for infant movement during injection. Additionally, 

Fig. 13  Preterm male born at 24  weeks of gestation, now post-
menstrual age 31  weeks (7  weeks old). a, b MR septal curvature 
is derived as the ratio of curvature of the interventricular septum 
(dashed line) and lateral wall (solid line) throughout the cardiac 
cycle (a).  MRI short-axis cine steady-state free precession (SSFP) 
image  shown here demonstrates the phase in the cardiac cycle at 

which minimum septal curvature occurred (a). In this case the inter-
ventricular septum is everted, resulting in a negative septal curvature 
value. Septal curvature throughout the cardiac cycle for the interven-
tricular septum (dashed line), lateral wall (gray line), and ratio of the 
interventricular septum to the lateral wall (black line, b)
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CT angiography can be used to evaluate the pulmonary veins 
for stenosis. However, echocardiography remains the pri-
mary method of evaluating for pulmonary hypertension and 
pulmonary vein stenosis.

Magnetic resonance imaging of the lungs, heart and tra-
chea is on the cusp of becoming a clinical reality, with UTE 
imaging playing a large role in providing CT-like imaging 
of the lung but also dynamic imaging of the trachea during 
tidal breathing. Imaging of the heart and vasculature can be 
performed without contrast agent. Thus, MRI can assess the 
PA/AO ratio, septal flattening and septal curvature, which 
is a very good measure of the severity of BPD–pulmonary 
hypertension [134, 137]. Evaluation of the pulmonary veins 
would likely require the use of contrast agent.

One of the exciting and novel uses of the dynamic UTE 
images of the lung is the ability to use the signal intensity 
over the respiratory cycle to determine regional ventilation 
[77]. A similar process could be done with dynamic CT data, 
but only over one or two breathing cycles. The advantage of 
the MRI is a much higher temporal resolution and a single 
composite breathing cycle created from several minutes of 
imaging and the absence of radiation [65].

Radiologists have always played a significant role in the 
care and treatment of preterm babies via a variety of imag-
ing modalities. Imaging of the pulmonary system likely has 
played the greatest role for radiology and now there is new 
evidence that cross-sectional imaging has added value in 
characterizing the contributions of the lung, large airways 
and cardiovascular system to the child’s clinical status and 
in predicting morbidity.
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