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Abstract

Windstorms, bark beetle outbreaks and fires are important natural disturbances in coniferous forests worldwide. Wind-
thrown trees promote biodiversity and restoration within production forests, but also cause large economic losses due to
bark beetle infestation and accelerated fungal decomposition. Such damaged trees are often removed by salvage logging,
which leads to decreased biodiversity and thus increasingly evokes discussions between economists and ecologists about
appropriate strategies. To reveal the reasons behind species loss after salvage logging, we used a functional approach
based on four habitat-related ecological traits and focused on saproxylic beetles. We predicted that salvage logging would
decrease functional diversity (measured as effect sizes of mean pairwise distances using null models) as well as mean values
of beetle body size, wood diameter niche and canopy cover niche, but would increase decay stage niche. As expected,
salvage logging caused a decrease in species richness, but led to an increase in functional diversity by altering the species
composition from habitat-filtered assemblages toward random assemblages. Even though salvage logging removes tree
trunks, the most negative effects were found for small and heliophilous species and for species specialized on wood of small
diameter. Our results suggested that salvage logging disrupts the natural assembly process on windthrown trees and that
negative ecological impacts are caused more by microclimate alteration of the dead-wood objects than by loss of resource
amount. These insights underline the power of functional approaches to detect ecosystem responses to anthropogenic
disturbance and form a basis for management decisions in conservation. To mitigate negative effects on saproxylic beetle
diversity after windthrows, we recommend preserving single windthrown trees or at least their tops with exposed branches
during salvage logging. Such an extension of the green-tree retention approach to windthrown trees will preserve natural
succession and associated communities of disturbed spruce forests.
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Introduction

Forest ecosystems worldwide are periodically affected by natural

disturbances, such as wind storms, fires, avalanches and insects

[1,2]. Since the 1990s, disturbance events in forests of the northern

hemisphere have increased, particularly in mature conifer stands,

owing to both an increase in growing stock and global climate

change [3–5]. After such disturbances, forest managers try to limit

the economic loss by focusing on saving downed wood from fungal

infestation and avoiding an increase of pest species populations

[6,7]. Even if such salvage logging is broadly publicly accepted [8],

both ecologists and conservationists are increasingly aware that

natural disturbances conserve biodiversity in forests moulded by

anthropogenic impacts [9,10]. In addition, whether salvage

logging should be conducted and how it would be best conducted,

particularly in coniferous forests, is highly controversial [11–13].

Between 1950 and 2000 in Europe, wind storms annually

damaged an estimated average of 18.7 million m3 of wood [3].

Such events often are followed by outbreaks of the European

spruce bark beetle Ips typographus (Linnaeus, 1758), which

damages an additional 2.9 million m3 wood annually [3]. In

contrast to our knowledge of the high value of windthrows for

biodiversity [14,15], our knowledge about why particular species

are affected or not by salvage logging is limited; most recent studies

have focused on post-fire salvage logging [16–19] or economic

consequences and bark beetles [20,21]. The relatively few studies

on post-windthrow salvage logging focus mainly on the decrease in

species numbers [14,22,23].
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Recent studies using, for example, guild-specific analysis of bird

assemblages demonstrate that species richness poorly reflects the

effect of human intervention [24]. A quantification of species loss is

not sufficient to guide conservation efforts and resource manage-

ment directly [25,26]. Therefore, functional approaches have

become increasingly important throughout broad areas of

ecological research [26–28]. It has recently been proposed that

the species position in a functional space can be used as a tool to

reveal advanced warnings for changes in disturbed ecosystems

[29].

Saproxylic beetles are highly diverse, play important roles in the

decomposition of wood [30] and are sensitive to forest manage-

ment, and are thereby an ideal model group to study the impact of

salvage logging on biodiversity [31,32]. Here we studied the

impact of salvage logging and focused on recently published

ecological traits of saproxylic beetles [33]: mean body size,

diameter and decay stage of wood in which larvae develop and

canopy cover of forests in which the species is known to occur.

The body size of saproxylic beetles is positively correlated to the

diameter of the substrate used for larval development [34].

Assemblage values should therefore decrease with the removal of

tree sections of large diameter [35,36]. Similarly, a shift in

assemblages toward species with a preference for wood of smaller

diameters might follow the removal of major tree trunks. Since the

cutting of uprooted trees in salvage-logging operations removes the

trunk and the remaining branches rapidly decompose to advanced

decomposition stages [37], we therefore expect that colonizers of

earlier successional stages of wood decomposition also decline

[35]. Finally, the removal of dead wood might decrease shady

conditions provided by the cross-laminated arrangement of trees

after windthrows, thereby promoting heliophilous species [38].

We calculated effect sizes of saproxylic beetle functional

diversity, and mean assemblage values and diversity values of

each single trait to test the predictions that salvage logging results

in 1) a lower overall functional diversity, 2) lower mean body size

and body size diversity, 3) a minor occurrence of species preferring

dead wood of large diameter, 4) a decrease in species preferring

early successional stages of decomposition and 5) an increase in

species preferring open canopies.

Methods

Study area
The study was carried out in the high montane spruce forest in

the Bavarian Forest National Park in south-eastern Germany.

Forest stands in this area, at an elevation above 1,100 m, are

naturally dominated by Norway spruce (Picea abies). Annual

precipitation ranges from 1,300 to 1,800 mm, and annual mean

air temperature ranges from 3.0 to 4.0uC [39].

On January 16, 2007, an area of approximately 1,000 ha of

spruce forests was felled to various extents by the windstorm

Kyrill, ranging from single trees to stands covering several

hundreds of hectares. From a total affected amount of wood of

about 160,000 m3, 50,000 m3 are concentrated on four larger

windthrow areas (,170 ha). These centres were partially excluded

from the overall salvage-logging operation. Such operations

basically remove the main trunk to preserve it from fungal and

pest species infestation. The branches are cut off the trunk and

remain on the ground surface, which is covered by a grass layer of

Calamagrostis villosa (32611 cm height on logged plots and

3269 cm height on non-logged plots, measured by relevés [39]).

Standardized measurements of dead-wood objects per plot

revealed that on salvaged-logged plots, 90% (n = 29) of dead-

wood objects had direct contact with the ground surface, in

contrast to only 10% (n = 35) on non-logged plots. Wind-felled

trees on non-logged plots remained mostly alive after the storm in

spring 2007 until they were colonized by Ips typographus in 2008.

In contrast, salvage logging typically kill trees immediately.

Salvage logging in the major windthrow areas removed about

255 m3/ha and was completed in autumn 2007 (Fig. 1).

Beetle sampling
To reflect the emerging beetle fauna of surrounding dead wood,

we used flight-interception traps [40]. Traps were established

throughout windthrow centres and surrounding salvage-logged

areas: 22 in logged areas and 22 in non-logged areas in spring

2008. Traps in logged areas were surrounded by at least a 50 m

radius of completely salvage-logged windthrows (all trees re-

moved); traps in non-logged areas were surrounded by at least a

50 m radius of completely non-logged windthrow (all trees of the

previous stand were wind felled). Each trap consisted of a crossed

pair of transparent plastic shields (40660 cm) and contained a

3.0% copper-vitriol solution to preserve trapped specimens [41].

The shortest distance between two traps was 50 m, and the largest

distance between traps was 6,500 m. Sampling was conducted

during the entire growing season between May after the snow

melted until September over four consecutive years until 2011.

Traps were emptied monthly. All sampled beetles were identified

to the species level, but only saproxylic beetles were considered in

the analysis [42,43].

Trait characterization
We used four ecological traits that enabled us to link species

habitat selection [33] directly to forest management: mean body

size, diameter of wood in which the larvae of the species was

recorded, decay stage of the wood, and canopy cover of forests in

which the larvae of the species is known to occur. The single

classes of niche positions were classified as follows: wood diameter
class: 1, ,15 cm; 2, 15–35 cm; 3, 35–70 cm; and 4, .70 cm;

wood decay stage: 0, alive; 1, freshly dead (up to two years); 2,

initiated decomposition with loose bark and tough sapwood; 3,

advanced decomposition with soft sapwood and partly tough

hardwood; and 4, extremely decomposed and mouldered; canopy
cover: 1, open; 2, semi-open; and 3, closed (for mean niche

positions of species, see Table S1).

Data analysis
Prior to the main analysis, trapped specimens were grouped

according to the trap level in each year, and subsequent analyses

were conducted at the trap per year level. We calculated the mean

trait value of the assemblage for each of the four single traits as an

arithmetic mean, weighted by the number of trapped individuals

(e.g. log-transformed number of individuals) per species. The

results of abundance-weighted data, abundance-weighted data

based on the log-transformed number of individuals, and

presence/absence data were similar; therefore, we present only

abundance-weighted results, which do not overestimate singletons

and represents the majority of trapped beetles [40]. To test the

impact of salvage logging on saproxylic beetles, we selected these

mean assemblage trait values of every single trait and their related

trait diversity as target variable and year, and we selected logged/

non-logged as predictor variables.

A challenge in functional diversity measures is to compare

dispersion of functional traits in the functional space independent

of species numbers [29]. Hence, we calculated a distance matrix

based on the pairwise Euclidean distance between functional traits

of all possible species pairs within an assemblage per plot for each

single trait [44]. Similarly, we used the function dist to calculate an
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Figure 1. Locations of flight-interception traps within our study area in salvage-logged (A) and non-salvage-logged windthrows,
sampled from 2008 to 2011 (B).
doi:10.1371/journal.pone.0101757.g001
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overall distance matrix based on Euclidean distance between

among four traits. We compared the observed value of mean niche

position for each trait in each assemblage to an artificial

assemblage with equal number of randomly selected species from

the regional species pool (all species recorded on plots pooled). To

create these random assemblages, we used null models with tip

shuffling and abundance weighting in 999 randomizations using

the function ses.mpd (abundance.weighted = TRUE) in the add-

on package picante of R version 2.15 [45,46]. The effect size,

which is provided by the null model, indicates the dispersion of a

specific trait and compares it to the trait dispersion in an artificial

assemblage. Values .0 indicate over-dispersion of a trait. In turn,

values ,0 indicate clustering and a trait dispersion in observed

assemblages smaller than expected from a random assemblage. In

general, over-dispersion is a result of competition or facilitation,

and clustering is a result of environmental filtering [47].

The natural occurrence of windthrow patches necessitates that

logged and non-logged plots are near each other in the same forest

site (Fig. 1). This might reduce the independence of observations.

Furthermore, we cannot treat the measurement on each plot as

independent as the measurements were conducted in consecutive

years. To address these issues, we analysed the data using a linear

mixed random effects model with sampling plot and coordinates of

sampling plot as random factors. The plot coordinates enable us to

account for possible spatial autocorrelation within the arrange-

ment of our plots, as a second-order trend surface (for the R code,

see Text S1; for the method, see [48]).

To illustrate the impact of salvage logging on the primary target

species, we modelled the mean number of I. typographus
individuals per trap by using an observation-specific random

factor to control the mixed model with Poisson distribution for

potential over-dispersion [49]. To consider the resulting problem

of testing hypothesis families, we applied a multiple post-hoc

comparison with adjusted p-values using the function glht in the

add-on package multcomp and constructed a matrix of coefficients

[50]. This enabled us to compare the impact of salvage logging

within each year and to compare changes within consecutive years

on logged or non-logged plots.

Results

Effect of pest control
In total, 33,796 specimens belonging to 179 species of 37

saproxylic beetles families were sampled. Of these, 29 (89

individuals) species were found exclusively on non-logged plots,

and 34 species (85 individuals) were found only on salvage-logged

plots. Forty-two species (19 on non-logged plots) were caught as

singletons. The most abundant species in our data on non-logged

plots were Ips typographus (7,785 individuals), Pityogenes chalco-
graphus (6,697 individuals) and Xyloterus lineatus (1,579 individ-

uals), all of subfamily Scolytinae (Curculionidae). The most

frequent species on logged plots were P. chalcographus (3,147

individuals), Hylastes cunicularius (1,101 individuals) and I.
typographus (796 individuals).

Salvage logging significantly decreased the mean number of the

primary target species I. typographus per trap in 2008, 2009 and

2010. The mean number of I. typographus individuals significantly

increased from 2008 to 2009 and significantly decreased from

2009 to 2010, reflecting the colonization of the windthrow by this

pest species. The species richness of saproxylic beetles was

significantly lower on salvage-logged plots than on non-logged

plots in 2009 and 2010 (Fig. 2A). On non-logged plots, species

richness significantly increased from 2008 to 2009, whereas on

logged plots, richness significantly decreased from 2009 to 2010

(Fig. 2A). A similar trend was found only for red-listed species,

which displayed significantly lower species richness on salvage-

logged plots in 2009, 2010 and 2011 (Fig. 2B; for complete species

list, see Table S1).

Assemblage functional response
Beetle assemblages of logged and non-logged windthrows

differed in their functional trait dispersion. The total functional

diversity was lower on non-logged plots and revealed a clustered

pattern, but was random on logged plots (Fig. 2C). From 2010 to

2011, the functional assemblage composition of non-logged plots

developed significantly toward more random assemblages. The

mean body sizes and the corresponding niche diversity were

consistently and significantly higher on logged plots than on non-

logged plots in 2009 and 2010 (Fig.2 D, E). We also found

significantly higher mean diameter niche values on logged plots in

2010 and 2011, but not in 2008 and 2009 (Fig. 2F). The

corresponding niche diversity of assemblages was significantly

more randomly distributed on non-logged plots in 2010 and 2011

(Fig. 2G). In 2009 and 2010, the mean decay niche, which reflects

the process of decomposition, was significantly higher on logged

plots (Fig. 2H). The corresponding decay niche diversity (Fig. 2I)

showed a significantly more clustered pattern on non-logged plots

than on logged plots in 2008 and 2009. The mean canopy niche

value of the local assemblages of logged and non-logged plots

differed in 2009–2011. Significantly more species preferring open-

canopy conditions (sunny habitats) were found on non-logged

plots, as indicated by a significantly higher mean niche value of the

canopy niche in 2009, 2010 and 2011 (Fig. 2J). A similar trend was

found in the corresponding niche diversity, which displayed a

significantly clustered pattern in the canopy cover niche in 2008

and 2009 (Fig. 2K). Full details on p-values and model estimators

can be found in Tables S2 and S3.

Discussion

Our study confirmed long-held empirical and scientific findings

that salvage logging after windthrows reduces populations of pest

bark beetles [7,12] and has accompanying negative effects on the

species richness of saproxylic beetles [51]. Surprisingly, our

examination of the functional traits did not support most of our

predictions: single-trait analyses revealed species on logged plots

that were on average larger, preferred dead wood of larger

diameter, and were adapted to shady habitats, compared to

species on non-logged plots. These unexpected results underline

the high sensitivity of an analysis based on species functional traits

to detect complex and subtle changes in species assemblages

caused by anthropogenic impact [26,52–54].

Salvage logging aims at controlling populations of one or a few

pest species but reduces biodiversity per se as collateral damage

Figure 2. Effects of salvage logging on saproxylic beetles. Mean species richness of saproxylic beetles (A) and red-listed saproxylic beetles (B),
abundance-weighted mean niche positions and standardized effect size (based on mean pairwise distance) of functional diversity (C) and body size
(D, E), niche diameter (F, G), niche decay (H, I) and niche canopy cover (J, K) in logged and non-logged windthrow areas in a spruce mountain forest
based on a GLMM with treatment and year as fixed factors, and space and plot as random factors. For multiple comparisons between treatments, the
adjusted p-values are drawn above the respective points; for comparisons between different years within the same treatment, p-values are drawn
below respective lines. Full details on p-values and model estimators can be found in Tables S2 and S3.
doi:10.1371/journal.pone.0101757.g002
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[6,55,56]. Accordingly, our results demonstrated that salvage

logging dramatically decreases species richness of saproxylic

beetles, including red-listed species and not only the target species

I. typographus (Fig. 2A, B). These reductions seem to be mainly

caused by the loss of species directly associated with I. typographus
(compare [57]), e.g. by the decrease in predators of I. typographus,
such as Thanasimus sp.; by the decrease in species that exploit

bark beetle galleries, such as Crypturgus cinereus; and by the loss

of species associated with a similar early decay stage of wood.

Saint-Germain et al. [58] demonstrated that the majority of

saproxylic beetle species on the conifer black spruce (Picea
mariana) colonize the early decay stages, while saproxylic beetle

species on the broadleaf tree aspen (Populus tremula) occur mostly

on wood of later decay stages — a commonly observed pattern

[41,59,60]. Our study, which focuses on the first four years of the

decay process, therefore reflects the most important stage of

succession within windthrown stands of coniferous trees [61]. In

particular, because colonization patterns of saproxylic organisms

this stage determines subsequent saproxylic communities, like.g.

the early-arriving bark beetle Hylurgops palliates and the wood-

decaying fungus Fomitopsis pinicola, enabled a higher colonization

success of the endangered beetle Peltis grossa after 10 years [62].

Larger beetles on logged plots
In contrast to our prediction, our results showed a consistent

separation of beetle assemblages, from on average large species on

logged plots toward small species on non-logged plots. One

explanation for this pattern may be found behind the functional

structure of the assemblages, i.e. in the habitat specificity of the

species in our study: the majority of the larger species identified are

widely distributed habitat generalists (except Ampedus auripes;
[63]). One of the largest species, Hylobius abietis, which was more

frequent in logged stands (see Table S1), is a known pest species

attracted by the odour of resin in tree stumps [64]. Such species

breed well in stumps and in logging residuals. Hence, an increase

in the harvesting of stumps for bioenergy might expand the

negative impacts of salvage logging to include currently less-

affected species [65–67].

Species preferring wood of large diameters on logged
plots

After regular clear-cutting, the remaining dead wood amounts

to approximately 10 m3 ha21 [68]. Post-windthrow salvage-logged

sites offer much more dead wood, e.g. from 45 to .70 m3 ha21 on

90 sites in Switzerland [37]. Such high amounts of remaining dead

wood on salvage-logged areas regularly surpass the critical

thresholds of dead-wood amount for diversity in boreal forests

[32]. Accordingly, the mean diameter niche position of beetles in

our study was significantly higher in 2010 and 2011. Thereby,

simply the amount of dead wood does not seem to be the limiting

factor for saproxylic beetles species richness in salvage-logged

plots. The limiting factor is rather the loss of small branches, as

indicated by the loss of species preferring wood of small diameter

(Fig. 2J). Accordingly, an alteration of the remaining dead-wood

resources appears to be more crucial than the simple removal of

the main wood volume by salvage logging.

This assumption is strongly supported by our findings on

functional trait diversity (Fig. 2C): we found a clustering of

functional assemblage structure on non-logged plots, which

indicated a strong habitat-filtering (dead-wood resources) effect

on dead-wood communities. Using co-occurrence null-model

approaches, Azeria et al. [69] also found a strong habitat-filtering

effect on saproxylic assemblages on burned trees. In accordance,

Ding et al. [70] proposed that disturbance in forest ecosystems

generates communities by abiotic filtering. Hence, our data

suggested that anthropogenic intervention, i.e. salvage logging,

of natural disturbances can disrupt the natural habitat filtering in

the assembly process.

Accelerated decomposition on salvage-logged plots
The amount and diversity of dead-wood resources of salvage-

logged areas does not significantly differ between salvage-logged

and non-salvage-logged windthrows [37]. But, in contrast to

natural windthrows, the remaining dead wood on salvage-logged

windthrows in our study area is mostly scattered on the ground

surface (e.g. Fig. 1). Owing to the stronger attraction of wood-

inhabiting fungi, salvage-logged sites tend to harbour more

advanced decomposition stages than non-salvage-logged sites

[37,71,72]. This shift within decay stages of available dead-wood

resources was well reflected by our finding of a mean decay niche

with significantly higher mean decay niche values on salvage-

logged plots in 2009 and 2010. Furthermore, the corresponding

niche diversity indicated a strong habitat filtering effect towards

species of early decay stages on non-salvage-logged plots.

Decrease of heliophilous species through salvage
logging

Sun exposure increases the probability of the presence of red-

listed species in aspen retention trees in clear-cuts in Norway [38].

Similarly, the endangered longhorn beetle Rosalia alpina prefers

trees with a lower percentage of canopy closure and higher sun

exposure than the average tree [73]. Hence, sun exposure is a

major predictor determining saproxylic beetle communities in

dead-wood resources [74,75]. In our study, we demonstrated a

shift of assemblages comprising heliophilous species on non-logged

plots toward species preferring shady habitats on logged plots. This

result is contrasts our prediction that the removal of dead wood

might decrease the shady conditions provided by the cross-

laminated arrangement of trees after windthrow. However, the

majority of logging residuals on logged plots lie on the ground

surface and are covered by an extensive grass layer, both of which

create a moist microclimate, which decreases the availability of

sun-exposed dead wood. An accelerated growth of natural

regeneration on salvage-logged plots [76] does not appear to be

of great importance, since natural regeneration in our study area is

still poor and not able to shade the complete surroundings of a

flight-interception trap (see Fig. 1 insets). Furthermore, Priewasser

[77] demonstrated for a comparable study area that local factor,

such as soil pH, are the main predictors for the growth of natural

regeneration and not salvage logging per se. Based on our findings,

it seems necessary to experimentally test our assumptions of the

importance of microclimate and to estimate the amount of

retention trees in windthrows sufficient for conserving saproxylic

biodiversity.

Conclusion

Spruce forests in Europe will be affected heavily by increasing

storm damages in the future, which will lead to increasingly heated

debates between economists and ecologists on the appropriate

means to limit the negative effects of salvage logging on

biodiversity [3,4]. Our analysis based on functional traits revealed

an unexpected response of saproxylic beetles to salvage logging

and suggested that microclimate conditions are more crucial for

the use of dead-wood resources by saproxylic beetles than dead-

wood diameter or diversity [32,37]. The direct relationship

between species traits and logging-affected structures enables us

to derive new guidelines for conservationists and managers to
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optimize salvage logging with a consideration of biodiversity

conservation: downed tree tops unaffected by salvage logging

operations and complete single windthrown trees should be

preserved and allowed to naturally decay on salvage-logged areas

to help sustain heliophilous species, colonizers of early decay stages

and species that prefer wood of small diameter. Such a

preservation of some windthrown trees in salvage-logged areas is

an extension of the ‘‘green-tree retention approach’’ to downed

trees in forests worldwide.
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