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Abstract

Both innate and adaptive immune cells are involved in the mechanisms of endothelial cell proliferation, migration and activation, through
the production and release of a large spectrum of pro-angiogenic mediators. These may create the specific microenvironment that
favours an increased rate of tissue vascularization. In this review, we will focus on the immune cell component of the angiogenic process
in inflammation and tumour growth. As angiogenesis is the result of a net balance between the activities exerted by positive and nega-
tive regulators, we will also provide information on some antiangiogenic properties of immune cells that may be utilized for a potential
pharmacological use as antiangiogenic agents in inflammation as well as in cancer.
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Introduction

Immune cells can be divided into innate (myeloid) and adaptive
(lymphoid) cells. Innate immune cells, including macrophages,
polymorphonuclear granulocytes (neutrophils, basophils and
eosinophils) mast cells, dendritic cells (DC), natural killer (NK) cells
and platelets represent the first line of defence against pathogens
and foreign agents. The innate immune cells can directly eliminate
pathogenic agents in situ. DCs, on the other hand, take up foreign
antigens and migrate to lymphoid organs where they present their
antigens to adpative immune cells. Adaptive immune cells are
 lymphocytes (T and B cells), which undergo clonal expansion and
elaborate an adaptive response targeted to the foreign agent.

Whereas the cells of the innate immune system are found in the
blood stream and in most organs of the body, lymphocytes are local-
ized to specialized organs and tissues. There is tight interplay
between innate immune cells and the vascular system. Endothelial
cells mediate immune cell recruitment to extravascular tissues by

expressing a repertoire of leucocyte adhesion molecules. On the other
hand, innate immune cells synthesize a number of soluble factors that
influence endothelial cell behaviour. Recruitment of an inflammatory
infiltrate supports angiogenesis and tissue remodelling.

The importance of angiogenesis 
in physiological and pathological 
conditions

Angiogenesis, i.e. the formation of new vessels from pre-existing
ones such as capillaries and post-capillary venules, plays a pivotal
role during embryonal development [1] and later, in adult life, in



J. Cell. Mol. Med. Vol 13, No 9A, 2009

2823© 2009 The Authors
Journal compilation © 2009 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd

several physiological (e.g. corpus luteum formation) and patholog-
ical conditions, such as tumour and chronic inflammation, where
angiogenesis itself may contribute to the progression of disease. In
1971, Folkman published in the ‘New England Journal of Medicine’
a hypothesis that tumour growth is angiogenesis-dependent and
that inhibition of angiogenesis could be therapeutic [2]. This paper
also introduced the term anti-angiogenesis to mean the prevention
of new vessel sprout from being recruited by a tumour. The hypoth-
esis predicted that tumours would be enable to grow beyond a
microscopic size of 1 to 2 mm3 without continuous recruitment of
new capillary blood vessels. This concept is now widely accepted
because of supporting data from experimental studies and clinical
observations carried out over the intervening years [3].

The process of angiogenesis begins with local degradation of the
basement membrane surrounding the capillaries, which is  followed
by invasion of the surrounding stroma by the underlying endothelial

cells, in the direction of the angiogenic stimulus. Endothelial cells
migration is accompanied by the proliferation of endothelial cells
and their organization into three-dimensional structures that join
with other similar structures to form a network of new blood ves-
sels [1]. Angiogenic factors are potent growth factors that promote
proliferation and differentiation of endothelial cells. The major
angiogenic and anti-angiogenic factors are listed in Table 1.

Under physiological conditions, angiogenesis is dependent on
the balance of positive and negative angiogenic modulators within
the vascular microenvironment [4] and requires the functional
activities of a number of molecules, including angiogenic factors,
extracellular matrix proteins, adhesion receptors and proteolytic
enzymes. As a consequence, angiogenic endothelial cells have a
distinct gene expression pattern that is characterized by a switch of
the cell proteolytic balance towards an invasive phenotype as well
as by the expression of specific adhesion molecules. In normal tis-
sues, vascular quiescence is maintained by the dominant influence
of endogenous angiogenesis inhibitors over angiogenic stimuli [5].

Pathological angiogenesis is linked to a switch in the balance
between positive and negative regulators, and mainly depends on
the release by inflammatory or neoplastic cells of specific growth
factors for endothelial cells, that stimulate the growth of the
blood vessels of the host or the down-regulation of natural angio-
genesis inhibitors [6].

The contribution of immune cells 
to angiogenesis in inflammation 
and tumour growth

There is increasing evidence to support the view that angiogenesis
and inflammation are mutually dependent [7]. During inflammatory
reactions, immune cells synthesize and secrete pro-angiogenic
factors that promote neovascularization. On the other hand, the
newly formed vascular supply contributes to the perpetuation of
inflammation by promoting the migration of inflammatory cells to
the site of inflammation [7]. The extracellular matrix and basement
membrane are a source for endogenous angiogenesis inhibitors.
On the other hand, many extracellular matrix molecules promote
angiogenesis by stabilizing blood vessels and sequestering angio-
genic molecules [8].

It is well established that tumour cells are able to secrete pro-
angiogenic factors as well as mediators for inflammatory cells [6].
They produce indeed angiogenic cytokines, which are exported
from tumour cells or mobilized from the extracellular matrix. As a
consequence, tumour cells are surrounded by an infiltrate of inflam-
matory cells. These cells communicate via a complex network of
intercellular signalling pathways, mediated by surface adhesion
molecules, cytokines and their receptors [9]. Immune cells cooper-
ate and synergise with stromal cells as well as malignant cells in
stimulating endothelial cell proliferation and blood vessel formation.
These synergies may represent important mechanisms for tumour

Table 1 Major angiogenic and anti-angiogenic factors that regulate
angiogenesis

Angiogenic factors

Vascular endothelial growth factor (VEGF)

Fibroblast growth factor-2 (FGF-2)

Placental growth factor (PlGF)

Platelet derived growth factor (PDGF)

Transforming growth factors (TGF-� and -�)

Hepatocyte growth factor (HGF)

Platelet activating factor (PAF)

Tumour necrosis factor � (TNF-�)

Insulin-like growth factor (IGF)

Angiogenin

Angiopoietin-1

Granulocyte colony stimulating factor (G-CSF)

Granulocyte-macrophage colony stimulating factor (GM-CSF)

Erythropoietin

Interleukin-6

Interleukin-8

Anti-angiogenic factors

Thrombospondin-1

Angiostatin

Endostatin

Interferon-� and -�

Interleukin-12

Angiopoietin-2

Tissue inhibitors of metalloproteinases



2824 © 2009 The Authors
Journal compilation © 2009 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd

development and metastasis by providing efficient vascular supply
and easy pathway to escape. Indeed, the most aggressive human
cancers are associated with a dramatic host response composed of
various immune cells, especially macrophages and mast cells [7].

Neutrophils

Evidence for the possible role of polymorphonuclear granulocytes
in inflammation-mediated angiogenesis and tissue remodelling
was initially provided by the finding that CXC receptor-2 (CXCR-2)-
deficient mice, which lack neutrophil infiltration in thioglycollate-
induced peritonitis [10], showed delayed angiogenesis and
impaired cutaneous wound healing [11].

During the acute inflammatory response, neutrophils extravasate
from the blood into the tissue, where they exert their defence func-
tions. Neutrophils are a source of soluble mediators which exert
important angiogenic functions. Vascular endothelial growth factor
(VEGF), interleukin (IL)-8, tumour necrosis factor-� (TNF-�), hepa-
tocyte growth factor (HGF) and matrix metalloproteinases (MMPs)
are the most important activators of angiogenesis produced by
these cells [12–14]. In this perspective, microarray analysis has
recently revealed about 30 angiogenesis-relevant genes in human
polymorphonuclear granulocytes [15]. Thus neutrophil contribution
to pathological angiogenesis may be sustained by an autocrine
amplification mechanism that allows persistent VEGF release to
occur at sites of neutrophil accumulation. Production and release of
VEGF from neutrophils has been shown to depend on the granulo-
cyte colony-stimulating factor (G-CSF) [16]. Interestingly, neu-
trophil-derived VEGF can stimulate neutrophil migration [17].
Human polymorphonuclear granulocytes have demonstrated the
ability to directly induce the sprouting of capillary-like structures in
in vitro angiogenesis assay, mediated by secretion of both pre-
formed VEGF from cell stores and de novo synthesized IL-8 [4].

In breast cancer, release by tumour-associated and tumour-
infiltrating neutrophils of oncostatin M, a pleiotropic cytokine
belonging to the IL-6 family, promotes tumour progression by
enhancing angiogenesis and metastases [18]. In addition, neu-
trophil-derived oncostatin M induces VEGF production from can-
cer cells and increases breast cancer cell detachment and invasive
capacity [18]. Expression of HPV 16 early region genes in basal
keratinocytes of transgenic mice elicits a multi-stage pathway to
squamous carcinoma. Infiltration by neutrophils and mast cells,
and activation of MMP-9 in these cells coincided with the angio-
genic switch in premalignant lesions [19]. In the Rip-Tag2 model
of pancreatic islet carcinogenesis, MMP-9-expressing neutrophils
were predominantly found in the angiogenic islets of dysplasias
and tumours, and transient depletion of neutrophils clearly
reduced the frequency of the initial angiogenic switch in the dys-
plasias [20]. The lack of both MMP-9-positive neutrophils and
MMP-2-expressing-stromal cells in mice with a double deficiency
for MMP-2 and MMP-9 resulted in a lack of tumour vasculariza-
tion followed by a lack of tumour invasion [21].

Expression of G-CSF or co-expression of G-CSF and granulo-
cyte macrophage-colony stimulating factor (GM-CSF) together
induced malignant progression of previously benign factor-nega-
tive HaCaT tumour cells. This progression was associated with
enhanced and accelerated neutrophil recruitment into the tumour
vicinity. The neutrophil recruitment preceded the induction of
angiogenesis in the HaCaT heterotransplantation model for human
squamous cell carcinoma and in nude mouse heterotransplants of
head and neck carcinomas [22, 23].

In some tumours, like melanoma, neutrophils are not a major
constituent of the leucocyte infiltrate, but they might have a key
role in triggering and sustaining the inflammatory cascade, pro-
viding chemotactic molecules for the recruitment of macrophages
and other inflammatory and stromal cells. Neutrophils produce
and release high levels of MMP-9. By contrast, neutrophils secrete
little, if any, MMP-2, which plays an important role in the turnover
of various extracellular matrix components [24]. However, neu-
trophils release a not yet identified soluble factor as well as a spe-
cific sulphatase and a heparanase that activate latent MMP-2
secreted by other cells and allow releasing of embedded growth
factors from the extracellular matrix [25, 26]. Remodeled matrix
facilitates the escape of tumour cells leaving the tumour mass to
metastasize at distance, because it offers less resistance. In addi-
tion, proteolytic enzymes released by neutrophils can diminish
cell-cell interactions and permit the dissociation of tumour cells
from the original tumour site [27].

Neutrophils also produce important anti-angiogenic factors.
Human neutrophils, for instance, synthesise and secrete small
anti-microbial peptides known as alpha-defensins, which exert
inhibition of endothelial cell proliferation, migration and adhe-
sion, impaired capillary tube formation in vitro and reduced
angiogenesis in vivo [28]. In addition, neutrophil-derived elastase
can generate the anti-angiogenic factor angiostatin [29] a well
known inhibitor of IL-8-, macrophage inflammatory protein
(MIP)-2- and growth-related oncogen-� (GRO-�)-induced 
angiogenesis in vivo [30]. Remarkably, all-trans retinoic acid, a
promising molecule with potential anti-angiogenic use in clinical
treatment, has been shown to inhibit VEGF formation in cultured
neutrophil-like HL-60 cells [31].

Basophils

Basophils express mRNA for three isoforms of VEGF-A (121, 165
and 189) and two isoforms of VEGF-B (167 and 186) [32].
Peripheral blood and basophils infiltrating sites of chronic inflam-
mation such as nasal polyps contain VEGF-A in their secretory
granules. Supernatants of activated basophils induced an angio-
genic response in vivo in the chick embryo chorioallantoic mem-
brane (CAM) assay. In addition, basophils express VEGF receptor-2
(VEGFR-2) and neuropilin-1 that acts as co-receptor for VEGFR-2
and enhances VEGFR-2-induced responses. Remarkably, VEGF-A
also functions as basophil chemoattractant providing a novel
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autocrine loop for basophils self-recruitment [32]. Overall, these
data suggest that basophils could play a role in angiogenesis and
inflammation through the expression of several forms of VEGF and
their receptors. Moreover, basophils release histamine, which dis-
plays angiogenic activity in several in vitro and in vivo settings [33].

Eosinophils

Eosinophils are pro-angiogenic through the production of an array
of cytokines and growth factors, such as VEGF [34], fibroblast
growth factor-2 (FGF-2) [35], TNF-� [36], GM-CSF [37], nerve
growth factor (NGF) [38], IL-8 [39], angiogenin [40], and are pos-
itively stained for VEGF and FGF-2 in the airways of asthma patients
[35]. Eosinophils release VEGF following stimulation with GM-CSF
and IL-5 [35], both expressed in the tissue and in the bronchoalve-
olar lavage fluid of patients with allergic asthma. Eosinophils have
the capacity to generate VEGF by de novo synthesis and to release
it [34]. Feistritzer et al. [41] have detected VEGFR-1 and -2 on
human peripheral blood eosinophils and they demonstrated that
VEGF induces eosinophil migration and eosinophil cationic protein
release, mainly through VEGFR-1. Eosinophils promoted endothe-
lial cells proliferation in vitro and induce new vessel formation in
the aorta ring and in the CAM assays [42]. Interestingly, neutraliza-
tion of VEGF in eosinophils reduced their angiogenic effects in the
CAM by 55% suggesting the important, but not unique role played
by this factor in the induction of the angiogenic response.
Eosinophils are not the only source of VEGF but they can also be
targets for VEGF in allergic inflammation. Eosinophil infiltration
could be reduced by administration of an anti-VEGF receptor anti-
body in a murine model of toluene diisocyanate (TDI)-induced
asthma [43]. Because eosinophils are a rich source of preformed
MMP-9, it is reasonable to believe that they may promote angio-
genesis also by acting on matrix degradation.

Recently, Puxeddu et al. [44] have demonstrated that
eosinophil-derived major basic protein (MBP) induced endothelial
cell proliferation and enhanced the pro-mitogenic effect of VEGF,
but did not affect VEGF release. Moreover, MBP promoted capil-
larogenesis by endothelial cells seeded on Matrigel and angiogen-
esis in vivo in the CAM assay. Finally, the pro-angiogenic effect of
MBP was not due to its cationic charge because stimulation in the
CAM with the synthetic polycation, poly-L-arginine did not induce
any angiogenic effect [44].

Monocytes-macrophages

Cells belonging to the monocyte-macrophage lineage are a major
component of the leucocyte infiltration in tumours [45, 46]. The
number of tumour-derived chemoattractants ensures macrophage
recruitment, including colony-stimulating factor-1 (CSF-1), the CC
chemokines CCL2, CCL3, CCL4, CCL5 and CCL8, and VEGF

secreted by both tumour and stromal elements [46]. Besides killing
tumour cells once activated by interferon-� (IFN-�) and IL-12,
tumour-associated macrophages produce several pro-angiogenic
cytokines as well as extracellular matrix-degrading enzymes [47].
The stimulating effect exerted by tumour-associated macrophages
on the growth of the tumour mass is partly related to the angio-
genic potential of these cells. In the tumour microenvironment,
macrophages are mainly represented by polarized type II (alterna-
tively activated) or M2 elements, which would derive from tumour-
associated macrophages upon local exposure to IL-4 and IL-10
[46]. These cells have poor attitude to destroy tumour cells but are
better adapted to promoting angiogenesis, repairing and remodel-
ling wounded or damaged tissues, and suppressing adaptive
immunity [48]. Tumour-associated macrophages represent a rich
source of potent pro-angiogenic cytokines and growth factors,
such as VEGF, TNF-�, IL-8 and FGF-2. In addition, these cells
express a broad array of angiogenesis-modulating enzymes,
including MMP-2, -7, -9, -12, and cycloxygenase-2 (COX-2)
[49–51]. In human beings, a significant relationship between the
number of tumour-associated macrophages and the density of
blood vessels has been established in tumours like breast carci-
noma [52], melanoma [53], glioma [54], squamous cell carcinoma
of the esophagus [55], bladder carcinoma [56], and prostate carci-
noma [57]. In the mouse cornea model, killing of COX-2 positive
infiltrating macrophages with clodronate liposomes reduces IL-1-
�-induced angiogenesis and partially inhibits VEGF-induced angio-
genesis [58]. In one model of subcutaneous melanoma, both
angiogenesis and growth rate correlate with tumour infiltration by
macrophages that express angiotensin I receptor and VEGF [59]. In
addition, Lewis lung carcinoma cells expressing IL-1-� develop
neovasculature with macrophage infiltration and enhance tumour
growth in wild-type but not in monocyte chemoattractant protein-1
(MCP-1)-deficient mice, suggesting that macrophage involvement
might be a prerequisite for IL-1-�-induced neovascularization and
tumour progression [58]. In a murine model of mammary carcinoma,
deficiency of macrophage-colony stimulating factor (M-CSF), a
potent inductor of macrophage recruitment in tumour tissues,
does not affect early stages of tumour development but reduces
progression to invasive carcinoma and metastasis [60]. This result
highlights the possible role of tumour-associated macrophages in
contributing to the angiogenic switch that accompanies transition
into malignancy. In polyoma middle-T (PyMT)-induced mouse
mammary tumours, indeed, focal accumulation of macrophages in
premalignant lesions precedes the angiogenic switch and the pro-
gression into invasive tumours. Depletion of tumour-associated
macrophages reduces to about 50% tumour vascular density, lead-
ing to areas of necrosis by loss of blood supply within the tumour
mass. Interestingly, macrophages have been shown to accumulate
particularly in such necrotic and hypoxic areas in different neopla-
sia, like human endometrial, breast, prostate and ovarian carcino-
mas [61, 62]. It is otherwise known, indeed, that up-regulation 
of the pro-angiogenic programme in tumour-associated
macrophages, followed by increased release of VEGF, FGF-2, 
TNF-�, urokinase and MMPs, is stimulated by hypoxia and 
acidosis [63]. Moreover, activated macrophages synthesize and
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release inducible nitric oxide synthase, which increases blood flow
and promotes angiogenesis [64]. Last, the angiogenic factors
secreted by macrophages stimulate migration of other accessory
cells that potentiate angiogenesis, in particular mast cells [65].
Osteopontin deeply affects the pro-angiogenic potential of human
monocytes [66]. Reports suggest that osteopontin may affect angio-
genesis by acting directly on endothelial cells and/or indirectly via
mononuclear phagocyte engagement, enhancing the expression of
TNF-� and IL-1-� in mononuclear cells [67, 68].

It should also be mentioned that monocytes and macrophages
are primary producers of IL-12. This multifunctional cytokine can
cause tumour regression and reduce metastasis in animal models,
because of the promotion of anti-tumour immunity and also to the
significant inhibition of angiogenesis [69]. The anti-angiogenic
activity is mediated by IFN-� production, which in turn induces the
chemokine IFN-�-inducible protein-10 [70, 71]. There is in vitro
evidence that IL-12 inhibits VEGF produced by breast cancer cells
and regulates stromal cell interactions, leading to decreased
MMP-9 and increased tissue inhibitor of metalloproteinase
(TIMP)-1 production [72].

Liposomal delivery of the nonaminobisphosphonate clo-
dronate depleted macrophages in the synovial fluid of rheumatoid
arthritis patients and depleted macrophages and inhibited tumour
angiogenesis in mouse tumour transplantation models [73, 74].

Lymphocytes

Lymphocytes are essential for the airway remodelling. Studies
have been performed in mice chronically infected with
Mycoplasma pneumoniae. Mice lacking B cells expressed a great
reduction of angiogenesis when infected with this microorganism
[75]. The humoural response, indeed, causes deposition of
immune complexes on the airway wall, followed by recruitment of
inflammatory cells at sites of infected airways which, in turn, are
responsible for local production of remodelling factors.
Lymphocytes may cooperate to the generation of an anti-angio-
genic microenvironment that is essential for causing regression of
the tumour mass. For instance, Th cells and cytotoxic T cells are
needed to mediate the anti-angiogenic effect of IL-12 [76].

In mice, NK cells have been found essential for the initiation of
pregnancy-associated spiral arterial modification through their
production of IFN-� and VEGF. VEGF provides not only a potent
pro-angiogenic stimulus but works as an important stem cell sur-
vival factor with ability to recruit cells into the hypoxic environ-
ments [77]. Thus, it might act as endothelial tip cell guidance
towards hypoxic endometrium not only in the endome-
trial/decidual environment occupied by the trophoblasts but also
in the necrotic milieu that occurs during endometrial destruction
in the menstrual cycle. Experimental work suggests that NK cells
are required mediators of angiogenesis inhibition by IL-12, and
that NK cell cytotoxicity of endothelial cells is a potential mecha-
nism by which IL-12 can suppress neovascularization [78]. IL-12

receptors indeed are present primarily on NK cells and T cells
[79]. IL-12-activated lymphocytes influence inhibition of tumour
growth and function as an anti-vascular agent, by releasing higher
level of IFN-� and down-modulating VEGF [80].

Dendritic cells

DCs are bone marrow, hematopoietic-derived, professional anti-
gen-presenting cells (APCs), able to induce both primary and sec-
ondary T- and B-cell responses as well as immune tolerance [81].
They participate in the regulation of the inflammatory reaction
through the release of cytokines and chemokines [82]. DCs
express both pro- and anti-angiogenic mediators when exposed to
different combinations of cytokines and microbial stimuli and both
positive and negative mediators of the angiogenic process can
affect the biology of DCs. DCs express both VEGFR-1 and VEGFR-2
[83]. Furthermore, expression of the VEGF co-receptor neuropilin-
1 is induced during in vitro differentiation of monocytes into DCs
[84]. Riboldi et al. [85] reported that DCs can be activated to an
angiogenesis-promoting phenotype. They demonstrated that alter-
native activation of DCs by anti-inflammatory molecules, such as
calcitriol, prostaglandin E2 (PGE2) or IL-10 prompts them to
secrete VEGF and inhibit their secretion of IL-12, a potent anti-
angiogenic molecule that is secreted by classical activated DCs.

The contribution of progenitor cells
and adult cell transdifferentiation

Myeloid-derived suppressor cells (MDSCs) are a heterogenous
population, comprising myeloid progenitors, monocytes and neu-
trophils that express low to undetectable levels of MHC-II and co-
stimulatory molecules. Yang et al. [86] found that MDSCs
obtained from spleens of tumour-bearing mice promoted angio-
genesis and tumour growth when co-injected with tumour cells.
Reducing the levels of MDSCs by either treatment of mice with
gemcitabine or by interfering with the Kit ligand/c-Kit receptor axis
impaired tumour growth and angiogenesis [87, 88]. MDSCs iso-
lated from tumours of STAT-3-deficient mice were markedly less
potent in inducing endothelial tube formation in vitro as compared
to STAT-3 wild-type cells, concomitant with markedly reduced exe-
pression levels of several angiogenic factors [89].

Monocytes-macrophages and endothelial cells share phenotypi-
cal and functional features, including the expression of common
metabolic and surface markers, as well as the ability to transdifferen-
tiate into endothelial cells in vitro and in vivo [90–93]. Venneri et al.
[94] have reported the identification in human peripheral blood of a
novel subset of Tie-2 expressing monocytes (TEMs) that promote
angiogenesis in paracrine manner. Although recruited to tumours in
lower numbers than tumour-associated macrophages (TAMs), TEMs



J. Cell. Mol. Med. Vol 13, No 9A, 2009

2827© 2009 The Authors
Journal compilation © 2009 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd

are a more potent source of pro-angiogenic signals, suggesting that
they significantly contribute to tumour angiogenesis.

Gottfried et al. [95] demonstrated that incubation of tumour-
associated DCs with VEGF and oncostatin M led to transdifferenta-
tion into endothelial-like cells. These cells showed strong expression
of classical endothelial cell markers, such as von Willebrand factor
and vascular endothelial cadherin, while leukocytic markers were
reduced. Moreover, they were able to vascular-like tubes on Matrigel.

These data indicate that while the concept of immature vascu-
lar cells delivered to the site of tumour blood vessels was origi-
nally developed on bone marrow derived endothelial precursor
cells (EPCs), it is become evident that other classes of vascular
cells differentiate from progenitors and adult cells in situ.

Mast cells

An increased number of mast cells have been reported in angio-
genesis associated with chronic inflammatory diseases, like
rheumatoid arthritis and nasal polyps [96, 97].

Mast cells produce a large spectrum of pro-angiogenic fac-
tors. Human, rat and mouse mast cells release preformed FGF-2
from their secretory granules [98, 99]. Human cord blood-
derived mast cells release VEGF upon stimulation through FcεRI
and c-kit. Both FGF-2 and VEGF have also been identified by
immunohistochemistry in mature mast cells in human tissues
[100, 101]. Human mast cells are a potent source of VEGF in the
absence of degranulation through activation of the EP (2) recep-
tor by PGE2 [102]. Following IgE-dependent activation mast cells
released several pro-angiogenic mediators stored in their gran-
ules, such as VEGF [103] and FGF-2 [104], that promote angio-
genesis even in the early phase of allergic inflammation. Mast
cells can also migrate in vivo [105] and in vitro [65] in response
to VEGF. Recently, Detoraki et al. [106] have demonstrated that
human lung mast cells express VEGF-A, VEGF-B, VEGF-C and
VEGF-D at both mRNA and protein level. PGE2 enhanced the
expression of VEGF-A, VEGF-B and VEGF-C, whereas an adeno-
sine analogue (5’-[N-ethylcarboxamido] adenosine [NECA])
increased VEGF-A, VEGF-C and VEGF-D expression. In addition,
supernatants of PGE2- and NECA-activated human lung mast cells
induced angiogenic response in the CAM assay that was inhibited
by an anti-VEGF-A antibody. Finally, placental growth factor-1
induced mast cell chemotaxis [106].

Granulated mast cells and their granules, but not degranulated
mast cells, are able indeed to stimulate an intense angiogenic
reaction in the chick embryo CAM assay. This angiogenic activity
is partly inhibited by anti-FGF-2 and -VEGF antibodies, suggesting
that these cytokines are involved in the angiogenic reaction [107].
Similarly it has been demonstrated, using the rat-mesenteric win-
dow angiogenic assay, that intraperitoneal injection of compound
48/80 causes a vigorous angiogenic response [108]. The same
treatment in mice also causes angiogenesis [109].

Mast cells store large amounts of preformed active serine pro-
teases, such as tryptase and chymase, in their secretory granules

[110]. Tryptase stimulates the proliferation of endothelial cells,
promotes vascular tube formation in culture and also degrades
connective tissue matrix to provide space for neovascular growth.
Tryptase also acts indirectly by activating latent MMPs and plas-
minogen activator (PA), which in turn degrade the extracellular
connective tissue with consequent release of VEGF or FGF-2 from
their matrix-bound state [111]. Mast cell-derived chymase
degrades extracellular matrix components and therefore matrix-
bound VEGF could be potentially released.

Histamine and heparin stimulate proliferation of endothelial
cells induce the formation of new blood vessels in the CAM-assay
[33, 112]. Histamine stimulates new vessel formation by acting
through both H1 and H2 receptors [33]. Heparin may act directly
on blood vessels or indirectly by inducing release of FGF-2 from
the extracellular storage site. In addition, other cytokines pro-
duced by mast cells, such as IL-8 [113], TNF-� [114], TGF-�, NGF
[115] and urokinase-type PA have been implicated in normal and
tumour-associated angiogenesis [116]. Last, mast cells also con-
tain preformed MMPs, such as MMP-2 and MMP-9, and TIMPs,
which enable mast cells to directly modulate extracellular matrix
degradation. This, in turn, allows for tissue release of extracellular
matrix-bound angiogenic factors.

Mast cells play a role in tumour growth and angiogenesis. Mast
cell-deficient W/Wv mice exhibit indeed a decreased rate of
tumour angiogenesis [117]. Molecules like heparin could facilitate
tumour vascularization not only by a direct pro-angiogenic effect
but also through its anti-clotting effect [118]. In addition, mast
cell-derived MMPs can degrade the interstitial tumour stroma and
hence release matrix-bound angiogenic factors. An increased
number of mast cells have indeed been reported in angiogenesis
associated with vascular neoplasms, like haemangioma and hae-
mangioblastoma [119], as well as a number of solid and
haematopoietic tumours. In general, mast cell density correlates
with angiogenesis and poor tumour outcome. Association
between mast cells and new vessel formation has been reported in
breast cancer [120, 121], colorectal cancer [122] and uterine
cervix cancer [123]. Tryptase-positive mast cells increase in num-
ber and vascularization increases in a linear fashion from dyspla-
sia to invasive cancer of the uterine cervix [124]. An association of
VEGF and mast cells with angiogenesis has been demonstrated in
laryngeal carcinoma [125] and in small lung carcinoma, where
most intratumoural mast cells express VEGF [126–128]. Mast cell
accumulation has also been noted repeatedly around melanomas,
especially invasive melanoma [129, 130]. Mast cell accumulation
was correlated with increased neovascularization, mast cell
expression of VEGF [131] and FGF-2 [132], tumour aggressive-
ness and poor prognosis. Indeed, a prognostic significance has
been attributed to mast cells and microvascular density not only in
melanoma [133] but also in squanous cell cancer of the oesopha-
gus [134]. Recently, angiogenesis has been shown to correlate
with tryptase-positive mast cell count in human endometrial can-
cer. Both parameters were found to increase in agreement with
tumour progression [135].

Mast cell density, new vessel rate and clinical prognosis have
also been found to correlate in haematological tumours. In benign



Fig. 2 Interplay between angiogenic and 
anti-angiogenic molecules secreted by 
neutrophils, monocytes-macrophages and
dendritic cells.
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lymphadenopathies and B-cell non-Hodgkin’s lymphomas, angio-
genesis correlates with total and tryptase-positive mast cell
counts, and both increase in step with the increase with malig-
nancy grades [136, 137]. In non-Hodgkin’s lymphomas, a correla-
tion has been found between vessel count and the number of mast
cells and VEGF-expressing cells [138]. In the bone marrow of
patients with inactive and active multiple myeloma as well as those
with monoclonal gammopathies of undetermined significance,

angiogenesis highly correlates with mast cell counts [139]. A sim-
ilar pattern of correlation between bone marrow microvessel
count, total and tryptase-positive mast cell density and tumour
progression has been found in patients with myelodysplastic syn-
drome [140] and B-cell chronic lymphocytic leukemia [141]. In
the early stages of     B-cell chronic lymphocytic leukemia, the den-
sity of tryptase-positive mast cells in the bone marrow has been
shown to predict the outcome of the disease [142].

Fig. 1 Interplay between angiogenic and anti-
angiogenic molecules secreted by NK cells,
mast cells, basophils and eosinophils.
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Platelets

Human platelets carry in their alpha granules a set of angiogene-
sis stimulators, such as FGF-2, VEGF and thymidine phosphory-
lase, and inhibitors, such as endostatin, platelet factor-4 and
thrombospondin-1 (TSP-1) [143]. These findings may have impli-
cations for release of angiogenic molecules at the initiation of
wound healing, followed by release of anti-angiogenic molecules
at the later stage of wound healing.

These angiogenesis-regulatory molecules are packed into sepa-
rate and distinct alpha granules [143]. In fact, the treatment of
human platelets with a selective proteinase-activated receptor-4
(PAR-4) agonist resulted in release of endostatin-containing 
granules, but not VEGF-containing granules, whereas a selective
PAR-1 agonist liberated VEGF, but not endostatin-containing gran-
ules [143]. Moreover, these molecules are sequestered in platelets
in higher concentration than in plasma. In fact, VEGF-enriched
Matrigel pellets implanted subcutaneously into mice result in an
elevation of VEGF levels in platelets, without any changes in its
plasma levels [144]. Accumulation of platelets in some tumours
and release of angiogenic molecules could further stimulate
tumour growth. In fact, it has been recently demonstrated that
accumulation of angiogenesis regulators in platelets of animals
bearing malignant tumours exceeds significantly their concentra-
tion in plasma or serum, as well as their levels in platelets from
non-tumour bearing mice [144]. It is likely that novel angiogenesis-

regulatory molecules that could be developed into drugs will be
discovered in platelets.

Conclusions

This review summarizes the most recent experimental and clinical
data providing evidence for the involvement of immune cells in
pathological angiogenesis. The cross-talk between the different
immune cells and the structural tissue cells establishes a definite
microenvironment, which promotes the growth, migration and acti-
vation of endothelial cells leading to expansion of the pre-existing
vascular supply. This process is the result of a complex balance
between pro- and anti-angiogenic stimuli generated locally in the tis-
sue milieu (Figs. 1 and 2). Manipulating this mediators’ puzzle by
potentiating the local production of anti-angiogenic cytokines would
allow to modulate and even inhibit the angiogenic process. Given the
detrimental effects pro-angiogenic molecules may exert in inflamma-
tion and cancer, it seems of primary importance to understand the
contribution of immune cells to pathological angiogenesis.
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