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Particulate organic matter (POM) in the ocean sustains diverse communities of bacteria

that mediate the remineralization of organic complex matter. However, the variability of

these particles and of the environmental conditions surrounding them present a challenge

to the study of the ecological processes shaping particle-associated communities and

their function. In this work, we utilize data from experiments in which coastal water

communities are grown on synthetic particles to ask which are the most important

ecological drivers of their assembly and associated traits. Combining 16S rRNA amplicon

sequencing with shotgun metagenomics, together with an analysis of the full genomes

of a subset of isolated strains, we were able to identify two-to-three distinct community

classes, corresponding to early vs. late colonizers. We show that these classes are

shaped by environmental selection (early colonizers) and facilitation (late colonizers)

and find distinctive traits associated with each class. While early colonizers have a

larger proportion of genes related to the uptake of nutrients, motility, and environmental

sensing with few pathways enriched for metabolism, late colonizers devote a higher

proportion of genes for metabolism, comprising a wide array of different pathways

including the metabolism of carbohydrates, amino acids, and xenobiotics. Analysis of

selected pathways suggests the existence of a trophic-chain topology connecting both

classes for nitrogen metabolism, potential exchange of branched chain amino acids for

late colonizers, and differences in bacterial doubling times throughout the succession.

The interpretation of these traits suggests a distinction between early and late colonizers

analogous to other classifications found in the literature, and we discuss connections

with the classical distinction between r- and K-strategists.

Keywords: particulate organic matter (POM), microbial assembly, neutral theory, marine bacteria, life strategies,

r/K selection, ecological succession, omics

1. INTRODUCTION

The importance of understanding natural microbial communities in a scenario of global change
is increasingly recognized (Hutchins and Fu, 2017). In the open ocean, where external outputs of
nutrients are scarce, it is estimated that 90% of the nutrients required to sustain primary production
are obtained by microbe-driven remineralization (Karl, 2002). This collective activity of microbial
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communities can turn over particulate organic matter (POM)
on the timescale of 1 week (Karl, 2002). This rapid turnover
makes it difficult to observe the processes occurring at the micro-
scale. Since slight changes in the nutrients may have important
consequences in processes such as CO2 sequestration, a better
understanding of micro-scale processes will help to extrapolate
predictions at a global scale (Azam and Malfatti, 2007).

Some of the difficulties in deriving general principles in the
dynamics of POM are related to the high complexity of the
nutrient composition of the particles (Lee et al., 2004),—which
depends on the particle’s location, source, and size (Simon et al.,
2014). Also, in situ studies just very recently achieved single-
day resolution (Polz and Cordero, 2016). For these reasons,
while compositional and functional differences have been found
when comparing lifestyles such as free-living vs. particle-attached
bacteria (Bidle and Fletcher, 1995; Lauro et al., 2009; D’Ambrosio
et al., 2014), or locations, e.g., surface waters vs. deep waters
(Bergauer et al., 2018; Boeuf et al., 2019), little is known about the
functions and micro-dynamics driving POM bacterial succession
as particles are degraded.

To address these challenges, in previous work, some of us
studied the assembly of marine communities sampled from
coastal waters on model particles, namely hydrogel beads
composed of defined polysaccharides, or some combinations of
these (Datta et al., 2016; Enke et al., 2019). Simplifying the
heterogeneity associated with natural particles enables the study
of highly diverse communities in a controlled manner.

In the first work (Datta et al., 2016), it was observed that
community assembly in chitin particles happened in successions,
and it was possible to differentiate three temporal phases: a
short attachment phase (phase I: <12 h), followed by a phase
in which a drop in biodiversity was observed (phase II: 24–
48 h), and a final phase in which biodiversity increased (phase
III: 48–140 h). Metagenomic analysis of the assembly in chitin
showed that bacteria in phase II had a higher frequency of
extracellular chitinases and chemotaxis genes. In addition, some
isolated strains were motile in laboratory assays.

In a second work (Enke et al., 2019), the number of substrates
used was extended to alginate, agarose, carrageenan, and some
pairwise combinations of those. Similar succession patterns were
observed to those found in the first work in chitin. Considering
several resources allowed us to observe that taxa in phase II
were substrate-specific, while phase III was characterized by
non-specific taxa. This result suggested that the underlying
environmental conditions determined the ecological succession
to a great extent, and hence that selection was the dominant force,
in particular, in phase II, substrate-specific taxa were observed.
Finally, in both works, it was shown that isolated strains observed
in phase III were not able to grow in the particle’s polysaccharide,
but they were able to grow in the spent media of strains
isolated from phase II, further identifying some of themetabolites
consumed by late colonizers (Enke et al., 2019). This suggested
that facilitation, namely metabolic-mediated mutualistic and
commensal interactions, was themainmechanism promoting the
succession between phase II and phase III.

In this work, we pursue two objectives. In the first
place, we want to quantitatively reevaluate the interpretation

associated with the observed phases (i.e., selection in phase
II and facilitation in phase III), providing said interpretations
with greater statistical support and encompassing them in a
broader conceptual framework. For instance, it will allow us
to discriminate the spatio-temporal scale in which selection
operates, differentiating between selection at themetacommunity
level, at the local community level, or at both levels. As a
final corollary, the analysis will allow us to establish more
direct connections between these experiments and observations
from samples collected from the natural environment, which
is often limited to looking for statistical patterns at the
community level. This last point is of great importance
for establishing connections between top-down patterns and
bottom-up mechanisms established in controlled experiments.

To carry out this first objective, we re-analyzed the 16S
rRNA sequencing datasets presented in Enke et al. (2019) and
incorporated new experiments on two additional substrates
(chitosan and a combination of alginate and chitosan). We
then followed a pipeline with well-established methods which
combines neutral models (Holmes et al., 2012; Harris et al.,
2015), with beta-diversity analysis and phylogenetic information
(Stegen et al., 2013). Our results show that selection drives the
assembly of the communities at both metacommunity and local
community levels, and provides statistical support for the role
of facilitation, further suggesting a direct interaction between
primary degraders and secondary consumers.

Our second objective aims to explore whether the traits
observed by analyzing metagenomic data in chitin (Datta et al.,
2016) are also found in other substrates, given that the taxonomic
specificity found in phase II would lead us to expect that there
are specific traits for each substrate. To achieve this objective, we
considered three new data sources: experimental metagenomics
in all substrates presented in Enke et al. (2019) and in the two
new substrates incorporated here, metagenomic predictions with
PICRUSt (Douglas et al., 2020), and a dataset of 65 genomes
sequenced from strains isolated in the two previous works (Datta
et al., 2016; Enke et al., 2019).

Similar to the analysis performed in Datta et al. (2016) only
for chitin, we inquired if, within the 8 substrates considered,
we could find significantly different traits between temporal
phases and, if they existed, if these were different to those
previously found for chitin. We found that the most significant
differences appeared when we compared phase I, phase II, and
phase III colonizers irrespective of the substrate in which they
were sampled.

This suggests that there are functional groups associated
with each stage of ecological succession, regardless of the
substrate considered.

The distinction between the communities in phases I and
II and those in phase III has connections with the distinction
between r- and K-strategists (MacArthur and Wilson, 1967;
Pianka, 1970). The terms r and K refer to population dynamics
parameters describing the maximum rate of increase and
maximum equilibrium density of the population, respectively. r-
strategists would dominate variable environments with abundant
resources in which there is little competition, while K-strategists
are adapted to environments with constant and scarce resources,

Frontiers in Microbiology | www.frontiersin.org 2 June 2022 | Volume 13 | Article 812116

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Pascual-García et al. Life-Strategies in Marine Microbial Succession

where competition is harsh. This distinction has been widely
exploited (and criticized) in macroscopic ecology (Reznick
et al., 2002). However, its relevance in microbial ecology and,
more specifically, the identification of r/K traits and their
associated environments, which would provide the grounds for
a mechanistic justification, remain largely unknown (Andrews
and Harris, 1986). Our work suggests that, in these experiments,
ecological succession resembles a transition between r- and K-
strategists, which could be a general result for environments with
intermittent inputs of resources.

2. RESULTS

2.1. Illustrating Microbial Assembly
Signatures of Ecological Succession
Using synthetic model particles, we studied community
composition for both particles-attached and free-living bacteria
in cultures incubated with seawater. Since part of the data used
was previously published in Enke et al. (2019), in this section,
we recover part of the analysis presented there for completeness,
which will also help us to illustrate the experiments.

The analysis of community composition revealed that the
most abundant phyla were Proteobacteria (most notably γ -
and α-Proteobacteria) and Bacteroidetes (mainly Flavobacteria).
Microbes belonging to the Halomonas and Shewanella genera
dominated the community in the earliest samples (labeled
0 h) independently of the substrate used, suggesting that
they encoded specific traits required for early colonization
(Figure 1). In the figures, the three replicates appear aggregated.
Detailed trajectories for three substrates are presented in
Supplementary Figure 1, and interactive visualizations for all
experiments are available in Supplementary Materials.

After 12–48 h, the substrate-specific invasion presented in
Enke et al. (2019) is apparent from genera such as Colwellia
and Psychromonas (alginate), Arcobacter and Neptuniibacter
(agarose), Thalassotalea (carrageenan) or Catalinimonas and
Pseudoteredinibacter (chitin). In chitosan, one of the new
substrates incorporated in this study,Halomonas and Shewanella
were slowly replaced by Colwellia and Thalassotalea, which
could have been caused by the fact that this substrate is more
recalcitrant to decomposition, which may be a reason behind the
lower increase in the number of reads (Supplementary Figure 2).
Another new pattern not reported in previous work is that
bacteria found on the particles in high proportions were not
highly represented in seawater before particle colonization
(second row Figure 1 and Supplementary Figure 3 for the
number of reads in seawater) and only increased in seawater after
their proportion increased on the particles.

Although substrate-specific taxa, – which in previous work
have been shown to act as degraders (Datta et al., 2016;
Enke et al., 2019), – remained in the community at late
time points (e.g., > 200 h), there was a systematic increase
in the diversity of the community, driven by the invasion of
substrate-unspecific taxa (see Supplementary Figure 4), which
were possibly unable to degrade the particles, but were
successful in competing for metabolic byproducts. Interestingly,
the trajectories of particle taxonomic composition over time

projected onto the components of a principal coordinates
analysis showed that these trajectories were similar irrespective
of the substrate and were driven by the temporal phase of
succession (Supplementary Figures 5, 6), including the previous
considerations for chitosan. These patterns suggest that resources
determined a shift between substrate-specialist taxa dominating
at early phases, when there was mostly a single homogeneous
resource, and secondary consumers colonizing the particles when
the number of micro-niches increased.

2.2. Unsupervised Classification Finds
Classes Aligned With the Temporal Phases
The above patterns suggested that selection dominated the global
assembly of these communities. Nevertheless, it may be possible
that selection is only operating at a metacommunity-level with
the local assembly being stochastic. To test this hypothesis,
we developed an approach combining well-established methods
which determined whether the assembly of the communities was
best explained by stochastic or selective processes and, under
the latter scenario, determined which were the most important
selective forces. The approach and hypothesis are summarized in
Table 1.

Unsupervised classification of the communities according to
their compositional similarity (see Section 4) revealed that the
optimal classification divided the communities into two classes,
with the exception of the experiments on alginate and on a mix of
agarose and alginate, which resulted in three community-classes
(Figure 2 and Supplementary Figure 7). The classification found
for each substrate is indicated in the colored horizontal bars
on the top of the bar plots in Figure 1. The classes found
could indicate the presence of selective forces acting similarly on
subsets of samples. Consistent with previous work (Datta et al.,
2016; Enke et al., 2019), the classes matched temporal phases: the
method systematically clustered all three replicates of samples
collected at early time points (phase II: 12–60 h) in one class,
and samples from late time points (phase III: 108–204 h) in
another class. Samples at intermediate time points (dependent
on the substrate, between 60 and 108 h) were sometimes split
between each class. Hereafter, we term the interval 60–108 h as
“transition phase.” The additional class found on alginate and
the mix of alginate and agarose corresponded to early samples
(phase I: 0–12 h, “attachment phase”) and to the transition phase.
As an exception, we found that chitin classes were not sharply
separating both phases, a result that would not be consistent
with previous work (Datta et al., 2016) but that we attribute
to experimental noise. We observed that samples in the first
class of chitin had a significantly lower number of reads than
the rest of the particles’ dataset: median 4838 (IQR: 3191-8479)
vs. 175605 (IQR: 66421-326622). The results presented below
support this explanation.

2.3. Selection Dominates at Both
Metacommunity and Local-Community
Levels
The method we used to cluster the communities (Holmes et al.,
2012) was framed in the context of neutral theory, with each
class being interpreted as a set of local communities whose
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FIGURE 1 | Relative abundances of Exact Sequence Variants (ESVs) for populations attached to beads made of pure substrates (first row) and present in the

surrounding water (second row) for each substrate (columns) at the different time points. The third row represents the population dynamics of beads made of mixed

substrates. Contiguous sections with the same color in a given bar represent different ESVs belonging to the same genera. Highlighted genera are those among the

20 most abundant on any of the substrates. The remainder ESVs are classified as “other”, and their small relative abundance leads to a black “continuum”. In the

beads experiments, the horizontal bars on the top of the bar plots represent the classes obtained with unsupervised clustering, and the color represents the number

of replicates assigned to the different classes at each time point.

species members immigrate from the same metacommunity (see
Section 4 and Table 1, Step 1). Since the community classes are
compositionally differentiated, in the context of Hubbel’s model
of neutral assembly, we shall expect that a different speciation
rate occurs in each class (interpreted as a metacommunity).
This is a conservative approach since rejecting neutrality will be
more difficult considering a separate parameterization for each
metacommunity, –in other words, a single metacommunity will
be unable to generate local samples belonging to the different
configurations determined by the different classes (Harris et al.,
2015). To test if these classes were compatible with a neutral
assembly we fitted, for each class within each substrate, a
model to a Hierarchical Dirichlet Process (HDP) with the

software provided in Harris et al. (2015). Following this method,
the likelihood of the observed communities of being neutral
was compared with the likelihoods of artificial communities
generated with the fitted HDP (see Section 4). We tested two
possibilities, one in which both the metacommunity and the local
communities are assembled through a neutral process (complete
model) and another one in which the local communities but not
the metacommunities are assembled neutrally (local model).

A total of 15 out of 18 classes rejected the neutral hypothesis
(empirical-p < 4 × 10−4), supporting the observation that
the species were not functionally equivalent within each class
and that both the metacommunity and the local community
assemblies are driven by selection (see table in Figure 2).
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TABLE 1 | Methods and hypothesis.

Our approach proceeded in two steps. (Step 1) For each substrate, immigration from the

seawater species (circles labeled as “SA”, etc.) onto the beads (colored circles) could be

stochastic or driven by selection. We started classifying the beads’ samples on the basis

of their β−diversity similarity. If we did not find clusters (scenario 1), we performed a test of

neutrality considering all the samples of that substrate. If we found clusters “community-

classes” (scenario 2), we investigated if it was a signature of distinct selection forces

acting in different classes (“metacommunity selection”). Under this scenario, neutrality was

tested considering each subset of samples determining each class independently, hence

creating a different metacommunity for each of them. The interpretation depending on

the different outcomes is indicated, with the results we found highlighted in bold in the

table. (Step 2) Since selection at the metacommunity and local levels was suggested, we

investigated its mechanisms considering the phylogenetic similarity of the samples. The

combination of results from Mantel correlograms and β−NTI comparisons led to three

cases compatible with our results in Step 1. The analysis of these cases suggested that

the dominant processes were those indicated in case C and, to a lesser extent, case B.

Very few comparisons supported case A. Note that these cases were restricted to those

compatible with our results in Step 1 and other possibilities (e.g., homogenizing dispersal)

were excluded.

Predicted “neutral” community classes included the third
community class identified on alginate particles, which colonized
these particles from time 0–12 h (empirical-p > 0.20); the first
community class on chitosan (0–48 h, marginally significant;
empirical-p = 6×10−4 for the local model); and chitin was again
an exception, with the first community class appearing neutral
(defined along the whole trajectory, empirical-p > 0.8). We
believe this abnormally high empirical-p-value for the first class
on chitin reflects the low copy number found for this class, which
suggests it may be an artifact. The other two remaining examples
(first class on chitosan and third class on alginate) suggested that

species may only be considered functionally equivalent at very
early phases of the assembly (“attachment phase”), with chitosan
having a longer attachment phase.

Beyond these exceptions, we found 15 classes with a good
correspondence with phase II (12–60 h) and phase III (108–
204 h) which rejected neutrality, suggesting that they weremainly
driven by selection. These results provide solid support for
the observations made in previous work, further showing that
selection operates at both metacommunity and local levels. We
also show that selection not only operates at phase II but also at
the more taxon-unspecific phase III.

Since there was a fair overall agreement on the determination
of the classes across substrates and on their correspondence
with time phases, to simplify the following analysis we directly
focused on differences between phases: phase I (0–12 h), phase II
(12–60 h), and phase III (108–204 h).

2.4. The Succession Is Not Driven by a
Complete Substrate Turnover
After determining that selective processes have the most
important role in an assembly in most experiments, we further
investigated the determinants of selection (see Table 1, Step 2).

We first estimated how strong is the phylogenetic correlation
between communities and which is their characteristic temporal
decay. In particular, we would like to know if this decay is
consistent with the temporal phases identified with unsupervised
clustering, which would provide us with firm support to interpret
traits associated with these phases as a phylogenetic signal.
We estimated the phylogenetic distance with philr, which is a
transformation leading to a β−diversity metric incorporating
phylogenetic relatedness (Silverman et al., 2017a). We computed
the correlation between philr-derived distance and temporal
distance that separated each pair of communities by computing
Mantel tests. To estimate the correlation decay, we binned
the comparisons in subsets of increasing temporal distances,
performing an independent Mantel test for each subset (i.e., a
Mantel correlogram, Wang et al., 2013, see Section 4).

As expected, we found that communities closer in time were
phylogenetically more similar (see Figure 3A for alginate and
Supplementary Figure 8 for other substrates) and that, when
the temporal distance between samples increased, the Mantel
statistic became non-significant or even significantly negative
on some substrates (Figure 3A and Supplementary Figure 8).
Importantly, the results show that the phylogenetic similarity is
significant within the same phase as soon as the communities
are closer than 40 h in time. This gives us support to interpret
traits within the same phase as a signature of adaptation. Notably,
the minimum temporal distance between phases II and III (i.e.,
the width of the transition phase) is 48 h, a distance within
which the phylogenetic signal decayed, indicating that there was
a significant phylogenetic turnover between both phases.

The second question that we would like to study through
the analysis of statistical phylogenetic patterns is whether we
can evaluate the relative importance of resource transformation,
direct interactions, and drift, in ecological succession (see
Table 1, Step 2). We consider two extreme scenarios. In the
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FIGURE 2 | Number of optimal classes and test of neutrality. (Left) The optimal number of classes (number of Dirichlet mixture components) is determined by the

minimum of the posterior evidence of the fit. Results are for alginate. (Right) Main time intervals are determined by each class in single substrates. The time window is

determined considering consecutive samples classified in the same class (i.e., sparse samples misclassified are non-indicated, see Figure 1 for details). For chitin, the

whole interval is indicated since no clear time-windows are defined. Pseudo p-values of the HDP test for each class found in pure substrates for the complete and

local models are indicated.

FIGURE 3 | Phylogenetic turnover for experiments in alginate. (A) Mantel statistics indicating the correlation between the phylogenetic and time distances in beads of

alginate. Both matrices are split into subsets corresponding to different ranges of distances, and an independent test performed for each subset. The middle point of

each range is indicated in the x-axis, and the number of distances in each subset and the significance of each test are shown in the legend. For alginate, all

comparisons were significant. (B) All-against-all comparison of the βNTI index (excluding diagonal values). The black thicker lines separate comparisons within and

between the different phases. Significant values correspond to |βNTI|>2, non-significant values are shown in yellow. Results for other substrates are provided in the

Supplementary Material.

first scenario, the degradation of the main substrate could
lead to a complete substrate turnover. Under this scenario, we
would expect a complete phylogenetic turnover, indicating that
the communities present in the selection phase abandon the
particles before the colonization of the communities present
in the facilitation phase occurs. Therefore, the two types of
communities would have little coexistence, in which case any

facilitation would be indirect. In the second scenario, this
transformation of the environment is not so strong and the
communities in the facilitation phase would be assembled in
direct interaction with members of the communities in the
selection phase, which remain through the trajectory. TheMantel
correlogram decay was observed and the compositional turnover
would a priori favor the first scenario.
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To investigate these questions, we computed the β−Mean
Nearest Taxon Distance (βMNTD) (Stegen et al., 2013). For
each pair of communities A and B, the βMNTD was computed
by measuring the phylogenetic distance of each taxon in
A with respect to its closest relative in B, and then by
averaging across all taxa (and symmetrically for B). Then, the
taxonomy was shuffled a large number of times to estimate
the null expectation and a z-score was computed, termed
β-Nearest Taxon Index (βNTI) (Stegen et al., 2013) (see
Section 4). A βMNTD value significantly higher than the
null model (βNTI > 2) is expected when the community
turnover is driven by a strong shift in the environmental
conditions (termed variable selection, Dini-Andreote et al.,
2015). On the other hand, a significantly negative value (βNTI<
-2) indicates that strong and homogeneous environmental
conditions make the communities taxonomically more similar
than expected by chance termed homogeneous selection (Dini-
Andreote et al., 2015). Therefore, this metric may allow us to
narrow down the hypothetical scenarios described above, by
comparing the results we found for communities within the same
phase and between different phases (summarized in Table 1,
Step 2).

We found that the βNTI values were significantly
negative (comparisons in blue in Figure 3B for alginate
and Supplementary Figure 9 for other substrates), pointing
toward a homogeneous environmental filtering as the main
driver of the assembly. The strongest selection was observed
in phase II (12-60 h). This is an expected result, since we
know that at the early stages dominate taxa are able to
degrade the correspondent polysaccharide. Strikingly, in
alginate (Figure 3B) and agarose (Supplementary Figure 9),
this signal was also observed in the comparisons between
phases II and III communities (comparisons within distant
off-diagonal boxes). For other substrates, such as chitin
or carrageenan (Supplementary Figure 9), the comparison
between phases revealed that drift had a major role in the
transition, but there was no evidence of complete turnover of
resources either.

These results were in apparent contradiction with the
compositional turnover and the Mantel correlogram decay.
However, since the βNTI focuses only on the closest relatives,
these results are explained if there were taxa from phase II
remaining in phase III (if a given taxon was present in both
early and late communities its contribution to the βMNTD
was zero). The explanation compatible with both a significant
compositional turnover and the permanence of some taxa
along the assembly was that members of communities in
phase II and communities in phase III coexisted and that
the new microniches needed for the compositional turnover
was continuously generated by resources produced by those
degraders remaining from phase II. This indicates that facilitation
occurs in direct interaction, as opposed to an indirect process
in which the resources were fully transformed in phase II and
then consumed by new colonizers in phase III. Aligning our
analysis with results from previous work, in the following,
we will denominate phase II “selection phase” and phase III
“facilitation phase”.

2.5. Metagenomic Analysis Reveals
Differentiated Ecological Strategies
Throughout the Succession
Our previous results suggested that there was phylogenetic
turnover, driven by a transition between strong environmental
selection at early time points (selection phase) and a combination
of environmental selection and ecological interactions at late time
points (facilitation phase), with marginal evidence of drift. We
aimed to investigate if this distinction translated into signatures
in the genetic repertoires of the communities at the different
phases, hence reflecting specific adaptations. For this study, one
sample per time point was collected in one of the replicates and
its metagenome was sequenced.

The number of reads in the metagenomics data increased
with time (Supplementary Figure 10). However, the number
of reads was generally lower than for 16S sequencing data,
and we discarded samples with too few reads, mostly affecting
the attachment phase (see Section 4). To complement this
information, we performed a prediction from the 16S rRNA
amplicon sequences with PICRUSt (Douglas et al., 2020), from
which three replicates per sample and time-point were available.
We provide in Supplementary Materials an evaluation of the
accuracy of the PICRUSt predictions. In the following, we
focus on those results consistent between metagenomic data
and the metagenomes predicted from 16S rRNA with PICRUSt.
Analysis of the attachment phase was performed only from
the predictions.

A principal component analysis of the metagenomic

predictions revealed that the attachment and facilitation phases
were projected in orthogonal directions with the selection
phase also occupying the intermediate space, suggesting the

existence of distinctive traits in each phase (Figure 4A). On the
other hand, when the same data representation was considered
and the samples were colored according to the substrates on
which the communities assembled, no clear clustering was

apparent except for some samples in alginate, chitosan, and
carageenan belonging to the selection and attachment phases
(Supplementary Figure 11). Indeed, comparing the difference
in the mean proportion of genes belonging to different substrates
in metagenomics experiments, we found only one significant
pathway between the experiments in agarose-alginate and those
in carrageenan or chitosan (fructose and mannose metabolism).
We found more differences between substrates with PICRUSt
predictions, discussed below. Hence, to investigate the existence
of distinctive traits, we aggregated all substrates and compared
the difference in the mean proportion of genes belonging to
samples in the selection phase against those in the facilitation
phases for both the metagenomics data and the predictions
(Figures 4B,C).

Both experimental metagenomics and PICRUSt predictions
provided a similar qualitative picture. Colonizers at the
selection phase predominantly encoded pathways related to
motility and environmental sensing (e.g., bacterial motility,
two-component systems), replication, and repair (e.g.,
homologous recombination, mismatch repair), or transport
(ABC transporters, bacterial secretion systems). Colonizers at
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FIGURE 4 | Summary of metagenomic features. (A) Principal component analysis of the predicted metagenomic profiles colored by the phase in which they were

sampled. Difference in the mean proportions of genes between communities at the selection and facilitation phases in metagenomic experiments (B) and in PICRUSt

predictions (C). Each row in the diagram represents genes classified in the KEGG pathway indicated. The first column represents the mean proportions of the genes in

the pathway for each phase, and the second column represents the difference between those proportions. Adjusted Benjamini-Hochberg p-values and 95% CI

intervals are indicated. Pathways with effect sizes lower than 0.1 (B) and 0.05 (C) were filtered to show a similar number of pathways.

the facilitation phase showed more genes related to metabolic
pathways. More specifically, genes related to carbohydrate,
lipid, and amino-acid metabolisms were more represented in the
facilitation phase. There was, however, a metabolic pathwaymore
represented in the selection phase related to the metabolism
of nitrogen, discussed below. Notably, some pathways were
consistently predicted from both 16S rRNA and metagenomic
datasets for both early colonizers (e.g., flagellar assembly,
bacterial chemotaxis) and late colonizers (e.g., tryptophan
metabolism, lysine degradation, or valine, leucine, and isoleucine
degradation). We found only two contradictions in pathways
related to translation (e.g., aminoacyl-tRNA biosynthesis and
ribosomal genes) and will be analyzed in more detail below.

We finally compared the difference in mean proportion
of genes between samples in the attachment and
facilitation phases for the metagenomics predictions only
(Supplementary Figure 12). Although some of the pathways
enriched in the attachment phase were similar to those found
in the selection phase (e.g., bacterial chemotaxis, flagellar
motility), the most characteristic feature of the attachment
phase was the large proportion of genes related to transporters,
in particular ABC transporters, which ranged from 0.2% for
samples at the selection phase in the experimental metagenomes
to more than 0.6% in the attachment phase for the predictions.
Having found these consistent differences between phases for
both metagenomics experiments and PICRUSt predictions, we
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reconsidered the differences between substrates found with
PICRUSt. We observed that those differences having larger
effect sizes concentrated in those pathways associated to the
selection phase. As an example, in Supplementary Figure 11, we
observed that the most important differences between alginate
and chitosan refer to ABC and general transporters, being
more represented in alginate, while ion-coupled transporters or
the secretion system were more represented in chitosan. This
suggests that representative pathways in the selection phase may
have an uneven distribution across substrates.

2.6. Ecological Strategies Are Imprinted in
the Genomes of Isolated Bacteria
To test previous results and to gather insights into the
relationship between taxa and traits associated with each
community phase, we analyzed annotated draft genomes of
65 isolates derived from particle communities (Datta et al.,
2016; Enke et al., 2019). We combined 16 assemblies from
previous work with additional 49 particle-derived genomes to
arrive at a set of genomes representing major ESVs present in
particle-associated communities. We assigned the isolates into
classes depending on the phase of colonization in which they
had a high propensity for being observed. Isolates’ propensity
was determined from the propensity of the ESV having a
100% sequence identity with the 16S rRNA gene of the target
isolate. The propensity of the ESVs was estimated by analyzing
their relative abundance in the assembly experiments (see
Section 4). More specifically, for each ESV, we computed a
generalized linear model with phases (attachment, selection,
and facilitation) as predictor variables and their abundance as
a response (see Section 4). Significant coefficients indicated
propensities for specific phases, and these propensities were
assigned to the corresponding isolate to determine the classes
(see Supplementary Figure 13). We subsequently compared the
functional gene content of genomes in each class.

All isolates were classified as having either a preference for the
attachment (6), selection (10), or facilitation phases (13), with the
remainder being classified as generalists (i.e., a preference for at
least two phases, in most cases including selection and facilitation
phases). Only two isolates were predicted to have no significant
assignment (see Figure 5A). Isolates classified in the attachment
phase belong to the Vibrionaceae family, and most of those
classified at the selection phase belong to Alteromonadaceae.
In contrast, the facilitation phase has members of several
families, most of them belonging to the Flavobacteriaceae and
Rhodobacteraceae. In the phylogenetic tree (Figure 5A), it was
apparent that generalists species were phylogenetically closer to
those isolates classified in the facilitation phase, suggesting that
their ecological strategies could be more similar.

The gene content comparison between isolates classified in the
facilitation phase and in the attachment phase yielded the most
significant signal (Figure 5B). Consistent with the metagenomics
analysis, we observed that a typical facilitation genome tended
to encode a higher proportion of central metabolic pathways
related to degradation, such as pathways to break down
amino acids and fatty acids. Also, consistent with metagenomic

predictions (Supplementary Figure 12), themost notable feature
of attachment genomes was the high proportion of transporters,
in particular, ABC and PTS transporters (Figure 5B). Other
pathways that were significant in the metagenomes, such as those
related with genetic information processing (e.g., chaperones and
folding catalysts), were also encoded by a higher proportion of
attachment genomes (Figure 5B).

Focusing on the comparison between the selection and
facilitation phases (Figure 5C), we retrieved a similar picture
to the one found in the metagenomics data. However, the
significance was lower, and most of the pathways were not
significant when the p-value was corrected for multiple testing,
possibly due to the low number of isolates considered in
both groups.

Taking together both metagenomes and isolates, we
found a consistent distinction in the genetic signatures
characteristic of the different successional phases, summarized
in Supplementary Tables 1–3.

2.7. Analysis of Specific Pathways Reveal a
Trophic-Chain Topology for Nitrogen
Metabolism, Changes in the Growth Rates,
and Potential Exchange of Branched-Chain
Amino Acids (BCAA)
We explored in more detail some specific pathways to gain a
finer scale understanding of the core traits characteristic of the
different community types. When narrowing down to specific
genes, we focused on the set represented in a significantly
higher proportion in metagenomic data from one of the
successional phases. Since the metagenome-associated signal
may be dominated by the contribution of few very abundant
species, we quantified the proportion of isolates from each class
that encoded each gene in a pathway to assess the extent to
which traits were shared broadly by taxa in a class. Results are
summarized in Figure 6.

Attachment communities encoded a high proportion of
ABC-transport associated genes relative to other community
types (Figures 4, 5). We found genes encoding 25 ABC
transport complexes represented in a higher proportion in
the attachment-associated metagenomes (yellow boxes in
Supplementary Figure 14); 18 of the predicted complexes had
at least one gene more represented in the isolates associated
with attachment than in any other isolates class, suggesting
that these ABC transporters are commonly encoded by isolates
in the attachment communities (shown with asterisks in
Supplementary Figure 14). Among these complexes, we find
transporters predicted in a variety of bacteria to encode high-
affinity uptake systems such as transporters for maltose (Cui
and Davidson, 2011), ribose (Shimada et al., 2013), methionine
(Cui and Davidson, 2011), serine (Aap-JQMP genes, D’Arrigo
et al., 2019), inorganic phosphate (Nikata et al., 1996), and zinc
(Ogura, 2011) (Figure 6).

Interestingly, we also found ABC transporters for branched-
chain amino acids (BCAA) that were significantly enriched
in the facilitation community metagenomes (red boxes in
Supplementary Figure 14) and in isolates genomes (asterisks).
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FIGURE 5 | Ecological strategies of isolated strains. (A) Phylogenetic tree of the isolates used in this study, inferred from multiple sequence alignment of the 120

GTDB-Tk bacterial marker genes present in sequenced isolate genomes. The predicted taxonomic family and strain identity is indicated in the leaf label. The

ecological strategies of the isolates inferred from the trajectories of the ESVs with 100% sequence identity in the 16S amplicon sequencing experiments are shown in

different colors. Differences in the mean proportions of genes grouped in KEGG pathways between isolates identified as having a preference for the attachment phase

and those with a preference for the facilitation phase (B) and the same comparison between isolates with a preference for the selection phase and those with a

preference for the facilitation phase (C). The first column represents the mean proportions of the genes in the pathway for each group of isolates, and the second

column represents the difference between those proportions. Adjusted Benjamini-Hochberg p-values and 95% CI intervals are indicated. Only pathways with effect

sizes larger than 0.1 are shown.

Following up on this finding, we found that, in addition to
encoding BCAA transporters, facilitation phase genomes
encoded a higher proportion of the genes for valine, leucine,
and isoleucine degradation than isolates classified in different
community phases (asterisks in Supplementary Figure 15),
a finding that agreed with metagenome predictions
(Supplementary Table 3) and PICRUSt predictions (red
boxes in Supplementary Figure 15). BCAA degradation
produces metabolites that feed into central metabolic pathways
for energy generation and biomass. The ability to break down
valine, leucine, and isoleucine to acetyl-CoA, succinyl-CoA, and
propanoyl-CoAmeans that these amino acids can be used for the
biosynthesis of lipids, sugars, or other amino acids and for energy
generation through respiration (Massey et al., 1976) (Figure 6).
Since also the biosynthesis of BCAA is higher in the facilitation

phase when compared with the attachment phase in PICRUSt
predictions, there may be an interchange of BCAA between
species in later stages, consistent with the idea of syntrophy
promoting coexistence.

Having reinforced functional traits that characterized taxa in
each community phase, we next looked for pathways that were
split among phases. We hypothesized that such split pathways
would link successional phases and represent evidence for trophic
interactions between phases.

We found evidence of pathways splitting in the nitrogen
metabolism KEGG pathway. This pathway was the most
statistically significant metagenomic prediction from PICRUSt
and was predicted to have a significantly higher mean
proportion in selection communities than in facilitation
communities (Figure 4, first row). An analysis of nitrogen
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FIGURE 6 | Analysis of specific pathways. (Left) Schematic of enzymatic processes encoded by taxa belonging to the three community types that assemble on

polysaccharide particles. Attachment communities (gold) that are the first to form on particles and commonly encode a diverse array of high-affinity ABC transporters,

specific for sugars, such as maltose (Mal) and ribose (Rib), amino acids including methionine (Met) and serine (Ser), transporters specific to small peptide

signals/antimicrobials, inorganic phosphate (Pi), and zinc (Zn). They also have genes to synthesize BCAA. Selection communities (Blue) form in between attachment

and facilitation communities. Taxa in these communities frequently encode flagella and chemotaxis genes and perform dissimilatory nitrate reduction generating

ammonia. Facilitation communities (Red) are the last to form on particles and encode pathways that break down BCAA into acetyl-CoA (Ac-CoA) and propanoyl-CoA

(Prp-CoA), metabolites that can enter central metabolism to make biomass or energy. Taxa in facilitation communities also commonly encode glutamine and

glutamate (Gln) synthases and glutamine synthetase, which are the main pathways for the assimilation of ammonia-derived nitrogen into biomass. (Right) Predicted

doubling times of isolates estimated from ribosomal proteins codon usage bias with gRodon.

metabolism pathways in isolate genomes revealed clear
differences in the ability of taxa from the three community
types to metabolize different forms of inorganic nitrogen.
Metagenomes and genomes from selection and attachment
communities often encoded pathways of nitrate reduction
(Supplementary Figure 16), with the presence of these genes
in the isolated genomes (indicated with asterisks), more
consistent with dissimilatory nitrate reduction. In contrast,
facilitation communities had higher proportions of genes to
assimilate ammonia, a reduced form of nitrogen. We also
observed high proportions of glutamine synthetase in facilitation
community metagenomes, whose presence was confirmed
in the genomes (node 6.3.1.2 in Supplementary Figure 16)
Glutamine synthetase uses ammonia to catalyze the production
of L-glutamine in an ATP-dependent reaction. The predicted
production of ammonia from nitrate reductase activity in
selection and attachment communities suggests that the
transition between selection and facilitation communities may
be promoted by the conversion of nitrate to ammonia by taxa
that assemble in selection communities (Figure 6), adding
another possible trophic link between community phases.

Finally, we explored discrepancies observed for genes related
to ribosomal proteins (annotated as “ribosome” in Figures 4,
5). These genes appear more represented in the experimental
metagenomes and in the isolates’ genomes in the selection phase,
whereas in the facilitation phase, genes are more represented
for the PICRUSt predictions. Since one of the most relevant
interpretations arising from the relative proportion of ribosomal
protein genes comes from the relationship between the number
of ribosomal operons and bacterial growth rates (Klappenbach
et al., 2000; Roller et al., 2016), we asked if the isolates
preferentially observed at different phases have different growth
rates. To answer this question, we predicted the growth rates of
the isolates with gRodon (Weissman et al., 2021), which accounts
for the codon usage bias observed in ribosomal proteins for the
estimation.We found that species associated with the attachment
phase grow significantly faster than those in the other phases
(Games Howell post-hoc test, adj-p < 0.012), and there is a
progressive increase in the density distribution of doubling times
(see Figure 6). At the other extreme, generalist species grow
significantly slower than species found in both attachment and
selection phases (adj-p < 0.04) but not than those observed in
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the facilitation phase. The fact that the facilitation and selection
phases were not significantly different suggested a progressive
increase in growth rates throughout the succession, with bacteria
observed in the facilitation phase having a broad distribution
of growth rates, spanning the range of both bacteria in the
selection phase and the slowest generalists, which is apparent in
the bimodal distribution of the facilitation phase.

3. DISCUSSION

In this article, we applied a comprehensive computational
pipeline to different types of sequencing data, aimed at
understanding the relative role of stochastic vs. deterministic
processes in microbial assembly, and at identifying the main
traits involved in ecological succession. In previous work,
we found that two well-defined phases were apparent
in the ecological succession of these communities on
particles (Datta et al., 2016; Enke et al., 2019). Despite the
reproducibility of this transition, there were different scenarios
in which deterministic and stochastic processes could operate
explaining these patterns, and our pipeline proceeded step
by step to narrow down the different hypotheses, following
Pascual-García (2021).

Firstly, we reanalyzed 16S rRNA amplicon sequencing data,
and we applied unsupervised clustering to detect compositionally
similar communities (Holmes et al., 2012). The search for
compositionally similar communities is a simple and powerful
tool used in the past to identify human microbiome enterotypes
(Arumugam et al., 2011) and to identify differentiated functional
performances in experimental assays for tree-holes communities
in beech trees (phylotelma) (Pascual-García and Bell, 2020).

We found that, in all substrates, it was possible to identify
two to three community classes which, in most cases, clustered
together communities sampled at early time points in one class
and at the late phases of the colonization in the other one.
The remaining class, when it was present, clustered samples in
the very early phase or in the transition between early and late
phases. This result suggested that the degradation of resources
was driving the succession, possibly with an abrupt shift in
the composition leading to the formation of distinct classes of
communities. In other words, the community-classes would be
shaped by the resources available at the particles, effectively
exerting a filter leading to two differentiated classes.

Still, among those bacteria overcoming these filters, those
within the same community-class could assemble stochastically,
i.e., following the framework of neutral theory, members of the
same community-class might be “functionally equivalent.” We
tested this possibility by comparing the observed communities
with communities generated with a neutral model with the
method proposed in Harris et al. (2015), finding that the
abundances of the observed communities were significantly
different from the expectation under neutral assembly. Therefore,
the selection was not just acting at a “metacommunity level”
(in our experiments, within the time-frame in which each class
is defined) but also at a “local level” (within each specific
community).

There is considerable debate on the relative importance of
niche and stochastic effects in natural bacterial communities,
because it depends on a number of variables. In locations
with harsh environmental conditions, such as in Antarctica,
environmental factors dominate the assembly of microbial
communities (Ramoneda et al., 2021). This is not always the
case since, in the deserts, the observation was distinct for
autotrophs (stochastic) and heterotrophs (selection) (Caruso
et al., 2011). These patterns are also likely driven by the extent
to which the environment is spatially structured. For instance,
soil communities seem to be mostly structured by abiotic factors
(in particular, pH) (Dumbrell et al., 2009), with communities
living in finer-grained sediments experiencing strong selection
while, for shallow sediments more exposed to perturbations,
stochastic processes are more important (Stegen et al., 2013).
In the ocean, large-scale compositional patterns are related to
environmental factors, such as temperature or salinity (Sunagawa
et al., 2015). At the different depths, environmental filtering has
been observed to be more important in shallow waters while
dispersal limitation tend to be more important in deep waters
(Wu et al., 2017). Interestingly, another study considering natural
samples and conducting a similar analysis to the one reported
here showed evidence of selection at the metacommunity level
in both surface waters and waters at 200 m (Vergin et al.,
2017), consistent with the existence of differentiated classes we
found. They also observed non-neutral assembly for the local
communities in surface waters, consistent with our findings
for the selection phase. But similar to the results presented in
Wu et al. (2017), they found support for neutral assembly for
the local communities at 200 m. If an analogy between the
colonization occurring along the water column in the ocean and
our experiments would be valid, the dominance of stochastic
processes at late times would represent a difference with our
results. These differences could be explained by the fact that our
communities were sampled from coastal waters and assembled in
controlled conditions on simplified particle substrates, possibly
favoring selection processes. Indeed, the importance of random
perturbations, which are frequent in the ocean, favor a stochastic
assembly and can modify biogeographic patterns (Fernandez
et al., 2019).

The reproducibility of the experiments allowed us to
investigate further the mechanisms of selection. Under the
conditions of our experiment, if there was a dramatic shift in
the underlying resources, we would expect the compositional
and phylogenetic similarity of the communities to diverge along
the experiment, whereas communities at adjacent time points
should be more similar. We indeed found that the overall
similarity was higher for adjacent time points, and it was reduced
for communities distant in time. Moreover, when we focused
only on the likelihood of finding closest relatives between two
communities with the βNTI metric (Stegen et al., 2013), it
was particularly high at early time-points (12–60 h), suggesting
that the environment is exerting a strong selection, making
these communities more similar (Dini-Andreote et al., 2015).
However, finding close relatives among distant communities
were also more likely than expected by chance, even if there
was a significant phylogenetic turnover. This may be seen as
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an unexpected result because the resources are degraded along
the succession, and a complete turnover of the resources could
be expected, as it would explain the compositional turnover.
This is a scenario termed environmental variable selection that
should lead to values of βNTI that are significantly positive (Dini-
Andreote et al., 2015). Having discarded stochasticity, drift, and
variable environmental selection as determinants of the shift,
the Mantel correlogram and the significantly negative βNTI
values are consistent with a scenario where initial resources have
not been exhausted, allowing some degraders to stay on the
particles along the path, and these provide new resources for
the colonization of new species on top of them. The results are
therefore aligned with the mechanistic experiments presented in
previous work showing that facilitation allowed to some isolated
strains to grow on media in which the polysaccharide used in
the experiment was the sole carbon source (Datta et al., 2016;
Enke et al., 2019) and further suggest that at least some degraders
coexist with the secondary consumers. This result opens an
avenue to identify facilitation in natural samples.

Indeed, the relevance of ecological interactions in the
assembly of natural POM communities is largely unknown (Liu
et al., 2019). In some studies, selective and stochastic processes
explained a small amount of the variance (Wu et al., 2017),
pointing toward alternative explanations such as the importance
of competition (Zhang et al., 2014). In our experiments, we
found an increase of rare taxa in the facilitation phase, which
is likely explained by an increase in the number of microniches
promoted by the degradation of the substrate, i.e., by facilitation
interactions. Since facilitation might make these communities
more persistent against perturbations, hence promoting diversity
(Pascual-García et al., 2020), our interpretation is consistent with
the more robust biogeographic patterns observed for rare taxa
(Wu et al., 2017; Mo et al., 2018).

Next, we asked if it was possible to find distinctive
traits for community-classes identified at the selection and
facilitation phases. We analyzed metagenomics sequencing data
and metagenomics predictions generated from 16S sequences
with PICRUSt (Langille et al., 2013). In both cases, the emerging
qualitative picture pointed toward a clear distinction between
communities with higher motility, uptake of nutrients, and
chemotaxis at the selection phase, and communities with a
wide array of metabolic capabilities at late phases. Importantly,
these patterns emerged after aggregating experiments that
considered different substrates, and hosting different community
compositions. Our results are hence aligned with previous
observations pointing toward a decoupling between taxonomy
and function (Louca et al., 2016), here represented by the distinct
ecological traits of early and late colonizers.

We also considered the propensity of isolated strains to be
found at different phases and analyzed their genomes. In this
analysis, we were able to identify a group of Vibrionaceae species
with a high propensity to colonize in the attachment phase
(<12 h). This group showed a remarkably high proportion of
ABC transporters related to the uptake of sugars, consistent
with metagenomic predictions. For the comparison of isolates
classified in the selection and facilitation phases, we found a

picture similar to the one found in the metagenomics analysis
with, however, a lower significance.

The overarching picture emerging from our analysis is one in
which mainly two types of strategies recapitulate the ecological
succession, resembling the classical distinction between r-
and K-selection. MacArthur envisioned this distinction in the
colonization of islands in which, at the beginning of the
colonization, there are unexploited abundant resources while,
in later phases, resources are scarce and competition becomes
harsh (Pianka, 1970). Species then experience different selective
pressures at different phases, promoting the emergence of
specialized strategies in the different scenarios, with r-strategists
dominating earlier phases of colonization and K-strategists
late phases. Although an oversimplification, the similarity of
this picture with the one we observe in the colonization of
synthetic particles in our experiments is remarkable. This picture
has been criticized arguing that many examples presented as
support of r/K-strategies can be explained by other mechanisms,
in particular life-history traits (Reznick et al., 2002). This
criticism is pertinent in macroscopic ecology, and it may be
relevant for some species in our experiments (e.g., for those
generalists appearing at both selection and facilitation phases),
but we observe a global compositional turnover justifying
this distinction.

In microbial ecology, the r/K distinction is still used as
a conceptual framework or as a postulate, due to a lack
of mechanistic explanations connecting traits and ecological
processes (Andrews and Harris, 1986). We provide some
evidence to ground such a mechanistic explanation. At very early
time points (attachment phase), organisms encoding transporters
related to the uptake of sugars colonize the particles. Also
in this and in the next phase (selection), we observe a large
proportion of genes related to flagellar assembly and chemotaxis.
Apart from motility, bacterial flagella are important for transient
surface attachment (Kimkes and Heinemann, 2020). Chemotaxis
promotes migration along gradients of chemoattractants, which
are created by the phycosphere of marine algae, decaying
organic matter, and other biotic and abiotic sources (Stocker
and Seymour, 2012). It also enhances the expansion of motile
bacteria toward uncolonized nutrient environments (Cremer
et al., 2019), a trait that is important for foraging among
marine particles (Fernandez et al., 2019). We also observed a
high proportion of genes related to ribosome synthesis in the
selection phase, but PICRUSt predicted a higher proportion of
genes related to ribosomal proteins in the facilitation phase. To
clarify this apparent discrepancy and its potential implications
for the growth rates that bacteria may have at different stages
of succession, we predicted the growth rates of isolates classified
in the different phases. We observed that growth rates were
significantly higher for bacteria observed in the attachment phase
(Vibrionaceae in our data set), while generalists and a subset of
isolates observed in the facilitation phase had significantly lower
growth rates. Given the limited size of our dataset, more work
is needed to confirm this pattern. Considering these results, our
data suggest that bacteria found at the attachment and selection
phases have traits to detect and to move toward an abundant
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source of nutrients, with fast uptake and growth, a feast-and-
famine strategy characteristic of copiotroph species (Lauro et al.,
2009).

Late colonizers exhibit a wide array of traits related to
metabolism, suggesting that they experience a more competitive
environment with more cells including more rare species
and less abundant resources, characteristic of K-strategists.
Analyzing some pathways in detail, we found evidence for
the existence of a trophic chain centered on the exchange
of nitrogen-containing biomolecules including ammonia, with
early colonizers producing reduced forms of nitrogen that are
then taken and further degraded by late colonizers. Microbial
degraders excrete amino acids during growth on digested
polysaccharides (Enke et al., 2019). A set of pathways pointing
toward active amino acids exchange in the facilitation phase
included genes related to BCAApathways including biosynthesis,
degradation, and uptake (ABC transporters) and others, such
as lysine degradation or tryptophan metabolism. Amino acids
are thus likely to be part of the metabolites available to cells
in the microenvironment of polysaccharide particles colonized
by degraders. Interestingly, although late colonizers are also
copiotrophs, some of the pathways found at late phases are
characteristic of model representatives of oligotrophic bacteria
such as Sphingopyxis alaskensis (Lauro et al., 2009). More
specifically, in the metagenomes, we found a high proportion
of genes related to fatty acid biosynthesis or the degradation of
xenobiotics like benzoate and aminobenzoate, consistent with a
scenario in which carbon sources are more scarce. In addition,
we found some isolates with predicted doubling times up to ten
times higher than those at the attachment phase.

In summary, our work provides a comprehensive analysis
emphasizing the value of “domesticated” communities, namely
growing natural communities under synthetic conditions, to
gather insights into the selective forces structuring natural
communities in complex processes such as ecological succession.
Since, in natural environments, resources are often incorporated
in bacterial niches not continuously but in periodic or random
pulses (e.g., rain and drought in soil communities, food intake
in gut microbes, marine snow in the ocean), we believe that
the picture presented here in which a turnover in life-strategies
recapitulate the ecological succession might be a general one,
as also suggested in other studies (Freilich et al., 2010; Tipton
et al., 2019; Pascual-García and Bell, 2020). This may thus be
an important simplification to better understand and eventually
predict microbial dynamics in the wild.

4. MATERIALS AND METHODS

4.1. 16S Amplicon Sequencing
16S amplicon sequencing data was collected as described in Datta
et al. (2016) and Enke et al. (2019). Amplicon sequencing data
for samples collected from chitin, carrageenan, agarose, alginate,
and agarose-alginate hybrid particles are previously reported
(Datta et al., 2016; Enke et al., 2019). Amplicon sequencing data
for samples of seawater-associated microbes, chitosan particles,
agarose-carrageenan, and agarose-chitosan particles are new to
this study.

For amplicon sequencing using samples reported in this study,
800 ml samples of coastal surface water collected in 2015 from
Nahant, MA, USA were incubated with 100 particles/ml of a
single particle type in triplicate in 1 L flasks. Particles were
fabricated as described previously (Enke et al., 2019). Bottles were
sealed and rotated end-over-end at room temperature. At 0, 12,
24, 36, 48, 60, 72, 108, 132, 156 and 204 h intervals, flasks were
opened and 10 ml of bead/seawater mix was removed. Beads
contained a magnetic core and were separated from seawater
using a neodymium magnet. Particle samples were resuspended
two times in artificial seawater and then stored for DNA
extraction and sequencing library preparation. As described in
detail previously (Enke et al., 2019), DNA was extracted from
samples using a MasturePure extraction kit (Lucigen), and 16s
rRNA amplicon libraries were prepared with primers 515F and
806R, which amplify the V4 region of the 16S rRNA gene.

Denoising was performed by creating a parametric error
model from a random set of 2M sequences, and this model
was then used to identify erroneous sequence variants that were
combined with the sequence variant that most likely originated
following the pipeline implemented in the R Bioconductor dada2
package (Callahan et al., 2016). Functions from this package
were also used for merging paired-end reads, trimming primer
sequences, and dereplicating reads. All parameters were set
to default values except tuncLen = 115 and maxEE = 2.
Unless otherwise stated, downstream analyses were performed
considering Exact Sequence Variants (ESVs) (Callahan et al.,
2017).

BarPlots and diversity analysis were performed with Phyloseq
(McMurdie and Holmes, 2013) after rarefying samples to
the size of the sample with a minimum number of reads
(1K). To test the robustness of the patterns observed, we
also considered a rarefaction threshold of 10K, presented in
Supplementary Materials. In this analysis, samples with less
than 10K sequences were excluded from the analysis. Additional
interactive visualizations of the ESVs trajectories clustered into
Operational Taxonomic Units at different taxonomic thresholds
were made with qiime2 (Caporaso et al., 2010) and are provided
as Supplementary Materials. Ordination analysis was conducted
by computing the Bray-Curtis dissimilarity and then the
dimensionality was reduced with principal coordinate analysis
(PCoA) with the R package Vegan (Oksanen et al., 2020).

4.2. Metagenomes
Metagenomic sequencing libraries were prepared using genomic
DNA extracted from particle samples at 0, 12, 24, 36, 48,
60, 72, 108, 132, 156, and 204 h timepoints. 2x250 paired-
end sequencing libraries were prepared with Illumina Nexterra-
XT adapters, using a modifications to the protocol previously
validated for low DNA input (Rinke et al., 2016).

Sequences were processed following the pipeline implemented
in the Metagenomics Rapid Annotation using Subsystems
Technology (MG-RAST) server version 4.0.3 (Keegan et al.,
2016), with default parameters. In brief, the pipeline removes
adapters with Skewer (Jiang et al., 2014) and performs
adapter clipping with fastq-mcf (Aronesty, 2013). It then
removes duplicated reads and assesses the sequencing quality
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with DRISEE (Keegan et al., 2012) and identifies potential
contamination with Bowtie2 (Langmead and Salzberg, 2012).
Functional annotations were obtained by performing a de novo
coding-region prediction with FragGeneScan (Rho et al., 2010)
and translating the hits into amino-acid sequences. Protein
sequences were clustered with cd-hit (Fu et al., 2012) and a
sequence similarity search was performed with BLAT (Kent,
2002) against theM5NRdatabase (Wilke et al., 2012), considering
an e-value cut-off of 10−5, minimum identity cut-off of 60% and
minimum length of sequence alignment of 15 nucleotides. KEGG
annotations were considered for donwstream analysis. Samples
with less than 103 annotated genes (approximately corresponding
to those with less than 104 reads) were discarded to prevent
biases. This excluded from the analysis most samples belonging
to the attachment phase.

4.3. Strains Isolation and Sequencing
Isolation of taxa from marine particles and sequencing of isolate
genomes to create draft assemblies were performed as described
previously (Enke et al., 2019). Briefly, 36, 84, and 156 h particles
were sampled, washed, and diluted 1:1, 1:10, and 1:100 into
artificial seawater (Sigma S9883). Particles in each dilution were
vortexed for 20 s to dislodge cells and plated onto 1.5 Bacto agar
plates made with Marine Broth (MB, Difco 2216) as a nutrient
source or with Tibbles-Rawling defined minimal media (Datta
et al., 2016) with 0.05 %w/v low viscosity alginate (Sigma A1112),
0.04 % carrageenan (Sigma C1013), 0.1 % glucosamine, or of with
only agar. Plates were incubated for 2 days at room temperature,
after which colonies were picked from each plate and struck
for isolation on fresh MB agar. Isolate purity and taxonomic
identification were assessed by Sanger dideoxy sequencing of the
full 16S rRNA gene using primers 8F and 1492R (Turner et al.,
1999). Pure cultures were stored in 25 % glycerol at−80◦C, prior
to revival for DNA extraction for sequencing library preparation.
Draft genomes were sequenced by preparing 2x250 paired-
end Illumina sequencing libraries using Nexterra-XT library
preparation and indexing kits. Sequencing was performed on an
Illumina HiSeq 2500 at the Whitehead Institute for Biomedical
Research in Cambridge, MA, USA. Reads were trimmed and
filtered to remove unpaired and low quality reads and then
assembled de novo into contigs using CLCGenomicsWorkbench
version 11. Completeness and other assembly statistics were
assessed using CheckM version 1.1.2 (Parks et al., 2015), and
taxonomic identification was made using GTDB-Tk version 1.7.0
(Chaumeil et al., 2019; Parks et al., 2020). Contigs were annotated
using the RAST pipeline (Aziz et al., 2008) with parameters
genetic− code = 11, automatically fix errors = T, backfill gaps =
T, and fix frameshifts = F.

4.4. Determination of Community Classes
We performed an unsupervised classification of the samples
using a Bayesian approach proposed by Holmes et al. (2012).
The approach considers the matrix of observations X whose
entries Xij describe the abundance of ESV j ∈ {1, . . . , S} in
community i ∈ {1,. . . ,M}, and it assumes that each community
is drawn from a multinomial distribution with a vector of M
parameters p̄i. In a Bayesian framework, it is needed to choose

a prior distribution for these parameters, being the Dirichlet
distribution Dir(p̄i|ᾱ) a natural choice, since it is the conjugate
of the multinomial distribution, meaning that the posterior
distribution is also a Dirichlet. The procedure then fits the data
to infer the parameters p̄i and ᾱ, but we should note that the
vector of S parameters ᾱ could be unique for all samples or there
may be k subsets of samples each with a different ᾱk vector.
Interestingly, in the latter scenario, each vector of ᾱk parameters
can be interpreted as a different “metacommunity” k from which
a subset of samples was drawn, a possibility that we exploit in
our analysis. To perform the fit, the model simply considers a
linear combination of Dirichlets, Dir(p̄i|ᾱk), providing a flexible
framework to fit subsets of communities to distributions with
different parameters. To prevent overfitting, a penalization was
considered for having more terms in the linear combination
by taking the one that maximizes the posterior evidence of
the fit (Holmes et al., 2012) and determining in this way the
number of clusters. In the Section 2, these clusters (subsets of
communities contributing to the same Dirichlet distribution)
were termed “community-classes.” There are several advantages
derived from this approach. First, as we said the interpretation of
the clusters connects with neutral theory by interpreting them as
samples drawn from the same metacommunity (see next section
for more details). Second, it prevents biases attributed to some
distance-based methods in classification and ordination analysis
that do not properly account for the compositionality of these
data (Gloor et al., 2017), and that can be circunvented with
generalized linear models (Warton et al., 2012), similar in spirit
to the approach used here. Finally, it provides a probabilistic
description of the clustering, in which a given community has
a certain probability to belong to each class. This is not the case
in our data, in which all samples are essentially associated with
a single Dirichlet component (i.e., that they are unambiguously
classified in the same community-class). The fit was performed
with the software provided in the original article (Holmes et al.,
2012).

4.5. Test of Neutrality
We tested if the communities were compatible with a neutral
assembly following the method presented in Harris et al.
(2015). This method represents a major advance to test for
neutrality in large communities, which would not be possible
to address following the model proposed by Hubbel (Hubbell,
2001). Briefly, the method follows a Bayesian approach which
independently fits the matrix X describing the abundances of
ESVs in samples belonging to a given community-class (our
proxy of metacommunity), to a Hierarchical Dirichlet Process
with speciation parameter θ , metacommunity’s distribution β̄ ,
and immigration rates Ii (i = 1, . . . ,M), with M the number
of samples in the class. Posterior samples of parameters, labeled
with the index k, i.e., β̄k, θk, Ik1 , . . . , I

k
M , are then obtained. Next,

synthetic matrices {Xk
0} with the same number of samples and

abundances than the class under study were sampled from each
set of parameters k, simulating a Hierarchical Dirichlet Process
(HDP). Finally, the metacommunity distribution parameters of

each synthetic matrix are inferred (β̄0
k
). The method allows for
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the generation of both neutral metacommunities and neutral
local communities, or of only neutral local communities (local
model, hence with metacommunities being non-neutral). To
test for neutrality, 50,000 realizations of posterior samples were
generated with 25,000 being discarded as burn-in, and then
2,500 selected among the last 25,000 in intervals of 10 steps.
The test considers that the observed data appears neutral if the
proportion of the log-likelihoods L(X|β̄k, Ik1 , . . . , I

k
M) estimated

from the observed data exceeds the correspondent log-likelihood

estimated with synthetic data L(Xk
0|β̄0

k
, Ik1 , . . . , I

k
M) by some

amount. This proportion is an empirical (pseudo) p-value and we
considered neutrality rejected if p < 0.001. Computations were
performed using the code provided in Harris et al. (2015).

4.6. Phylogenetic Turnover and Selection
To investigate the phylogenetic turnover through the ecological
succession for each experiment, we computed a Mantel
correlogram showing the relationship between community
structure and time over different temporal distance classes. We
considered significant tests with an adjusted p-value of <0.05.
For each experiment, we rarefied the samples to 1,000 reads
and created a multiple sequence alignment with DECIPHER
(Wright, 2016) and a phylogenetic tree with Neighbor Joining
(R package ape, Paradis and Schliep, 2019). We verified that
results were consistent when the number of reads was increased
to 10,000. The Mantel tests evaluated the correlation between the
Euclidean distance of the communities after philr transformation
(Silverman et al., 2017a) and their temporal distance (R package
Vegan, Oksanen et al., 2020). Philr is an alternative to the well-
known Unifrac distance (Lozupone et al., 2011) which accounts
for compositionality (Gloor et al., 2017). It was computed with
the R package philr (Silverman et al., 2017b) with parameters
part.weights = enorm.x.gm.counts, ilr.weights = blw.sqrt.

We investigated different hypothesis regarding the influence
of the environment in selecting taxonomically similar
communities or in their taxonomic divergence following
the analysis proposed in Stegen et al. (2013) and Dini-Andreote
et al. (2015). We computed, for each pair of communities k and
l, the weighted β-Mean Nearest Taxon Distance, defined as

βMTND(k, l) =
1

2





n
∑

i=1

fimin
j
(1ij)+

m
∑

j=1

fjmin
i
(1ji)





(i ∈ k, j ∈ l),

where i and j label ESVs, fi is the relative abundance of
ESV i, and minj(1ij) is the minimum phylogenetic distance
between the ESV i belonging to community k and all ESVs
j in community l. In Dini-Andreote et al. (2015), it was
shown that a βMNTD value significantly lower than the one
obtained with the null model is expected when the environment
constraints the communities composition. On the other hand,
a value significantly higher than the null expectation would be
found when different environmental conditions lead to divergent
compositions among the communities. Other scenarios such as
drift, would be expected for non-significant values. As a null

model, we computed the βMNTD shuffling the ESVs in the
nodes of the phylogenetic tree. We computed the null mean
〈βMNTDrnd〉 and SD σ (βMNTDrnd) with 999 realizations of the
null model, and then estimated the significance with a z-score
(termed β−Nearest Taxon Index) (Stegen et al., 2013):

βNTI =
βMNTD− 〈βMNTDrnd〉

σ (βMNTDrnd)
.

Those pairs of communities values fulfilling abs(βNTI) >

2 were considered significant. Computations were conducted
with R packages picante (Kembel et al., 2010) and iCAMP
(Ning et al., 2020) using the functions mntd and bNTIn.p with
default parameters.

4.7. Predicted Functional Profiles
Functional profiles of the ESVs were estimated with PICRUSt
v2.4.2 (Douglas et al., 2020) with default parameters. Quantitative
and qualitative validation of the predictions were conducted
by computing the NSTI score (Langille et al., 2013) and with
correlations between the profiles found in the predictions and
those derived from the shotgun metagenome experiments. We
also considered an additional quantitative validation of specific
pathways showing discrepancies (see Supplementary Results).

4.8. Statistical Analysis of Functional
Profiles
Functional profiles were classified into KEGG’s pathways and
statistical analysis and plots were conducted with STAMP
(Parks et al., 2014). Analysis of significant differences in
mean proportions across pairs of community-classes (or sets
of isolates with similar ecological strategies) was performed
with Welch tests, considering significant differences in p-
values lower than 0.05 after correcting for multiple testing
(Benjamini-Hochberg procedure, abbreviated BH). Pathways
with differences lower than 0.1 (experimental metagenomes
and isolates) or 0.05 (predictions) were removed. A different
threshold was selected to consider a similar number of pathways.
Comparisons between multiple community-classes presented in
Supplementary Materials were conducted by performing first
an ANOVA test, considering rejected hypothesis that all means
were equal if the BH-corrected p-value was lower than 0.05,
then followed by pairwise post-hoc tests (Tukey-Kramer). The
pathways investigated had a BH-corrected p-value lower than
0.05 and an effect size larger than 0.2.

4.9. Estimation of Ecological Preferences
for the Isolates
We considered 65 strains isolated from previous experiments
(Datta et al., 2016; Enke et al., 2019) to investigate their genomes.
To investigate which ESVs were in correspondence with the 16S
sequences of the isolated strains, we made a BLAST database
for the ESVs with the makeblastdb tool provided by NCBI-
BLAST db (Altschul et al., 1990) with options −parse_seqids
−dbtype nucl. Then, we matched ESVs sharing 100% sequence
identity with the 16S sequences of the strains using blastn with
options −perc_identity100 −qcov_hsp_perc 100 −outfmt 6.
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One isolated strain had no 100% match with any ESV, and it
was discarded for downstream analysis. We finally associated
the ecological preferences found for the ESVs to the isolates. To
estimate the ecological preferences of the ESVs, we estimated,
for each ESV, a zero-inflated negative binomial generalized
linear model (Xu et al., 2015; Xia et al., 2018). We considered
as a response variable, the abundances of the ESVs across
all substrates, replicates and time points in beads’ samples,
and the phase in which the abundance was measured as a
dependent variable, then adding as an offset the logarithm of the
total abundances of the sample (Xia et al., 2018). The models
were fitted with the zeroinfl function in package PSCL (Zeileis
et al., 2008) with no additional parameters. We considered as
a reference factor level the attachment phase and established
a code describing the significance of each phase relative to
the reference (see Supplementary Results). We finally clustered
the ESVs using this code to determine the ecological strategies
(Supplementary Figure 13).

4.10. Phylogenetic Analysis of the Isolates
and Growth Rates Estimation
A phylogeny for the isolates was built using GTDB-Tk (Chaumeil
et al., 2019; Parks et al., 2020). Briefly, the classify workflow was
run to call genes and identify the 120 marker genes within each
genome that are used to infer phylogeny. The workflow was run
with default arguments. The multiple sequence alignment of the
input genomes was used to generate a phylogeny by running the
infer command with default arguments. Phylogenetic tree was
formatted in iTOL (Letunic and Bork, 2021). Growth rates were
predicted with gRodon (Weissman et al., 2021), implemented
in the function predictGrowth of the R package gRodon
(Weissman, 2022) using genes annotated as “ribosomal_protein”,
with default parameters.
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