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Background: Trained immunity – or innate immune memory – can be described as the
long-term reprogramming of innate immune cells towards a hyperresponsive state which
involves intracellular metabolic changes. Trained immunity has been linked to
atherosclerosis. A subgroup of patients with primary Sjögren’s syndrome (pSS) exhibits
systemic type I interferon (IFN) pathway activation, indicating innate immune
hyperactivation. Here, we studied the link between type I IFNs and trained immunity in
an in vitro monocytic cell model and peripheral blood mononuclear cells (PBMCs) from
pSS patients.

Methods: The training stimuli heat killed Candida albicans, muramyl dipeptide, IFNb, and
patient serum were added to THP-1 cells for 24 hours, after which the cells were washed,
rested for 48 hours and subsequently re-stimulated with LPS, Pam3Cys, poly I:C, IFNb or
oxLDL for 4-24 hours. PBMCs from pSS patients and healthy controls were stimulated
with LPS, Pam3Cys, poly I:C or IFNb for 0.5-24 hours.

Results: Training with IFNb induced elevated production of pro-atherogenic cytokines IL-
6, TNFa and CCL2, differential cholesterol- and glycolysis-related gene expression, and
increased glucose consumption and oxLDL uptake upon re-stimulation. Type I IFN
production was increased in Candida albicans- and IFNb-trained cells after LPS re-
stimulation, but was reduced after poly I:C re-stimulation. Training with muramyl dipeptide
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and IFNb, but not Candida albicans, affected the IFN-stimulated gene expression
response to IFNb re-stimulation. PBMCs from pSS patients consumed more glucose
compared with healthy control PBMCs and tended to produce more TNFa and type I IFNs
upon LPS stimulation, but less type I IFNs upon poly I:C stimulation.

Conclusions: Type I IFN is a trainer inducing a trained immunity phenotype with pro-
atherogenic properties in monocytes. Conversely, trained immunity also affects the
production of type I IFNs and transcriptional response to type I IFN receptor re-
stimulation. The phenotype of pSS PBMCs is consistent with trained immunity. This
connection between type I IFN, trained immunity and cholesterol metabolism may have
important implications for pSS and the pathogenesis of (subclinical) atherosclerosis in
these patients.
Keywords: Sjögren’s syndrome, type I interferon (IFN), trained immunity, atherosclerosis, monocytes
INTRODUCTION

Trained immunity describes the ability of innate immune cells to
mount increased responses to re-stimulation after initial
exposure to inflammatory stimuli (1). For instance, cell-wall
polysaccharide b-glucan from Candida albicans is a well-
described trainer that confers elevated cytokine responses in
macrophages when these are re-stimulated with a secondary
non-related stimulus such as LPS (2). This hyperresponsive
phenotype is long-lasting and is orchestrated by cellular
metabolic and epigenetic reprogramming (2, 3). The
characteristics of innate immune memory have been
demonstrated both in vitro and in vivo (1, 4, 5). Trained
immunity contributes to inflammatory processes and is an
emerging disease mechanism in immune-mediated diseases,
including atherosclerosis (6–8). Trained immunity could
potentially have immunopathobiological relevance in systemic
autoimmune diseases (1).

The chronic rheumatic autoimmune disease primary
Sjögren’s syndrome (pSS) is typified by mononuclear cell
infiltration in the salivary glands and symptoms of oral and
ocular dryness (9). Patients may additionally experience a
diversity of extraglandular disease manifestations which can
cause substantial morbidity (10). Patients with pSS appear to
exhibit accelerated (subclinical) atherosclerosis and other
cardiovascular risk factors, which is also seen in other
autoimmune rheumatic diseases, including systemic lupus
erythematosus (SLE) (11–14).

Stronger cytokine responses by innate immune cells from pSS
patients compared with healthy controls (HC) have been
reported upon stimulation with diverse inflammatory stimuli
(15–19). These observations accentuate a hyperresponsive
phenotype of innate immune cells in pSS. Innate immune
hyperactivation in pSS is further exemplified by persistent
systemic activation of the type I interferon (IFN) pathway in
the majority of patients (20, 21). This latter phenomenon is
shared with related systemic autoimmune diseases, such as SLE
(22). All together, these features of innate immune hyperactivity
are suggestive of trained immunity in pSS.
org 2
Type I IFNs are a family of cytokines with potent
immunomodulatory properties. Recent studies have suggested
that immunomodulatory effects of type I IFNs involve histone
modifications of inflammatory genes that affect the transcriptional
responses to TLR4 or secondary type I IFN stimulation (23–25).
Similar type of histone marks on cytokine genes drive the pro-
inflammatory phenotype in b-glucan trained macrophages (3, 26).
Thus, type I IFN-driven immunomodulation might potentially
share some of the regulatory mechanisms that are fundamental to
trained immunity.

In this study, we examined the link between type I IFNs and
trained immunity in pSS. For this we used an in vitro monocytic
model for trained immunity and peripheral blood cells from pSS
patients. We hypothesized type I IFNs in patients to function at
three different levels within the framework of trained immunity:
1) as a trainer inducing a trained immunity phenotype in
monocytes, 2) as a result of trained immunity manifested by
elevated type I IFN secretion upon re-stimulation, or 3) as a re-
stimulus inducing the upregulation of IFN-stimulated genes
(ISGs; Figure 1).
MATERIALS AND METHODS

Trained Immunity Model
THP-1 cells were maintained in RPMI 1640 (Gibco, Thermo
Fisher Scientific, Tilburg, The Netherlands) supplemented with
10% fetal calf serum (FCS) and antibiotics (Penicillin-
Streptomycin; Gibco) in a humidified incubator at 37°C/5%
CO2. For the trained immunity model, 35.10e3 THP-1 cells per
well were plated in 96-well flat bottom Nunclon Delta plates
(Thermo Fisher Scientific) in RPMI 1640 + 10% (not heat-
inactivated) FCS + Penicillin-Streptomycin (hereafter culture
medium) and subsequently trained with heat-killed Candida
albicans (HKCA; In vivoGen, San Diego, USA), Muramyl
dipeptide (MDP; Sigma-Aldrich, Merck, Zwijndrecht, The
Netherlands), IFNa-A(2a) or IFN-b1a (both from PBL Assay
Science, Tebu-bio, Heerhugowaard, The Netherlands) or 50%
human serum (final volume of 100 µl) for 24 hours in a
July 2022 | Volume 13 | Article 840751
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humidified incubator at 37 °C/5% CO2. In some experiments 30
U/mL of the LPS neutralizing antibiotic Polymyxin B sulfate
(Sigma-Aldrich) was added simultaneously with the training
stimuli. After the first 7 hours of training, 25 nM Phorbol 12-
myristate 13-acetate (PMA; Sigma-Aldrich) was added for the
remaining training time to the culture to initiate THP-1
adherence and differentiation. After 24 hours of training, the
medium containing the training stimuli was removed and cells
were washed once with pre-warmed PBS. Fresh culture medium
containing 25 nM PMA was added and cells were rested for 30
hours. Thereafter, medium was removed, cells were washed once
with pre-warmed PBS and cells were starved in RPMI 1640 +
0.5% FCS + Penicillin-Streptomycin (hereafter starvation
medium) for 17 hours. Thereafter, cells were re-stimulated
with LPS (50 ng/mL or 1 µg/mL; E.coli O55:B5; Sigma-
Aldrich), Pam3Cys (10 µg/mL; EMC Microcollections,
Tübingen, Germany), poly I:C HMW (5 µg/mL; In vivoGen) or
IFN-b1a (100 U/mL) in starvation medium for 6 or 24 hours.
Each condition was performed in triplicate. Supernatant was
harvested for quantification of cytokine production, lactate and
glucose concentrations and cells were lysed in RLT buffer for
RNA isolation.

Patients and Healthy Controls
Patients with pSS (classified according to the 2016 ACR-EULAR
Classification Criteria for primary Sjögren’s Syndrome (27)) and
(childhood) SLE (classified according to the 2019 ACR-EULAR
Classification Criteria for SLE (28)) were recruited at the
outpatient clinics of the Erasmus MC and Sophia Children’s
Hospital, Rotterdam University Medical Center, Rotterdam, the
Netherlands. Disease activity at the time of inclusion was
assessed using the EULAR Sjögren’s syndrome disease activity
index (ESSDAI) (29) or Systemic Lupus Erythematosus Disease
Activity Index (SLEDAI)-2K or SELENA-SLEDAI (30, 31).
Patient characteristics, use of medication and routine
hematological and serological parameters were retrieved from
patient records and are summarized in Supplementary Table 1.
HC (age and sex-matched to pSS and adult SLE) were included at
the Erasmus MC. The Medical Ethics Review Committee of the
Erasmus MC (MEC-2011-116; MEC-2016-202; MEC-2019-
Frontiers in Immunology | www.frontiersin.org 3
0412) has approved of this study and written informed consent
was provided by all participants in compliance with the
declaration of Helsinki.

Blood Sampling and Processing
Peripheral blood was obtained from patients and HC in NH
Sodium Heparin tubes (Greiner Bio-One, Alphen a/d Rijn, The
Netherlands), PAXgene Blood RNA Tubes (PreAnalytiX GmbH,
Becton Dickinson, Vianen, The Netherlands) and BD
Vacutainer™ SST™ II Advance Tubes (Becton Dickinson).
Peripheral blood mononuclear cells (PBMCs) were isolated
from heparinized blood by Ficoll-Paque Plus (GE Healthcare)
density gradient centrifugation and cryopreserved in liquid
nitrogen until later use. Serum samples were stored at -80°C
until later use. Blood samples were processed in the laboratory
within two hours of collection.

PBMC Stimulations
PBMCs were first rested for 30 minutes in RPMI 1640 + 10%
heat-inactivated FCS + Penicillin-Streptomycin. Then, 4.10e5
PBMCs were plated in 96-well round bottom Nunclon Delta
plates (Thermo Fisher Scientific) and stimulated with LPS (10
ng/mL), Pam3Cys (10 µg/mL) or poly I:C HMW (5 µg/mL) for
24 hours or IFN-b1a (100 U/mL) for 0.5, 2 or 6 hours (final
volume 200 µl) in a humidified incubator at 37°C/5% CO2.
Harvested supernatants were kept on ice at all times and
immediately stored at -20°C until quantification of cytokine
levels, or stored at -80°C until lactate and glucose
measurements. Cells were lysed in RLT buffer and stored at
-20°C until RNA isolation.

RT-PCR
RNA was isolated from PAXgene Blood RNA Tubes using the
PAXgene Blood RNA Kit (PreAnalytiX GmbH) or from cultured
cells using the RNeasy Mini Kit (Qiagen, Venlo, The
Netherlands) and reverse transcribed to cDNA using High-
Capacity Reverse Transcription Kit (Applied Biosystems,
Bleiswijk, The Netherlands). RT-PCR was performed on a
QuantstudioTM 5 Real-Time PCR System using predesigned
primer/probe sets (Applied Biosystems). The housekeeping gene
FIGURE 1 | Graphical representation of hypothesized functions of type I IFNs within the framework of trained immunity. (1) as a trainer inducing a trained immunity
phenotype in innate immune cells, (2) as a result of trained immunity manifested by elevated type I IFN secretion upon re-stimulation, or (3) as a re-stimulus inducing
the upregulation of IFN-stimulated genes (ISGs).
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ABL was used to normalize CT values for each sample. Relative
mRNA quantity was calculated using the 2-DCt (relative copy
number) or 2-DDCt (fold change) method as indicated in the
figure legends.

Type I IFN Score in Peripheral Blood Cells
Whole blood expression of ISGs MX1, IFI44, IFI44L, IFIT1, and
IFIT3 was quantified from PAXgene Blood RNA tubes by RT-
PCR, and a type I IFN score was calculated as previously
described (32). A cohort of 106 HC was used for the
calculation of the type I IFN scores. The threshold for
stratification of patients in IFN-low and IFN-high was
determined by the MeanHC + 2*SDHC.

Cytokine Quantification
TNFa and IL-6 were measured in culture supernatants with
ELISA (Human TNF-alpha DuoSet; R&D systems and Human
Interleukin 6 Cytoset kit; Invitrogen, Thermo Fisher, Scientific).
Type I IFN bioactivity was measured in culture supernatants by a
reporter assay system (HEK-Blue™ IFN-a/b cells; In vivoGen)
according to the manufacturer’s instructions. Recombinant
human IFNb1a was used for calibration.

Lactate and Glucose Measurements
Lactate and glucose concentrations in culture supernatants were
quantified using the Lactate Assay Kit (Sigma-Aldrich) and
Glucose Colorimetric Detection Kit (Invitrogen, Thermo Fisher
Scientific) according to the manufacturer’s instructions.

Cell Counting and Viability
To assess the number of cells for each training condition, THP-1
cells were retrieved from 6 wells by 0.25% trypsin-0.02% EDTA
(Gibco) 48 hours after the training, stained with trypan blue and
counted in duplicate.

Dil-oxLDL Flow Cytometry
THP-1 cells were trained and differentiated according to the
described training protocol. After removal of the differentiation
medium, cells were washed in PBS and rested overnight in
serum-free RPMI 1640 + Penicillin-Streptomycin. Cells were
incubated with 50 µg/mL Dil-oxLDL (Invitrogen) for 4 hours,
washed with PBS three times, trypsinized with 0.25% trypsin-
0.02% EDTA and stained with eBioscience Fixable Viability Dye
eF506 (Thermo Fisher Scientific) in PBS for 15 minutes at 4°C.
Cells were analyzed on a LSR Fortessa SOP (BD Biosciences).

RNA Sequence Analysis
Paired-end raw FASTQ files were downloaded from the GEO
database using GEO Series accession number GSE173670 (18),
and were analyzed with the nf-core/RNA-seq pipeline (v3.1)
using Nextflow (21.05.0.edge) and its default settings (33, 34).
Quality of the sequencing was reported with FastQC (v11.9).
Subsequently, bases with low Phred scores (≤ 30) were either
trimmed or the complete reads were removed using Trim Galore!
(v6.6). Trimmed FASTQ reads were mapped to the human
reference genome version GRCh38 with the GRCh38 gencode
37 gene annotation file using RSEM (v1.3.1), which umbrellas
Frontiers in Immunology | www.frontiersin.org 4
STAR (v2.7.6a) as read aligner. Next, SAMtools (v 1.10)
processed the alignment files and extracted mapping statistics
of the post-alignment (35–37). Quality of each sample alignment
was visually inspected using reports derived from RSeQC
(v3.0.1), Qualimap (v2.2.2-dev) and Preseq (v3.1.1), including
read inner distance plots, splice junction annotations, the
genomic origin of the mapped reads, and the estimated
complexity of the sequencing library (38–40). RSEM estimated
transcript counts were imported into R (v4.1.0), transformed to
gene counts using tximport (v1.20) and analyzed with DESeq2
(v1.32.0) (41, 42). Only protein-coding genes were kept for
subsequent analyses. Gene counts were transformed using the
“varianceStabilizingTransformation” (VST) function of DESeq2.
Differentially expressed genes were calculated using DESeq2. p-
values were calculated using Wald statistical test and corrected
with the Benjamini-Hochberg multiple hypothesis testing
method for all protein-coding genes. For the comparison of
pSS patients against HC, the HC were set as base reference. For
the analysis between the IFN-high and IFN-low pSS patients the
IFN-low subgroup was set as base reference. Fold Changes were
shrunk with the DESeq2 function “lfcshrink” using method
“apeglm” (43). Heatmaps were made using the R package
heatmap (v1.0.12), Z-scores were calculated per gene using the
VST transformed counts.

Statistical Analysis
Graphpad Prism 5.0 (Graphpad Software, La Jolla, CA, USA)
was used for graph design and statistical analyses. Depending on
the data distribution, independent-samples Student’s t-test or
Mann-Whitney U test, one-way ANOVA followed by Tukey’s
HSD test or Kruskal-Wallis H test followed by Dunn’s Multiple
Comparison test was used to compare two or more groups. One-
sample Student’s t-test or Wilcoxon signed rank test was used to
compare medians with a hypothetical 1. Friedman test followed
by Dunn’s Multiple Comparison test or repeated measures
ANOVA followed by Dunnett’s post hoc test were used for
paired observations. Multiple logistic regression analysis was
performed in R version 4.0.3 (44) and JMP Pro version 15 (45)
to assess the relationship between type I IFN pathway activation
and cardiovascular events including seven cardiovascular risk- or
trained immunity-associated covariates: Age, BMI, current Statin
use, current hydroxychloroquine use, current NSAID use,
Smoking status (past or present) and Hypertension status.
Effect likelihood ratio tests were used to determine a
relationship between the covariates and type I IFN
pathway activation.
RESULTS

Establishment of the In Vitro Trained
Immunity THP-1 Model
To study the interaction between type I IFNs and trained
immunity, we first established an in vitro model for trained
immunity using the monocytic THP-1 cell line (Figure 2A).
Training with Candida albicans-derived b-glucans or the
July 2022 | Volume 13 | Article 840751
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bacterial cell wall component muramyl dipeptide (MDP) has
been described to trigger a lasting pro-inflammatory phenotype
in monocytes, which is exemplified by increased TLR2/4-
induced IL-6 and TNFa production (26, 46). Therefore, we
used these well-established trainers to validate the induction of
trained immunity in THP-1 cells. Heat-killed Candida albicans
(HKCA) and MDP induced a significant dose-dependent
increase in IL-6 and TNFa secretion upon re-stimulation with
the TLR4 agonist LPS or the TLR2 agonist Pam3Cys
(Figures 2B, C, S1A, B). Likewise, re-stimulation with TLR3
agonist poly I:C induced significantly elevated IL-6 and TNFa
secretion by THP-1 cells trained with MDP (Figure 2D). These
enhanced cytokine responses were not due to cell number
differences between the different training conditions (Figure
S2). Altogether, these data support the induction of trained
immunity by Candida albicans and MDP in THP-1 cells.
Type I IFN Is a Trainer in THP-1 Cells
Using the THP-1 cell model, we subsequently explored the
training-inducing capacity of type I IFNs. Training with IFNb
Frontiers in Immunology | www.frontiersin.org 5
caused a significantly increased production of IL-6 and TNFa
upon re-stimulation with LPS or Pam3Cys (Figures 3A, B, S3A,
B). Similar to MDP, training with IFNb also induced increased
poly I:C-stimulated IL-6 and TNFa secretion (Figure 3C). The
cytokine secretion of IFNb-trained cells is likely underestimated
as the number of cells per well was lower in IFNb-trained
compared with untrained conditions (Figure S2). Importantly,
LPS-induced gene expression of the pro-atherogenic chemokine
CCL2 was significantly enhanced in IFNb-trained THP-1 cells
and to a lesser extent in HKCA- and MDP-trained cells
(Figure 3D). The recombinant IFNb protein used for the
training experiments was produced in E. coli. Therefore, to
excluded bystander effects of potential endotoxin contamination,
an additional set of experiments was conducted in which the LPS-
neutralizing polymyxin B was added during the training. This did
not revert the observed phenotype (Supplementary Figures 4A–C).
To evaluate whether other IFNa/b receptor (IFNAR) ligands also
induce training, we tested the training-inducing capacity of IFNa2.
Training with IFNa2 also resulted in elevated IL-6 and TNFa
production upon re-stimulation with LPS or Pam3Cys (Figures
S5A, B). Together these data indicate type I IFN as a trainer that
B C

D

A

FIGURE 2 | Training with Candida albicans and MDP prompts elevated cytokine responses in THP-1 cells. (A) Schematic overview of in vitro THP-1 cell model for
trained immunity. (B-D) Concentrations of IL-6 or TNFa quantified by ELISA in culture supernatants of THP-1 cells trained with heat-killed Candida albicans (HKCA;
106 cells/mL), muramyl dipeptide (MDP; 50 µg/mL) or RPMI and re-stimulated with (B) 50 ng/mL LPS, (C) 10 µg/mL Pam3Cys, or (D) 5 µg/mL poly I:C for 24 hours.
Symbols represent the average of triplicates. Depending on the data distribution, bars represent means or medians and Friedman test or repeated measures ANOVA
were performed to compare groups. *p<0.05, **p<0.01, ***p<0.001.
July 2022 | Volume 13 | Article 840751
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induces a pro-inflammatory phenotype in monocytes, including the
enhanced production of pro-atherogenic cytokines.
Elevated Cytokine Responses in pSS
Serum-Trained THP-1 Cells and
Patient’s PBMCs
A substantial part of pSS patients is characterized by increased
IFNa serum levels (21). To investigate a potential contribution of
serum type I IFN to trained immunity in patients, THP-1 cells
were trained with serum from IFN-high pSS patients. Training of
THP-1 cells with serum from IFN-high pSS patients induced a
Frontiers in Immunology | www.frontiersin.org 6
trend towards higher cytokine production in response to re-
stimulation with LPS and Pam3Cys (Figures 3E, S6A). Similarly,
THP-1 cells trained with serum from patients with childhood-
onset SLE (cSLE) – another type I IFN-associated autoimmune
disease – produced slightly higher levels of IL-6 after Pam3Cys
re-stimulation (Figure 6A). Next, we hypothesized that type I
IFN would act as an in vivo trainer in patients affecting the
responsiveness of PBMCs to ex vivo stimulation. PBMCs from
patients and HC secreted highly variable levels of TNFa and IL-6
upon LPS and Pam3Cys stimulation (Figures 3F, S6B). PBMCs
from pSS and adult SLE patients tended to secrete slightly higher
levels of TNFa upon LPS stimulation than HC PBMCs, which
B

C D

E F

A

FIGURE 3 | Type I IFNs induce training of THP-1 cells. Concentrations of IL-6 or TNFa quantified by ELISA in culture supernatants of THP-1 cells trained with IFNb
or RPMI and re-stimulated with (A) 50 ng/mL LPS, (B) 10 µg/mL Pam3Cys, or (C) 5 µg/mL poly I:C for 24 hours. (D) Relative mRNA expression (2DDCT) of CCL2 in
HKCA-, MDP- or IFNb-trained THP-1 cells re-stimulated with 50 ng/mL LPS for 24 hours. Fold change expression was calculated relative to LPS stimulated
untrained (RPMI) THP-1 cells. (E) TNFa or IL-6 secretion by THP-1 cells trained with 50% serum from pSS patients or healthy controls (HC) upon re-stimulation with
50 ng/mL LPS or 10 µg/mL Pam3Cys for 24 hours. For each experiment, observations were normalized to the untrained condition and expressed relative to the
median of HC (age and sex-matched to pSS) serum-trained conditions within the corresponding experiment. (F) TNFa concentrations in supernatants of PBMCs
from HC and pSS patients stratified based on blood ISG expression stimulated with 10 ng/mL LPS or 10 µg/mL Pam3Cys for 24 hours. Symbols represent the
average of duplicates (F) or triplicates (A-E). Depending on the data distribution, bars represent means or medians and Friedman test, repeated measures ANOVA,
Mann-Whitney U test, student’s t test or Kruskal-Wallis test were performed to compare groups. Wilxocon singed rank test was used to compare medians with a
hypothetical 1. ns: not significant, *p<0.05, **p<0.01, ***p<0.001.
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was most pronounced in IFN-high patients (Figures 3F, S6B).
Together, the trends observed using patient material support a
role for type I IFN as inducer of a trained immunity phenotype in
IFN-high pSS.

Altered Type I IFN Production Is a Result
of Trained Immunity in THP-1 Cells
Next, we tested whether trained immunity affects the type I IFN
response to re-stimulation in a similar manner as observed for
IL-6 and TNFa production. Re-stimulation with LPS or
Pam3Cys in THP-1 cells trained with different trainers did not
result in measurable type I IFN secretion in most of the
experiments (Figure S7A and data not shown), although
HKCA-trained cells seemed to secrete slightly more type I
IFNs (Figure S7A). However, LPS re-stimulation did
upregulate IFNB mRNA expression, which was significantly
higher when THP-1 cells were trained with HKCA
(Figure 4A), while IFNb-trained cells showed at similar trend.
No effects of LPS re-stimulation were observed on IFNA2 gene
expression (data not shown). The increased IFNB production in
HKCA-trained cells and subsequent IFNAR-signaling upon LPS
re-stimulation is further supported by enhanced induction of the
Frontiers in Immunology | www.frontiersin.org 7
ISG IFI44 (Figure S7B). Re-stimulation with poly I:C – which
signals through TLR3 and IRF3 – strongly stimulated type I IFN
secretion by THP-1 cells (Figure 4B). Surprisingly, and in
contrast to LPS stimulation, poly I:C-induced type I IFN
production was heavily reduced in cells trained with IFNb and
to a lesser extent in HKCA-trained cells compared with
untrained cells (Figure 4B). Similarly, type I IFN secretion by
pSS PBMCs tended to be higher than HC PBMCs in response to
LPS stimulation, but tended to be lower in response to poly I:C
stimulation (Figure 4C). The contrasting direction of type I IFN
responses to poly I:C and LPS was most pronounced in IFN-high
patients. PBMCs from SLE patients showed similar tendency
(Supplementary Figure 7C). In conclusion, trained immunity
affects type I IFN production in response to re-stimulation.

Trained Immunity Affects the Cellular
Response to Re-Stimulation With IFNb
Here, we investigated the effects of training with HKCA, MDP or
IFNb on the cellular response to re-stimulation with type I IFNs.
A large proportion of patients with pSS display elevated
expression of ISGs in peripheral blood cells (20, 32). Training
with IFNb has been reported to induce transcriptional memory
B

C

A

FIGURE 4 | Training with HKCA en MDP induce differential type I IFN response upon re-stimulation. (A) Relative mRNA expression (2DDCT) of IFNB in THP-1 cells
trained with heat-killed Candida albicans (HKCA; 106 cells/mL), muramyl dipeptide (MDP; 50 µg/mL) or IFNb and re-stimulated with 1 µg/mL LPS + 10% fetal calf
serum for 24 hours. Fold change expression was calculated relative to the corresponding unstimulated control. (B, C) Type I IFN bioactivity quantified by the HEK
IFN-a/b reporter cell assay in culture supernatants of (B) HKCA-, MDP- and IFNb-trained THP-1 cells re-stimulated with 5 µg/mL poly I:C for 24 hours or (C) PBMCs
from pSS patients stratified based on blood ISG expression and healthy controls (HC) stimulated with 5 µg/mL poly I:C or 10 ng/mL LPS for 24 hours. Symbols
indicate the average of duplicates (C) or triplicates (A, B) and bars represent means or medians. Friedman test or repeated measures ANOVA was performed to
compare groups. ns: not significant, *p<0.05, ***p<0.001.
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of specific ISGs in fibroblasts (24). In these conditions, the ISGs
IFI44 and MX1 showed transcriptional memory to IFNb
training, while IRF1 did not. We hypothesized that similar
principles may apply in our experimental conditions and
assessed the transcriptional response of trained THP-1 cells to
IFNb re-stimulation for 4 hours. The peak transcriptional
response of THP-1 cells to IFNb re-stimulation was reached
after 2 hours for IRF1 and after 4-6 hours for IFI44 and MX1
(Figure S8A). We first focused on the effects of training with
HKCA or MDP on IFNb-induced ISG expression. Increased
transcriptional responses of MX1 and IRF1 to IFNb re-
stimulation were observed in MDP-trained THP-1 cells
compared with untrained cells (Figure S8B). In THP-1 cells
trained with IFNb, the fold change induction of IFI44 upon IFNb
re-stimulation was reduced (Figure 5A). Yet, the IFNb-induced
relative IFI44 mRNA count was slightly increased in IFNb-
trained cells (Figure S8C). In addition, THP-1 cells trained
with IFNb exhibited higher unstimulated expression of IFI44
and MX1, but not IRF1, relative to untrained cells (Figure S8C).
In patients, trained immunity might affect the response to type I
IFN which could act as a re-stimulus in vivo inducing ISG
expression in PBMCs. Ex vivo stimulation of PBMCs with
IFNb resulted in a peak induction of IFI44 expression after 2
hours (Figure S8D). The IFI44 expression in unstimulated and
IFNb-stimulated PBMCs from IFN-high pSS and SLE mimicked
the IFI44 response in IFNb-trained THP-1 cells (Figure 5B,
S8E). Together, these data indicate that training with MDP and
IFNb, but not HKCA, affects the ISG response to type I IFN
re-stimulation.

Altered Glucose Metabolism in Type I IFN-
Trained THP-1 and Patient’s PBMCs
Trained immunity is mediated by changes in cellular
metabolism, including increased glycolysis (3). Monocytic
expression of key genes involved in cellular metabolic
pathways associated with trained immunity were analyzed
Frontiers in Immunology | www.frontiersin.org 8
using a publicly available RNA sequencing dataset of pSS and
HC monocytes (18). Monocytes from pSS patients expressed
significantly lower transcript levels of the mTOR signaling
pathway components PIK3R1 and EIF4EBP1, the glycolytic
enzymes PKM and PGM1 and the TCA-cycle enzymes MDH2
and CS (Figure S9; Tables S2, 3). In THP-1 cells trained with
IFNb, the mRNA expression of HK2, PKFB3 and GAPDH – key
enzymes of glycolysis – was elevated relative to untrained cells,
which was most evident in LPS-stimulated cells (Figure 6A).
Although less pronounced, these glycolytic enzymes were also
slightly upregulated in HKCA- and MDP-trained THP-1 cells
(Figure S10A). In accordance with the gene expression, THP-1
cells trained with IFNb consumed significantly more glucose and
secreted more lactate than untrained THP-1 cells (Figure 6B,
S10B). Glucose consumption was also significantly higher in
PBMC cultures from IFN-high pSS patients compared with HC
PBMCs (Figure 6C).

Increased oxLDL Uptake in Type I IFN-
Trained THP-1
Trained immunity has also been linked to alterations in cellular
cholesterol metabolism and atherosclerosis (26, 47). Monocytes
from pSS patients expressed significantly higher NR1H3 – one of
the key enzymes in the cholesterol biosynthesis pathway –
compared with HC monocytes (Figure S9; Tables S2, 3). The
scavenger receptor MSR1 that mediates the uptake of modified
low-density lipoprotein (LDL)-cholesterol was upregulated,
whi le the other main oxLDL importer CD36 was
downregulated in pSS monocytes (Figure S9; Tables S2, 3).
Differential gene expression of two principal cholesterol
biosynthesis enzymes MVK and NR1H3, cholesterol efflux
transporters ABCA1 and ABCG1, and scavenger receptors
MSR1 and CD36 was also observed in THP-1 cells trained with
IFNb, HKCA and MDP (Figures 7A, S11A). In addition to
changes in the cholesterol metabolism pathway, increased uptake
of cholesterol particles – such as oxidized LDL (oxLDL) – have
BA

FIGURE 5 | Differential ISG response to type I IFN in IFNb-trained THP-1 and patient’s PBMCs. (A) Relative mRNA expression (2DDCT) of IFI44, MX1 and IRF1 in
IFNb-trained THP-1 cells re-stimulated with 100 IU/mL IFNb for 4 hours. (B) Relative mRNA expression (2DDCT) of IFI44 in PBMCs from pSS stratified based on blood
ISG expression and HC stimulated with 100 IU/mL IFNb for 2 hours. Fold change expression was calculated relative to unstimulated cells. Depending on the data
distribution, bars represent means or medians and One-way ANOVA or Kruskal-Wallis test were used to compare groups. ns: not significant, **p<0.01, ***p<0.001.
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also been described in trained monocytes, resulting in foam cell
formation (26). We tested the uptake of oxLDL in a functional
assay of trained THP-1 cells. The median fluorescence intensity
of Dil-oxLDL exposed THP-1 cells trained with IFNb, as well as
those trained with HKCA and MDP, was higher compared with
untrained cells, indicating incremented internalization of oxLDL
by trained THP-1 cells (Figures 7B, S11B). Finally, we analyzed
the association between cardiovascular events and type I IFN
pathway activation in an established pSS cohort (32, 48). A
history of cardiovascular events was reported for 7 out of 86
patients (8.1%), all of which (7/7) were IFN-high patients.
Logistic regression analysis showed a significant positive
relationship between type I IFN pathway activation and
Frontiers in Immunology | www.frontiersin.org 9
cardiovascular events (p = 0.042) after adjustment for age,
BMI, current or past smoking status, hypertension and current
use of statins, HCQ and NSAIDs (Table S4).
DISCUSSION

Hyperresponsiveness of innate immune cells is a hallmark
characteristic of trained immunity (49). A large subgroup of
pSS patients exhibits type I IFN pathway activation, indicative of
hyperactive innate immunity (20). Here, we studied the link
between type I IFNs and trained immunity. We show that type I
IFNs induce a trained immunity phenotype in monocytes
B C

A

FIGURE 6 | Altered glucose metabolism in type I IFN-trained THP-1 and patient’s PBMCs. (A) Relative mRNA expression (2DDCT) of HK2, PKFB3 and GAPDH in
THP-1 cells trained with IFNb either before re-stimulation (upper panel) or after 24 hour stimulation with 50 ng/mL LPS (lower panel). Fold change expression was
calculated relative to the corresponding untrained (RPMI) cells. (B, C) Lactate concentrations (left) in culture supernatants and glucose consumption (right) by 24 hour
LPS-stimulated (B) THP-1 cells trained with IFNb or (C) PBMCs from pSS and HC. One sample t-test or Wilxocon singed rank test were used to compare means/
medians with a hypothetical 1 and repeated measures ANOVA or Friedman test, or Kruskal-Wallis test was used to compare groups. ns: not significant, *p<0.05,
**p<0.01, ***p<0.001.
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B

A

FIGURE 7 | Differential cholesterol metabolism in type I IFN-trained THP-1 cells. (A) Relative mRNA expression (2DDCT) of MVK, NR1H3, ABCA1, ABCG1, MSR1 and
CD36 in THP-1 cells trained with IFNb either before re-stimulation (left panel) or after 24 hour stimulation with 50 ng/mL LPS (right panel). Fold change expression
was calculated relative to the corresponding untrained (RPMI) cells. (B) Representative histograms (left panel) and median fluorescence intensity (MFI; right panel) of
IFNb-trained THP-1 cells incubated with 50 µg/mL Dil-oxLDL for 4 hours. Depending on the data distribution, bars represent means or medians. One sample t-test
or Wilxocon singed rank test were used to compare means/medians with a hypothetical 1 and repeated measures ANOVA was used to compare groups. ns: not
significant, *p<0.05, **p<0.01, ***p<0.001.
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(Figure 1; hypothesis 1), including elevated production of the
pro-inflammatory and pro-atherogenic cytokines CCL2, IL-6
and TNFa and enhanced cholesterol uptake. In addition, we
show that training affects both the production of type I IFNs
(Figure 1; hypothesis 2) and the ISG response to IFNb re-
stimulation (Figure 1; hypothesis 3).

Type I IFNs established a trained immunity phenotype in
monocytes (hypothesis 1). In addition to pathogens and
pathogen-associated molecular patterns (2, 46, 50, 51), various
cytokines are able to prompt trained immunity (5, 52–55). This
study adds type I IFNs to the list of cytokine trainers that affect
the response to re-stimulation which persists even when the
initial challenge has been removed. Priming with type I IFN has
previously been described to modulate the transcription of pro-
inflammatory cytokines by myeloid cells upon LPS stimulation
(23, 56, 57). In these priming protocols, the primary and
secondary stimulation are added simultaneously or sequentially
close in time. This is different than the training models that allow
the cells to return to homeostasis before re-stimulation (58).
Trained immunity also involves various metabolic pathways and
alterations in cellular metabolism (5, 46, 47, 50, 54, 59). Likewise,
training with type I IFNs increased both glucose consumption
and cholesterol import in THP-1 cells.

Type I IFN production upon re-stimulation was modulated
by training with both HKCA and IFNb (hypothesis 2). These
results show for the first time that trained immunity can affect
type I IFN production. Further studies are needed to explain the
contrasting effects of training on the type I IFN response to
bacterial (LPS) and viral (poly I:C) re-stimulation.

Training with the microbial component MDP altered the ISG
response to IFNb re-stimulation (hypothesis 3). Related to this,
training with HKCA has recently been demonstrated to cause
increased expression of several ISGs and cytokines IL-6 and
TNFa by monocytes upon type I IFN re-stimulation (51). In
addition to MDP, training with type I IFNs also affected the
transcription of ISGs, indicating that both IFN and non-IFN
trainers can confer transcriptional memory of the type I IFN
pathway. Others have also shown effects of training with type I
and type II IFN on the transcriptional response to IFNb in
immune and non-immune cells (24). We observed a modest
upregulation of basal ISG expression in type I IFN-trained cells
two days after the removal of the trainer. Since type I IFN
signaling is self-amplifying, auto- and/or paracrine IFNAR
signaling could potentially be sustained after the elimination of
the type I IFN training stimulus. However, limiting auto-/
paracrine type I IFN signaling by inhibition of the IFNAR
during the two-day resting period in a pilot experiment could
only partially revert the elevated ISG expression (data not
shown). In vivo observations in pSS and SLE patients of
relatively stable type I ISG expression over time but more
variable type I IFN protein levels (20, 32, 60, 61) (and
unpublished observations) also support memory-like features
for ISG transcript expression.

Ex vivo PBMC stimulations provided support for the
hypothesized connections between type I IFN and trained
immunity in pSS. PBMCs from pSS patients showed TLR-
Frontiers in Immunology | www.frontiersin.org 11
induced cytokine responses, type I IFN production, IFNb-
stimulated ISG expression patterns and metabolic alterations
consistent with a trained immunity phenotype, indicating
potential in vivo training. Very recently, the elevated TLR-
stimulated TNFa production has also been described in
monocytes from pSS patients (18). The trained phenotype that
we observed in pSS was most pronounced in IFN-high patients
and could also be observed in patients with IFN-high SLE. In
these IFN-high patients, type I IFNs could potentially act as a
trainer in vivo (Figure 1, hypothesis 1). This hypothesis is
supported by the elevated cytokine responses in THP-1 cells
trained with serum from IFN-high pSS patients. Also, the ISG
expression patterns and TLR-induced type I IFN production in
PBMCs from IFN-high pSS patients indicate a role for type I IFN
as a trainer. On the other hand, training affected the production
of type I IFNs upon re-stimulation. Therefore, type I IFN
production in pSS patients could potentially be modulated by
trained immunity (Figure 1, hypothesis 2). Indeed, the type I
IFN response to TLR stimulation was different between pSS and
HC PBMCs. The produced type I IFN may subsequently induce
further training, affecting cytokine production, cellular
metabolism and ISG expression, creating a vicious loop in
patients. Taken together, the upregulated ISG expression in
pSS patients that is induced by the chronically elevated
circulating type I IFNs could potentially be modulated by both
type I IFN and non-IFN trainers. This could have consequences
for the treatment of IFN-associated systemic autoimmune
diseases. Inhibition of ongoing type I IFN signaling might not
be sufficient to overcome type I IFN-induced training, which
might require metabolic or epigenetic intervention. The anti-
inflammatory cytokine IL-37 has recently been identified to
interfere with the metabolic and epigenetic changes that
mediate trained immunity which might potentially benefit pSS
treatment (62). Interestingly, IL-37 levels were found to be
elevated in pSS and positively correlated to the extent of
inflammation (63). Considering the interference of IL-37 with
trained immunity this increased expression might point to a
compensatory mechanism to counteract the trained phenotype.
The antimalarial hydroxychloroquine that is frequently used for
treatment of pSS and SLE has similarly been described to prevent
HKCA-induced training (51), providing a rationale for
combination treatment of anti-IFNAR and hydroxychloroquine.
Importantly, hydroxychloroquine has not yet been proven to
revert trained immunity, which in a therapeutic context might
be more relevant than preventing trained immunity.

Patients with pSS are more prone to accelerated subclinical
atherosclerosis, dyslipidemia and ischemic heart disease than the
general population (12–14). In SLE, the risk for cardiovascular
disease has been associated with type I IFN pathway activation
(64). Although underpowered, cardiovascular events were only
observed in patients with type I IFN pathway activation in the
pSS cohort presented in this study, suggesting a similar
(statistical) association in pSS. A compelling body of evidence
suggest a role for type I IFN in the pathogenesis of atherosclerosis
(65). Type I IFNs have been described to advance various pro-
atherogenic processes, such as dysfunction of endothelial
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(progenitor) cells, monocyte infiltration, NETosis, uptake of
modified LDL particles, foam cell formation and plaque
rupture (65, 66).

Trained immunity contributes to atherosclerosis (7, 67). Both
microbial and non-microbial trainers have been described to
promote a pro-atherogenic phenotype in monocytes (26, 67, 68).
In this study, we confirmed the induction of a similar phenotype
in THP-1 cells trained with HKCA and MDP. Even more
pronounced, training with type I IFNs caused increased
production of the pro-atherogenic cytokines CCL2, IL-6 and
TNFa, upregulation of cholesterol metabolism-related genes and
increased oxLDL influx. Cholesterol is a critical regulator of
cellular membrane fluidity controlling basic cellular functions,
including cellular immune responses (69–71). Type I IFN has
been shown to shift the balance from cholesterol biosynthesis to
cholesterol import in macrophages, which lowers the threshold
for additional type I IFN production (72, 73). Our data indicate
that the effects of type I IFN on cholesterol metabolism can be
maintained over time, even when the primary stimulus has been
removed. The connection between type I IFN, trained immunity
and cholesterol metabolism provides further insight into the
pathogenesis of (subclinical) atherosclerosis in patients with pSS
and other type I IFN-associated systemic autoimmune diseases.

This study describes the induction of a pro-atherogenic
trained immunity phenotype and modification of cellular
metabolism by type I IFNs in a monocytic cell line. However,
the molecular basis of this phenotype including the causative role
of metabolic and epigenetic reprogramming still requires further
investigation. The high metabolic rate of THP-1 cells might
impact trained immunity processes. Future studies should
therefore validate these findings in freshly isolated primary
human cells and further characterize the metabolic and
epigenetic rewiring of type I IFN-trained cells and pSS innate
immune cells. In addition, the association between in vivo type I
IFN pathway activation and cardiovascular disease in pSS should
be further investigated in a larger cohort properly adjusting for
potential confounders to strengthen the clinical implications of
these findings.

In conclusion, immune cells from patients with (IFN-high)
pSS have a trained immunity phenotype. In vitro, type I IFN is
both a trainer inducing a pro-atherogenic trained immunity
phenotype in monocytes and a result of trained immunity. The
bidirectional link between type I IFN and trained immunity
provides a rationale for alternative treatment strategies and
contributes to the understanding of the pathogenesis of
Frontiers in Immunology | www.frontiersin.org 12
atherosclerosis in patients with pSS and other IFN-associated
systemic autoimmune diseases.
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