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Abstract

High-throughput data such as metabolomics, genomics, transcriptomics, and proteomics

have become familiar data types within the “-omics” family. For this work, we focus on sub-

sets that interact with one another and represent these “pathways” as graphs. Observed

pathways often have disjoint components, i.e., nodes or sets of nodes (metabolites, etc.)

not connected to any other within the pathway, which notably lessens testing power. In this

paper we propose the Pathway Integrated Regression-based Kernel Association Test

(PaIRKAT), a new kernel machine regression method for incorporating known pathway

information into the semi-parametric kernel regression framework. This work extends previ-

ous kernel machine approaches. This paper also contributes an application of a graph ker-

nel regularization method for overcoming disconnected pathways. By incorporating a

regularized or “smoothed” graph into a score test, PaIRKAT can provide more powerful

tests for associations between biological pathways and phenotypes of interest and will be

helpful in identifying novel pathways for targeted clinical research. We evaluate this method

through several simulation studies and an application to real metabolomics data from the

COPDGene study. Our simulation studies illustrate the robustness of this method to incor-

rect and incomplete pathway knowledge, and the real data analysis shows meaningful

improvements of testing power in pathways. PaIRKAT was developed for application to

metabolomic pathway data, but the techniques are easily generalizable to other data

sources with a graph-like structure.
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Author summary

PaIRKAT is a tool for improving testing power on high dimensional data by including

graph topography in the kernel machine regression setting. Studies on high-dimensional

data can struggle to include the complex relationships between variables. The semi-

parametric kernel machine regression model is a powerful tool for capturing these types

of relationships. They provide a framework for testing for relationships between outcomes

of interest and high dimensional data such as metabolomic, genomic, or proteomic path-

ways. Our paper proposes a kernel machine method for including known biological con-

nections between high dimensional variables by representing them as edges of ‘graphs’ or

‘networks.’ It is common for nodes (e.g., metabolites) to be disconnected from all others

within the graph, which leads to meaningful decreases in testing power when graph infor-

mation is ignored. We include a graph regularization or ‘smoothing’ approach for manag-

ing this issue. We demonstrate the benefits of this approach through simulation studies

and an application to the metabolomic data from the COPDGene study.

This is a PLOS Computational Biology Methods paper.

Introduction

Metabolomics is the study of the metabolite composition of a cell, tissue, or biological fluid.

Leading metabolomic experimental techniques such as liquid or gas chromatography coupled

with mass spectrometry (LC-MS or GC-MS) and nuclear magnetic resonance (NMR) spec-

troscopy can capture the abundance of all metabolites within a cell (the metabolome). These

technologies provide high-throughput data similar to other familiar -omics datatypes such as

genomics, transcriptomics, and proteomics. An important advantage of metabolomics over

other -omics data is its proximity to biological phenotypes[1]. While genomic or proteomic

data are vital pieces for understanding the progression from DNA to phenotype, the metabo-

lites are the end products of the enzymatic reactions of a cell[2]. The metabolome is comprised

of exogenous (environmentally derived) and endogenous (genetically regulated) metabolites

which can be used as biomarkers for the current phenotypic state of a cell or organism.

Like other -omics data, careful considerations of the metabolome’s unique characteristics

are required to fully leverage it for biological insights. Specifically, metabolites are known to be

related directly and indirectly by enzymatic reactions within a metabolomic pathway. Cluster-

ing methods have been developed to incorporate this connectivity into the primary analysis to

avoid this two-step approach. These include Bayesian methods for metabolite clustering based

on peak detection[3,4] and ad hoc methods based on singleton metabolite presence[5]. For

this work, we choose to group subsets of metabolites that interact with one another and repre-

sent these pathways as graphs or networks. Throughout this paper we will use the term graph
and network interchangeably. Open source databases with metabolomic pathway documenta-

tion such as the Kyoto Encyclopedia of Genes and Genomes (KEGG), the Human Metabolome

Database (HMDB), Reactome, OmniPath, and WikiPathways are growing resources[6–10],

and the pathways within these databases are easily translated to graphs to be used in down-

stream analyses.

The semiparametric kernel machine regression method[11,12] has gained popularity in

many areas of biomedical research such as genomics, microbiome analysis, and neuroimaging
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[13–15]. One reason for its popularity is that it provides a computationally scalable method of

classification and regression through the introduction of a kernel function. Another is that it

provides a setting for formal statistical estimation and testing procedures for high-dimensional

data sources, often using a score statistic. Formal statistical tests are useful for metabolomic

research, as a goal is often identifying specific metabolites and pathways for further inquiry. At

a high level, kernel machines test for relationships between an outcome and a set of predictors

by testing if variation between the two correspond with one another.

A hurdle more unique to metabolomics is the high levels of sparsity in individual metabo-

lites and pathway connectivity. While metabolomic databases (e.g., KEGG, HMDB) are grow-

ing, none are considered complete. Data generating techniques like LC-MS and GC-MS are

also imperfect technologies that may miss metabolite abundances that are too low[16]. Thus,

pathway representations of metabolomic data are often sparse and disconnected, i.e., nodes or

sets of nodes are not connected to any other within the pathway.

Disjoint nodes are of concern for graph-structured data. Techniques that force graphs to be

fully connected by making small, uniform changes to the structure have been suggested for

handling this issue[17,18]. However, it is understood that these alterations impose new chal-

lenges by changing the subspaces spanned by the graph. Works by Schaid [19] as well as Frey-

tag et al. [20] developed a network-based kernel where similarity is defined directly from the

network structure. These methods and others like it are tailored to genome-wide association

studies and not applicable to other omics data. Freytag also imposes “as much noise as neces-

sary” within the network to ensure positive semidefinite matrices which is something we aim

to avoid. In fact, our proposal dampens out noisy features of the graph. The PIMKL method

works with pathways within the metabolome by combining them through a weighted summed

kernel[21]. These weights provide insight into the importance of each sub-pathway, but this

does not surmount to the level of evidence gathered from a direct comparison between specific

pathways and phenotype.

In this paper we propose the Pathway Integrated Regression-based Kernel Association Test

(PaIRKAT), a new kernel machine regression method for incorporating known pathway infor-

mation into the semi-parametric kernel regression framework. In addition, PaIRKAT contrib-

utes an application of a graph kernel regularization method for overcoming sparse

connectivity and disjoint pathways. To our knowledge, this is the first method to incorporate

graph regularization into a kernel regression test. PaIRKAT allows for tests of association with

phenotypes and the specific pathways while integrating pathway structure, and, instead of add-

ing small amounts of noise, this approach dampens noisy components of a pathway while pre-

serving biologically relevant signals. This leads to improved testing power and better overall

biomarker detection. We evaluate these methods through several simulation studies and an

application to real metabolomics data from the COPDGene[22] study.

Results

Method overview

Here we provide the main steps of PaIRKAT and provide an overview of the ideas behind

them. The method is described in full in Methods and Models. The primary goal of PaIRKAT

is to include the topographical information of graph structured data into the kernel machine

regression model. We use the semiparametric kernel machine model[11,12,23] to test for rela-

tionships between the phenotype of interest, Y, and a high dimensional set, Z, while control-

ling for important covariates, X, in the model g(Y) = Xβ+h(Z)+�. In this model h(�) is a

positive semidefinite kernel function that transforms Z to an appropriate feature space.
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Omics data (metabolomics, genomics, etc.) can often be represented as a graph with edges

representing biological interactions between the nodes (metabolites, etc.). Freytag et al. and

Schaid both define a kernel directly from the graph structure where higher proximity within

the pathway gives a higher similarity score [19,20]. This has been coined a ‘guilt by association’

approach [24] and has been proven effective empirically. These methods use a map from SNPs

to genes to formulate similarity matrices, making them unapplicable to other types of studies.

PaIRKAT also uses the ‘guilt by association’ paradigm but relies on a graph’s regularized nor-
malized Laplacian as the measure of proximity within the pathway. Then any appropriate ker-

nel can be applied for testing making it more generally applicable than other similar

approaches.

We explored the utility of incorporating the Laplacian directly into the kernel machine but

found it to be ineffective using simulation studies. Instead, we transform ~L using methods

designed to dampen noisy aspects of a graph while preserving its biologically relevant features

[25,26]. The PaIRKAT method is to include this regularized normalized Laplacian, ~LR, in the

model through the kernel function as gðYÞ ¼ Xβþ hðZ~LRÞ þ �. Tests for relationships

between Y and hðZ~LRÞ are performed using an adjusted score statistic[23] and Davies’ method

for estimating distributions of linear combinations of χ2 variables[27].

Simulation results

A complete description of our simulation study can be found in Methods and Models, but we

give a brief synopsis of the simulation scheme. We first randomly generated a graph. Second,

we randomly generated features, Z, from multivariate normal distribution with a covariance

structure derived from the graph. Lastly, we randomly generated a normally distributed out-

come, Y, with a mean based on a linear relationship between the columns of Z. We performed

tests ignoring graph topography, including graph topography in the kernel function via the

normalized Laplacian (~L), and our proposed method PaIRKAT of including graph topography

in the kernel function via the regularized Laplacian (~LR). Our simulations aimed to assess how

sensitive our method is to incomplete and/or incorrect graph information. We also compare

the power of our method to two simple competing approaches: an F-test on all principal com-

ponents (PCs) of Z [28] and the minimum Simes’ adjusted p-value[29] from univariate tests

on Z (Univariate Simes).

Type I error rates for PaIRKAT are summarized in Tables 1, 2, 3 and 4. The type I error

rates for tests using a graph’s normalized Laplacian, ~L (see Methods and Models section for

Table 1. Type 1 error rates using all pathway information, i.e., no nodes or edges were dropped for these simula-

tions. “Perfect” indicates calculating ~L~
R from the graph used to generate the data. “Mismatch” indicates the percentage

of direct edges that were incorrect. Error rates were calculated from score tests on 1000 simulated data sets. All simula-

tions used graphs with 15, 30, or 45 nodes. “Complete Mismatch” indicates 100% mismatch.

Pathway size

15 30 45

Perfect 0.0482 0.0529 0.0568

10% Mismatch 0.0498 0.0494 0.0474

40% Mismatch 0.0487 0.0525 0.0464

70% Mismatch 0.0502 0.0512 0.0511

Complete Mismatch 0.0487 0.0511 0.0494

No Pathway 0.0580 0.0540 0.0530

Principal Component 0.0484 0.0543 0.0558

Univariate Simes 0.0490 0.0513 0.0507

https://doi.org/10.1371/journal.pcbi.1008986.t001
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definition), are summarized in S1, S2, S3, and S4 Tables. The type I error rate of�0.05 is main-

tained throughout all simulation scenarios.

The power curves for all pathway structures and competing methods while simulating com-

plete knowledge, missing edges, and missing nodes are displayed in Fig 1. Having a perfect

pathway structure provides the most power. Relationships between an outcome and pathway

are easier to detect in larger pathways. The more incorrect direct edges in the pathway, the

lower the overall power. The univariate Simes was improved by including ~LR. Using the PCs of

Z and Z~LR gave the exact same power, which is expected from a basis transformation, and per-

formed similarly to a completely incorrect edge structure. Clearly, any correct information

from the graph improved power overall. We also see that increasing the overall signal to noise

ratio improves power for all pathway structures (Fig 2). PaIRKAT (~LR) achieves approximately

Table 2. Type 1 error rates using pathways with 5% missing edges. Error rates were calculated from score tests on

1000 simulated data sets using graphs with 15, 30, or 45 nodes. The graph used to simulate Z and Y was of medium

edge density, while the graph used to test was of low density. The low-density graphs are drawn from the Barabasi-

Albert model with edge density 0.13, 0.07, and 0.04 for graphs with 15, 30, and 45 nodes, respectively. Medium edge

density graphs are created by giving any 2 nodes without a direct edge between them a 5% chance of becoming directly

connected. This creates graphs with an average edge density of 0.18, 0.12, and 0.09 for graphs with 15, 30, and 45

nodes, respectively. “Perfect” indicates calculating ~L~
R from the graph without changing remaining edges. “Mismatch”

indicates the percentage of remaining direct edges that were incorrect. “Complete Mismatch” indicates 100%

mismatch.

Pathway size

15 30 45

Perfect Network 0.0497 0.0491 0.0463

10% Mismatch 0.0478 0.0479 0.0485

40% Mismatch 0.0465 0.0510 0.0536

70% Mismatch 0.0518 0.0523 0.0486

Complete Mismatch 0.0491 0.0539 0.0463

No Network 0.0480 0.0440 0.0390

Principal Component 0.0507 0.0489 0.0494

Univariate Simes 0.0515 0.0494 0.0477

https://doi.org/10.1371/journal.pcbi.1008986.t002

Table 3. Type 1 error rates using pathways with 15% missing edges. Error rates were calculated from score tests on

1000 simulated data sets using graphs with 15, 30, or 45 nodes. The graph used to simulate Z and Y was of high edge

density, while the graph used to test was of low density. The low-density graphs are drawn from the Barabasi-Albert

model with edge density 0.13, 0.07, and 0.04 for graphs with 15, 30, and 45 nodes, respectively. High edge density

graphs are created by giving any 2 nodes without a direct edge between them a 15% chance of becoming directly con-

nected. This creates graphs with an average edge density of 0.26, 0.21, and 0.19 for graphs with 15, 30, and 45 nodes,

respectively. “Perfect” indicates calculating ~L~
R from the graph without changing remaining edges. “Mismatch” indicates

the percentage of remaining direct edges that were incorrect. “Complete Mismatch” indicates 100% mismatch.

Pathway size

15 30 45

Perfect Network 0.0508 0.0538 0.0456

10% Mismatch 0.0541 0.0519 0.0521

40% Mismatch 0.0495 0.0486 0.0478

70% Mismatch 0.0514 0.0506 0.0524

Complete Mismatch 0.0504 0.0523 0.0490

No Network 0.0430 0.0530 0.0510

Principal Component 0.0525 0.0509 0.0481

Univariate Simes 0.0499 0.0491 0.0459

https://doi.org/10.1371/journal.pcbi.1008986.t003
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80% power at a signal to noise ratio around 0.32, whereas ignoring network information

requires a signal to noise ratio over twice that, about 0.70 and only including the Laplacian

never achieves 80% power (Fig 2). The univariate Simes’ test performed as well as PaIRKAT

Table 4. Type 1 error rates using pathways with dropped nodes. Error rates were calculated from score tests on

1000 simulated data sets using graphs 15, 30, or 45 nodes initially. The graph used to simulate Z and Y contained all

nodes. Nodes with degree below the 25th percentile within a graph had a 25% chance of being dropped before testing.

“Perfect” indicates calculating ~L~
R from the graph without changing edges between remaining nodes. “Mismatch” indi-

cates the percentage of direct edges between remaining nodes that were incorrect. “Complete Mismatch” indicates

100% mismatch.

Pathway size

15 30 45

Perfect Network 0.0480 0.0513 0.0494

10% Mismatch 0.0499 0.0489 0.0476

40% Mismatch 0.0492 0.0495 0.0501

70% Mismatch 0.0522 0.0511 0.0500

Complete Mismatch 0.0481 0.0488 0.0483

No Network 0.0420 0.0490 0.0530

Principal Component 0.0505 0.0476 0.0501

Univariate Simes 0.0481 0.0502 0.0502

https://doi.org/10.1371/journal.pcbi.1008986.t004

Fig 1. Power curves from the four pathway knowledge and 6 pathway structure simulation scenarios. Power curves were all calculated from score tests on

1000 simulated data sets using graphs with 15, 30, or 45 nodes. Power curves assuming complete pathway knowledge with no dropped edges or nodes are

displayed in a). For (b) and (c), the graph used to simulate Z and Y was of medium or high density, respectively, while the graph used to test was of low density.

Medium and high edge density graphs used for data generation had ~5% and ~15% more edges, respectively, than the low-density graph used for testing. The

power curve generated assuming missing nodes (d) used all graph nodes to generate Z and Y. Then nodes (and corresponding columns of Z) with degree below

the 25th percentile within a graph had a 25% chance of being dropped before testing.

https://doi.org/10.1371/journal.pcbi.1008986.g001
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with perfect pathway knowledge. This is unsurprising since all zi are related to the outcome in

our simulations.

COPDGene analysis results

A complete description of these analyses can be found in Methods and Models, but here we

give a brief description of the outcome variables we analyzed. We create models for two phe-

notypes from the COPDGene study[22]: (1) percent emphysema and (2) the ratio of post-

bronchodilator forced expiratory volume at one second divided by forced vital capacity (FEV1/

FVC). To normalize FEV1/FVC, we use the following log ratio transformation, log FEV1=FVC
1� FEV1=FVC

� �
.

This is referred to as the “log FEV1/FVC ratio” for simplicity. We test for associations between

28 pathways and each outcome under the same three conditions in the simulation study:

ignoring graph topography, including graph topography via the normalized Laplacian (~L), and

our proposed method PaIRKAT of including graph topography via the regularized Laplacian

(~LR).

Including the metabolites’ regularized graphs had large impacts on the associations between

the log FEV1/FVC ratio and several subsets of metabolites. For the 28 pathways tested, power

was improved for 17 pathways when using PaIRKAT vs. using ~L or ignoring pathway informa-

tion. Of note, the strength of the associations between the log FEV1/FVC ratio and the ABC
transporters, the arginine and proline metabolism, the cysteine and methionine metabolism, the

pyrimidine metabolism, the glycine, serine, and threonine metabolism, and the neuroactive
ligand-receptor interaction metabolite subsets increased dramatically. The average p-value was

Fig 2. Signal to Noise Ratio. Power curves from increasing the signal to noise ratio while assuming complete pathway knowledge. The signal to noise ratio

was calculated as the as the ratio between the overall variance in Y, Varðb0 þ
Pp

j¼1
bjZijÞ, and the overall residual variance, Var½Yi � ðb0 þ

Pp
j¼1
bjZijÞ�. Each

power calculation comes from score tests on 1000 simulated data sets using graphs with 30 nodes.

https://doi.org/10.1371/journal.pcbi.1008986.g002
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also lower for 12 pathways with using ~L vs. ignoring pathway information. S1 Fig displays the

p-values from the kernel regression tests for associations between the log FEV1/FVC and the

28 pathways of interest for each subsample size.

Including the metabolites’ regularized graphs also had impacts on the associations between

percent emphysema and several subsets of metabolites. For the 28 subsets of metabolites tested,

power was improved for 17 pathways when using PaIRKAT vs. including ~L or ignoring path-

way information. Of note, the strength of the associations between percent emphysema and

the ABC transporters, the β-alanine metabolism, the neuroactive ligand-receptor interaction, the

glycine, serine and threonine metabolism, and the histidine metabolism metabolite subsets

increased dramatically when using PaIRKAT vs. ignoring pathway information. The average

p-value was also lower for the same 5 pathways with using ~L vs. ignoring pathway information.

However, there was still not a significant result from any method for 4 of these pathways, and

PaIRKAT provided similar power for the fifth. S2 Fig displays the p-values from the kernel

regression tests for associations between percent emphysema and the 28 pathways of interest

for each subsample size.

Fig 3 displays results from 3 pathways selected to illustrate PaIRKAT’s impact on power for

fully connected (left column), partially disconnected (middle column), and sparse (right col-

umn) graphs. For the steroid hormone biosynthesis pathway, an almost completely sparse path-

way, we see virtually no differences between PaIRKAT and ignoring pathway connectivity. We

Fig 3. Selected results from COPDGene subset analysis. Average p-values from kernel regressing tests that do not

include pathway information (No Laplacian, red circles), include pathway information through a normalized

Laplacian (~L~, green triangles), and include pathway information through a regularized normalized Laplacian

(~L~
R ¼ ðI þ t~L

~Þ
� 1

, blue squares) are displayed. P-values were averaged over 100 random subsets of size 100, 200, 300,

400, and 500 from the COPDGene dataset. τ was set to 1 for all tests that used ~L~
R. The 3 pathways selected illustrate the

expected results in fully connected (left), partially disconnected (middle), and sparse (right) graphs.

https://doi.org/10.1371/journal.pcbi.1008986.g003
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also see relatively small differences between all three methods for the fully connected aminoa-
cyl-tRNA biosynthesis pathway. The major impacts from PaIRKAT come when there are a few

nodes or node subsets disjoint from the rest of the graph, as we see in the cysteine and methio-
nine metabolism.

Discussion

We have developed PaIRKAT, a method for incorporating pathway information under a ker-

nel regression framework. Other methods to incorporate pathway connectivity via graph oper-

ations have been developed[20,21,26,30–32]. PaIRKAT enables the researcher to test on

specified pathways instead of aggregating all pathways through a weighted kernel as in[21,30].

It can also handle disjointed pathways without adding in artificial noise to the network as in

[17,18,20]. This allows the investigator to compile information from multiple sources, e.g.,

KEGG and HMDB. The regression framework also expands upon a method developed for

classification[26]. It should be noted that the kernel framework is testing a global null, i.e., if

any node covaries with the outcome the null hypothesis is rejected. See Goeman and Buhl-

mann[33] for a full discussion on whether or not this approach is appropriate for pathway

based hypotheses.

Pathway misspecifications from incomplete data collection or imperfect canonical pathways

within databases are common hurdles in -omics studies. We explored the sensitivity of the

method by simulating data assuming incorrect pathway structures and incomplete pathway

knowledge. These studies show that our method is highly robust to pathway misspecifications.

In smaller pathways, we see that the partially mismatched structure with ~10% of direct edges

being incorrect does as well as the perfect network structure. This is likely due to the very small

change from the perfect structure in these cases, as a graph with only 15 nodes could easily be

unchanged with only a 10% chance to change an edge. Furthermore, even with incorrect or

incomplete pathway information, our method provides significantly improved power over

ignoring pathway information while maintaining an appropriate type I error rate. We believe

this is because many indirect connections between nodes are preserved, and these connections

still provide more accurate information than incorrectly assuming independence among nodes.

One benefit of using PaIRKAT is improved power to identify pathways that are associated

with clinical phenotypes. For example, an application to the COPDGene dataset using KEGG’s

database of metabolic pathways also illustrated PaIRKAT’s ability to improve testing power

over simply treating metabolites as independent (Figs 3, S1, and S2). The regularization tech-

nique was also able to handle pathways with few metabolites and/or disjoint components. Sev-

eral tests had a notables boost in power from including pathway connectivity for both percent

emphysema and the log FEV1/FVC ratio, and most pathways have been previously associated

with COPD and lung function. Huang et al. linked environmental exposures, COPD risk, and

metabolomic pathways, and found associations between COPD and the histidine metabolism,

cysteine and methionine metabolism, and β-alanine metabolism pathways[34]. The glycine, ser-
ine and threonine metabolism, aminoacyl-tRNA biosynthesis, pyrimidine metabolism, pantothe-
nate and CoA biosynthesis, pathways have all previously been associated with asthma[35]. The

β-Alanine metabolism, ABC transporters, purine metabolism, pantothenate and CoA biosyn-

thesis pathways were all differentially associated with COPD subclasses for patients with lung

cancer[36]. Another study of the COPDGene dataset[22] using a two-step pathway enrich-

ment approach found that the purine metabolism, mineral absorption, arginine biosynthesis,
aminoacyl-tRNA biosynthesis, ABC transporters and glycine, serine and threonine metabolism
pathways were all associated with various measures of lung function and increased COPD

exacerbations[37]. The three ABC transporters have also been shown to be related to COPD in
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several murine knockout and human studies (see Chai et al.[38]). Finally, the arginine biosyn-
thesis pathway has also been associated with COPD in multiple studies [39,40].

Graph information

We used a non-proprietary version of KEGG available in R. The proprietary version of this

database has more up to date information and could have resulted in different pathway struc-

tures for the COPDGene data set. There is also a substantial literature on data driven methods

for deriving networks from omics data [41–47]. Chai et al. provide a nice review[48]. We leave

the investigation of how these data-driven methods interact with ours to future research.

Impacts of regularization

In simulation studies and real data analyses we saw meaningful improvements in power by

including pathway information through a graph’s regularized normalized Laplacian, (PaIR-

KAT) when compared to ignoring the pathway information or using ~L. PaIRKAT was essential

to maintaining testing power when graphs had disjoint nodes or sub-graphs. Using the normal-

ized Laplacian, ~L, hindered testing performance compared to using PaIRKAT or ignoring the

pathway information when a graph was disconnected. In connected graphs PaIRKAT, using ~L,

and ignoring the pathway information all performed similarly in the real data analyses (Fig 3).

It is well established that ~L is a symmetric and positive semidefinite matrix with eigen values

0�λ1, λ2,. . .,λp�2, where the number of λi = 0 is the number of disjoint components of the

undirected graph G (see Methods and Models). Therefore, graphs with very low connectivity,

meaning many λi = 0, will not be as impacted by regularization since all r−1 (λi = 0) = a for

some scalar a. In words, there is no extra information from a graph when most nodes are dis-

connected from one another (e.g., Fig 3, right column).

One limitation of this study is our focus on the Gaussian kernel. There has been success

with other kernels for high dimensional data such as ones tailored to the data type [14,20] or

simple linear and weighted linear kernels [23,49–51]. We have shown that including that

including pathway information can improve the power of the Gaussian kernel and leave the

impacts on other kernels to future work.

Summary

In summary, our proposed method serves as a framework for including pathway information

into a kernel machine regression test. We developed this method for application to metabolo-

mic pathway data, but the techniques are easily generalizable to other data sources with a

graph-like structure. It is important to examine the structure of a graph before applying a regu-

larization step. Unique challenges arose from the sparsity present in many metabolomic path-

ways which can greatly hinder performance. We implement a graph regularization kernel to

handle disconnected pathways. This regularization step is novel in the application of graph-

based kernel machine regression to biological data. Our simulation studies illustrate the

robustness of this method to improper and incomplete pathway knowledge. The method pre-

sented can provide powerful tests for associations between biological pathways and phenotypes

of interest and will be helpful in identifying novel pathways for targeted clinical research.

Methods and models

The Kernel machine model

We assume that the data are properly filtered, imputed, and normalized for the methods

described in this paper. Consider a dataset with observations from n subjects. Let Y be an n×1
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vector representing a continuous or discrete phenotype of interest. Also let X be a n×q matrix

of clinical covariates and Z be an n×p matrix of graph structure data. The phenotype can then

be modeled through the following semiparametric model

gðYÞ ¼ Xβþ hðZÞ þ �; 1Þ

where g is either the identity or logit link function, β is a q×1 vector of regression coefficients, �

is an n×1 vector of normally distributed error terms, and h is a kernel function. There are no

parametric assumptions placed on h except that it lies in some feature space. This more relaxed

requirement from the kernel regression provides flexibility and robustness to model misspeci-

fication. Another key advantage of introducing the kernel function is its ability to capture non-

linear relationships between the phenotype (Y) and the metabolome (Z) in a computationally

tractable manner.

These relationships are assumed to exist in some feature space that is generated by a positive

definite kernel function K(�,�). The kernel function can be understood as a feature map that

delivers the dot product between zi and zj within the features space, i.e., K(zi, zj) = hϕ(zi),ϕ(zj)i,

where ϕ(�) is the transformation to the feature space and h�,�i is the dot product. The repre-

senter theorem allows h(Z) to be represented through the kernel function K(�,�) as hð�Þ ¼
Pn

i¼1
aiKð�; zi; rÞ for some coefficients αi2R. More detailed derivations can be found in texts

by Schölkopf and Smola[52] as well as Cristianini and Shawe-Taylor[53].

The kernel function K can be thought of as a measurement of similarity between two indi-

viduals. Common choices for kernel functions are the Linear Kernel: Kðzi; zjÞ ¼ zT
i zj (the dot

product), the dth Polynomial Kernel: Kðzi; zj; rÞ ¼ ðzT
i zj þ rÞ

d
, and the Gaussian Kernel: K(zi,

zj, ρ) = exp{−kzi−zjk
2/ρ}, where k�k is the Euclidean (L2) norm. For this work, we employ the

Gaussian kernel and use the median of all pairwise Euclidean distances between all zi and zj as

an empirical estimate of ρ. We choose to work with the Gaussian kernel since it is a characteris-
tic kernel, a desirable property meaning that probability measures embedded through the ker-

nel function are unique.

Kernel-based score test. Liu et al. show a connection between kernel machine regression

and linear mixed models for semiparametric modeling of high dimensional data [11,12]. The

parameters β and h(Z) can be estimated by maximizing the scale penalized likelihood

L β; hð Þ ¼ �
1

2

Pn
i¼1
½yi � xT

i β � hðziÞ�
2
�

1

2
lkhk2

2Þ

¼ �
1

2

Pn
i¼1
½yi � xT

i β �
Pn

j¼1
ajKðzi; zjÞ�

2
�

1

2
lαTKα; 3Þ

where K = K(zi, zj, ρ) is the semi-positive definite kernel function of choice. h(Z) can then be

understood as subject specific random effects with mean 0 and variance τK. Testing for an

association between phenotype and pathway is then equivalent to testing the null hypothesis

H0:τ = 0 vs H1:τ>0. We adopt Chen et al.’s adjusted kernel association test adjusted for small

samples, which is common for many omics studies [23]. The standard quadratic score statistic

for kernel association tests,

Q β; s;rð Þ ¼
1

s2
ðY � XβÞTK Y � Xβð Þ; 4Þ

is adjusted to account for the high variability in estimates of σ2 when n is small. The distribu-

tion of Q under the null model is then approximated as a weighted sum of χ2 variables using

Davies method [27].
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Graph laplacian

A network or graph, G = {V, E}, is a mathematical representation of any interconnected struc-

ture through a set V of p nodes (or vertices) and a set E of edges, where the elements of E are

pairs {u, v} of distinct vertices, u, v2V. When applied to omic pathways, nodes represent indi-

vidual metabolites, genes, microbes, etc. within the pathway and edges represent direct interac-

tions/reactions between them.

Two important features of any graph are its adjacency matrix, A, and degree matrix, D. A is

a p×p matrix that is non-zero when an edge exists between two vertices. D is a p×p diagonal

matrix with D[i,i] representing the number of nodes connected to node i. For this work, we rep-

resent pathways using undirected unweighted graphs, i.e., there is no ordering to the vertices

defining an edge and {u, v} = {v, u}2E. This means A will be a symmetric matrix with all entries

either 1 or 0. Using these features, we can calculate a graph’s Laplacian L≔D−A and its nor-

malized Laplacian ~L≔D�
1=

2LD�
1=

2 ¼ I � D�
1=

2AD�
1=

2 , where I is a p×p identity matrix.

Both L and ~L can be regarded as linear operators of functions f:V!R that induce a semi-

norm kfkL = hf,Lfi = fTLf. This semi-norm can be interpreted as a measure of “smoothness” or

how much f varies over its domain. Standardizing L by the number of connections per node to

obtain ~L is a common approach in graph theory since ~L has several well-known and desirable

properties. In particular, ~L is symmetric and positive semidefinite, and its eigenvalues, λi, are

bounded such that they satisfy 0�λi�2 for i21,2,. . .p. Another interesting feature of a graph’s

normalized Laplacian, ~L, is that the number of disjoint pieces within a graph is captured by the

number of ~Ls eigen values equal to 0 [54].

Graph regularization

A key component of PaIRKAT is the ability to handle missing and incorrect information from

the graph. Pathway databases may not be complete, and untargeted data generating techniques

may not be able capture all components within a pathway. This leaves some pathways with low

connectivity and others with completely disconnected nodes. This can lead to a decrease in

our power to detect associations between phenotypes and metabolomic pathways. One pro-

posed solution is to simply manipulate the adjacency matrix by adding a small constant to all

entries[17,18], i.e. working with a modified adjacency matrix ~A ¼ Aþ tee0, where t is a non-

negative tuning parameter and e is a vector of 1s. This yields a full rank matrix as desired, but

we know that the subspace spanned by ~A is not the correct subspace on which our graph lies.

A more elegant solution can be drawn from Smola and Kondor’s work on regularization of

graphs[25] in which they draw on parallels between the standard Laplacian operator

D ¼ @2

@x2
1

þ @2

@x2
2

þ � � � þ @2

@x2
m

� �
and the graph Laplacian to design regularization kernels for

graphs. Rapaport, et al.[26] took a similar approach to graph smoothing, though this work was

done in the context of classification not hypothesis testing. These ideas can be generalized fur-

ther to represent any metric on a space. That is, for any two observations i and j, the inner

product can be expressed as hzi; zjiM ¼ zT
i Mzj, where M defines the metric on the vector space

based on kzi−zjkM. Purdom[55] presents this argument in the context of a “generalized” prin-

cipal component analysis using a general metric M. This can be seen as an application of a lin-

ear kernel on any metric space, whereas we apply the Gaussian kernels for hypothesis testing

and, like Rapaport, focus on graph Laplacians for our metric.

For this work, we apply a regularization function to obtain a regularized normalized Lapla-

cian: rð~LÞ � ~LR. Regularizations of the Laplacian can be seen as regularizations of the eigenval-

ues of ~L, r(λ). There are many possible choices for r; the only requirement is that r−1(λ)>0 for
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λ2[0, 2] to ensure rð~LÞ≽0. In classical Fourier analysis the size of λi2[0, 2] is directly propor-

tional to the frequency of component i within Fourier space, which translates to the degree of

noise within the system. This intuition tells us to limit r−1(λ) to monotonically increasing func-

tions in order to impose higher penalties to more uneven portions of the graph while preserv-

ing the lower frequency components, which we assume translate to the prevalent biological

signals. Smola and Kondor recommend further limiting choices of r to functions expressible

by power series such as a diffusion kernel, rð~LÞ ¼ e� t=2~L . See [56] for complete details on the

derivation of different regularization functions.

PaIRKAT implements a “linear” regularization function

~LR ¼ ðI þ t~LÞ
� 1
; 5Þ

where τ>0 is a bandwidth parameter and I is a p×p identity matrix. We choose this regulariza-

tion for its simplicity and interpretability of τ. Increasing τ linearly increases the amount of

smoothing performed in r−1(λ) = 1+τλ. We can now conduct a kernel machine test while

incorporating connectivity within a pathway through ~LR into (1) as

gðYÞ ¼ Xβþ hðZ~LRÞ þ �; 6Þ

where h is a kernel function applied to Z~LR and the other model components are as described

in (1). Z~LR is changing Z’s basis function to one defined by the Laplacian, with the new basis

vectors representing noise dampened through the regularization function. This can be inter-

preted as transforming each subject’s phenotype to a weighted sum of each element where the

weights are the elements’ proximity to each other within the pathway. This falls under the

‘guilt by association’ framework as nodes closer to each other will share more information and

disconnected nodes will share none. The kernel-based score test can then be applied to obtain

powerful tests for associations between connected or disconnected pathways and a phenotype

of interest.

Simulation study

Simulation scenarios. We conducted multiple simulation studies to assess whether the

proposed method is robust to imperfect pathway information. We assumed 3 different “path-

way knowledge” scenarios and 4 different “pathway structure” scenarios (Fig 4). Different

pathway knowledge scenarios refer to different types of missing information, whereas pathway

structure scenarios refer to different configurations of the “known” nodes and edges. We simu-

late using both the normalized Laplacian, ~L, and PaIRKAT’s regularized normalized Laplacian,

~LR, as well as ignoring the pathway information. For comparison, we also tested using an F-

test on all principal components of Z and Z~LR and the minimum Simes’ adjusted p-value of

univariate tests [29] on all columns of Z and Z~LR.

Pathway knowledge. We simulated three different knowledge scenarios to represent

incomplete pathway database information and/or incomplete data collection.

1. No missing: Assuming the nodes measured (metabolites, genes, etc.) and edges connecting

them are a perfect representation of the biological pathway of interest.

2. Missing edges: Assuming that some biological interactions (edges) are missing from the

documented pathway. Here we generate a graph G = {V, E} according to the Barabasi-

Albert model for a “low” edge density. We then give every set {u, v}=2E a 5% or 15% percent

chance of being added to E for a “medium” or “high” edge density graph, respectively. Z
and Y are then generated from the medium or high edge density graph, but ~L or ~LR is
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calculated from the original “low” edge density graph. Examples of these graphs are shown

in S3 Fig.

3. Missing nodes: Assuming that some of the nodes (and hence their edges) are missing from

the documented pathway. Here a graph is used to generate Z and Y. Then nodes with

degree below the 25th percentile have a 25% chance of being removed before calculating ~L
or ~LR. The corresponding columns and rows of Z and! b are removed as well. Examples

of these graphs are shown in S4 Fig.

Pathway structures. After we simulate a pathway knowledge scenario, we alter the path-

way structure to represent incorrect edge connections within a database. Examples of struc-

tures 1, 2, and 3 are displayed in Fig 5.

1. No mismatch: No alterations to graph edges. The graph used to simulate Z and Y is the

same graph used to calculate ~L or ~LR (Fig 5, left).

2. Partial Mismatch: a graph, G1 = {V1, E1}, is used to simulate Z and Y. This graph’s edges are

permuted such that any edge {u, v}2E1 has a 10%, 40%, or 70% chance of being changed to

some {u, w}=2E1; i.e., approximately 10%, 40%, or 70% of direct edges are incorrect before

calculating ~L or ~LR (Fig 5, middle).

3. Complete Mismatch: a network G1 = {V1, E1} is used to simulate Z and Y. A new random

graph, G2, is then draw and forced to have no edges that match G1, i.e., V1 = V2 but if {u,

v}2E1 then {u, v}=2E2. We then calculate ~L or ~LR from G2 (Fig 5, right).

Fig 4. Flowchart of simulation procedure. We (1) simulate a graph G, (2) generate Z and Y from G, (3) drop nodes or edges from G to give a smaller

graph Gs (drop corresponding columns of Z when dropping edges to create Zs), (4) permute edges to create an improperly structured graph G�s , (5)

calculate the regularized normalized Laplacian ~L~�
R from G�s , and finally (5) test for an association between hðZ ~L~�

RÞ (or hðZs
~L~�

RÞ) and Y in the model

Y ¼ b0 þ hðZs
~L~�

RÞ. For the “no network” simulations, we only use step (1), step (2) and step (5) without including ~L~�
R.

https://doi.org/10.1371/journal.pcbi.1008986.g004
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4. No Pathway: a graph is used to simulate Z and Y. This connectivity is ignored while testing

by not including ~L or ~LR in the kernel function.

All pathway structures were considered under each different pathway knowledge scenario.

The different pathway structures were imposed after simulating under different pathway

knowledge assumptions. Each simulated pathway structure and knowledge combination fol-

lowed 5 steps: (1) simulate a graph G, (2) generate Z and Y from G, (3) drop nodes and/or

edges (based on knowledge assumption) from G and Z to give a smaller graph and node set GS

and ZS, (4) alter GS (based on structure assumption) to create a graph G�s with improper edge

connections, (5) calculate ~L� or ~L�R from G�s , and (5) test for an association between hðZs
~L�RÞ

and Y in the model Y ¼ b0 þ hðZs
~L�RÞ. See Fig 4 for a flowchart of these simulation scenarios.

Simulated data. To evaluate PaIRKAT’s overall testing performance and robustness to

incorrect pathway information, we simulate data and tests assuming various types of misspeci-

fied pathways. All simulations were performed using R[57]. Random graphs were generated

using the igraph[58] package according to the Barabasi-Albert model[59] with p nodes repre-

senting p metabolites within a pathway. The graph’s adjacency matrix was converted into a posi-

tive definite precision matrix,O, using an approached developed by Danaher, et al.[60] and also

applied by Shaddox, et al[61]. An n by p matrix of metabolite abundances, Z, was then simulated

from a multivariate normal distribution with mean 0 and covariance O−1. In this way, node

connectivity is captured by O. A continuous outcome Yi was then simulated from a normal dis-

tribution with mean 0.26+0.5 X1+0.25 X2+∑jβjZij and variance σ2, where X1 was a binary vari-

able, X2 is a uniform random variable, σ2 = 1.36882. This value for σ2 was drawn from observed

metabolomics data. The regularization parameter τ is set to 1 for all simulations. All βj were set

to 0 to assess Type I error rates or set to 0.1 to assess power for the different pathway informa-

tion scenarios described above. Each used 10,000 simulations of graphs of size p = 15, 30, 45

assuming a sample size of n = 160, and a testing level of α = 0.05 was used for all simulations.

COPDGene data

We analyzed data collected from the COPDGene study [22], a multicenter observational study

that collected genetic data as well as multiple measures of lung function to study chronic

Fig 5. Examples of the three different pathway structures. Nodes 6 and 7 are highlighted in red to help display the effects of

different pathway structures. (Left) The “true” pathway or graph that is used to simulated Z and Y. This is the graph used for tests

under a “perfect pathway structure” scenario. (Middle) A graph with approximately 40% of the edges from the “true” graph directly

connecting the wrong nodes. This is used for tests under a “partial mismatch (40) structure” scenario. (Right) A graph with 0 shared

edges with the “true” graph. This is the graph used for tests under a “complete mismatch structure” scenario.

https://doi.org/10.1371/journal.pcbi.1008986.g005
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obstructive pulmonary disease (COPD). Between 2007 and 2011, 10,198 participants with and

without chronic obstructive pulmonary disease (COPD) enrolled (Visit 1). A five-year follow

up visit took place between 2013 and 2017 (Visit 2). Blood samples were also obtained for

-omics analyses from participants who provided consent. In total, 1136 subjects (1040 non-

Hispanic white, 96 African American) participated in a metabolomics ancillary study in which

they provide fresh frozen plasma collected using an 8.5 mL p100 tube (Becton Dickson) at

Visit 2.

Metabolomics and data processing

P100 plasma was profiled using the Metabolon (Durham, NC, USA) Global Metabolomics

platform. Briefly, untargeted liquid chromatography–tandem mass spectrometry (LC–MS/

MS) was used to quantify 1392 metabolites and described in[62,63]. A data normalization step

was performed to correct variation resulting from instrument inter-day tuning differences:

metabolite intensities were divided by the metabolite run day median, then multiplied by the

overall metabolite median. It was determined that no further normalization was necessary

based on the reduction in the significance of association between the top PCs and sample run

day after normalization. Subjects with aggregate metabolite median z-scores greater than 3.5

standard deviation from the mean (n = 6) of the cohort were removed. Metabolites were

excluded if >20% of samples were missing values[64]. For the 995 remaining metabolites,

missing values were imputed across metabolites with k-nearest neighbors imputation (k = 10)

using the R package impute[65]. As a final step, metabolomic data was natural log transformed

and standardized. Linear regression models were fit to each metabolite controlling for white

blood cell count, percent eosinophil, percent lymphocytes, percent monocytes, percent neutro-

phils, and hemoglobin. The partial residuals were then used as the observed metabolomics

data. These data are available at Metabolomics Workbench with identifier PR000907.

Four hundred and thirty six of these metabolites had an id in the KEGG database of human

pathways, which was accessed using the keggLink function from the KEGGREST package[66].

These 436 metabolites appear in 161 KEGG pathways, and 28 of these 161 KEGG pathways

contained 10 or more metabolites. Edges in a pathway’s graph were defined by connections

within a pathway from the KEGG reaction database. Note that our filtered dataset did not con-

tain every metabolite within the 28 KEGG pathways selected, and therefore some of the ana-

lyzed pathways have less that 10 metabolites.

Clinical variables

We focus on two COPD phenotypes: (1) percent emphysema and (2) the ratio of post-bron-

chodilator forced expiratory volume at one second divided by forced vital capacity (FEV1/

FVC). Emphysema, a measure of erosion of the distal airspaces, has been linked with the clini-

cal severity of COPD[67]. It is an imaging-based phenotype defined as the 15th percentile lung

voxel density in Hounsfield units adjusted for total lung capacity from quantitative CT imag-

ing analyses. FEV1/FVC is a measure of airflow obstruction. To normalize FEV1/FVC, we use

the following log ratio transformation, log FEV1=FVC
1� FEV1=FVC

� �
. After removing incomplete cases we

were left with 1,113 complete cases for the FEV1/FVC analysis and 1,065 complete cases for

the percent emphysema analysis.

Analysis

We compared results from tests that included pathway connectivity via ~L; ~LR; and tests that

ignored pathway connectivity for the 28 pathways that had measurements on at least 10 of the
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metabolites in the pathway. P-values were calculated from a score test as described Section 2

with τ = 1 for PaIRKAT tests. P-values from each method were indistinguishable from one

another for both data sets with over 1,000 observations. However, many data sets may not be

that large. To demonstrate the differences in performance, 100 random subsets of sizes 100,

200, 300, 400, and 500 were taken from both the log FEV1/FVC ratio and the percent emphy-

sema data sets. All three methods were used to test for associations between phenotype and

metabolites within a pathway. The 100 p-values were then averaged to measure the perfor-

mance of each method. All null models included subject age, sex, BMI, smoking status (cur-

rent, former, never), pack-years of smoking, and the clinical center as covariates.

Supporting information

S1 Fig. Associations between metabolite subsets and log FEV1/FVC ratio. Average p-values

from kernel regressing tests that do not include pathway information (No Laplacian, red cir-

cles), include pathway information through a normalized Laplacian (~L, green triangles), and

include pathway information through a regularized normalized Laplacian (~LR ¼ ðI þ t~LÞ
� 1

,

blue squares) are displayed. P-values were averaged over 100 random subsets of size 100, 200,

300, 400, and 500 from the COPDGene dataset. τ was set to 1 for all tests that used ~LR.

(TIF)

S2 Fig. Associations between metabolite subsets and percent emphysema. Average p-values

from kernel regressing tests that do not include pathway information (No Laplacian, red cir-

cles), include pathway information through a normalized Laplacian (~L, green triangles), and

include pathway information through a regularized normalized Laplacian (~LR ¼ ðI þ t~LÞ
� 1

,

blue squares) are displayed. P-values were averaged over 100 random subsets of size 100, 200,

300, 400, and 500 from the COPDGene dataset. τ was set to 1 for all tests that used ~LR.

(TIF)

S3 Fig. Examples graphs with high, medium, and low edge densities. Low density graphs

were generated according the Barabasi-Albert model for graph simulation. Medium- and

high-density graphs were generated by giving each unconnected node either a 5% or 15%

chance of becoming connected, respectively.

(TIF)

S4 Fig. Example of a graph with missing nodes. Graphs were generated according to the Bar-

abasi-Albert model. Then any node with degree below the 25th percentile of degrees within the

graph had a 25% chance of being dropped.

(TIF)

S1 Table. Type 1 error rates using complete pathway. Error rates were calculated from score

tests on 1000 simulated data sets. All simulations used graphs with 15, 30, or 45 nodes. No

nodes or edges were dropped for these simulations. Pathway information was included in ker-

nel score test through the normalized Laplacian ~L.

(XLSX)

S2 Table. Type 1 error rates using pathways with 5% missing edges. Error rates were calcu-

lated from score tests on 1000 simulated data sets using graphs with 15, 30, or 45 nodes. The

graph used to simulate Z and Y was of medium edge density, while the graph used to test was

of low density. The low-density graphs are drawn from the Barabasi-Albert model with edge

density 0.13, 0.07, and 0.04 for graphs with 15, 30, and 45 nodes, respectively. Medium edge

density graphs are created by giving any 2 nodes without a direct edge between them a 5%
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chance of becoming directly connected. This creates graphs with an average edge density of

0.18, 0.11, and 0.09 for graphs with 15, 30, and 45 nodes, respectively. Pathway information

was included in kernel score test through the normalized Laplacian ~L.

(XLSX)

S3 Table. Type 1 error rates using pathways with 15% missing edges. Error rates were calcu-

lated from score tests on 1000 simulated data sets using graphs with 15, 30, or 45 nodes. The

graph used to simulate Z and Y was of high edge density, while the graph used to test was of

low density. The low density graphs are drawn from the Barabasi-Albert model with edge den-

sity 0.13, 0.07, and 0.04 for graphs with 15, 30, and 45 nodes, respectively. High edge density

graphs are created by giving any 2 nodes without a direct edge between them a 15% chance of

becoming directly connected. This creates graphs with an average edge density of 0.26, 0.21,

and 0.19 for graphs with 15, 30, and 45 nodes, respectively. Pathway information was included

in kernel score test through the normalized Laplacian ~L.

(XLSX)

S4 Table. Type 1 error rates using pathways with dropped nodes. Error rates were calculated

from score tests on 1000 simulated data sets using graphs 15, 30, or 45 nodes initially. The

graph used to simulate Z and Y contained all nodes. Nodes with degree below the 25th percen-

tile within a graph had a 25% chance of being dropped before testing. Pathway information

was included in kernel score test through the normalized Laplacian ~L.

(XLSX)
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