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Introduction
The pathogenesis of malignant transformation that leads to 
an inexorably progressing disease is intricately connected to 
the abnormal integration of several biological networks.1–3 
The objective analysis of the holistic approach in cancer 
research is to obtain a global quantitative description of all 
key interactions within the cell to ultimately predict how 
and why cells function the way they do in response to 
stressors such as hypoxia, DNA damage, retinoblastoma 
protein degradation, and oncogene activation or in response 
to external factors such as nutrient or oxygen deprivation.4

As we came to realize that the initial stage of tumor devel-
opment follows a complex and multistep process that proceeds 
sequentially until a full-blown malignant phenotype is achieved 
and maintained, this begs the questions “what to do with and 
how to tie together this expanded type of data”?5–7

Fortunately, most of the tumors have a limited diversity in 
the key genes of cancer development and progression. 
Furthermore, functional consequences of cancer tissue hetero-
geneity may be minor.8

The aim of this report is a modest interpretive synopsis per-
taining on how to model the dynamic behavior of interacting 
biological species in cancer.

Materials and Methods
We begin this review with some mathematical definitions. We 
then focus on mathematical tools to model only sequential 
quantitative data set measurements overtime of those bio-
chemical elements to systematically study the determinants of 
early cancer. This may prove useful in outlining new or emer-
gent therapeutic prospects.7,9

Important cancer biomarkers to consider when 
modeling parameters of interest

There are many possible underlying dysregulated signaling 
pathways in cancer.2,3

However, most of the components fall into the following 
broad categories that warrant consideration. There are those 
related to ligands/receptors and oncogenes such as PI3k/AKT, 
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TGF, MAPK, P53, RB, CDK, CYCLIN, TKR, NF-κB, 
miRNA, mTOR complex, P16, TERT, NOTCH, WNT, 
PTEN, and HEDGEHOG.2 There are those related to the 
genes determining pluripotency such as c-MYC, OCT4, 
SOX2, NANOG, and KLF4. Expressions of those relevant 
molecular “populations” in these pathways are themselves under 
the control of multiple feedback loops and under tight homeo-
static control and cross talk.3,7

Finally, there are those related to other core circuit systems 
and comprise the redox state such as cytosolic NADH/NAD+ 
ratio, the mitochondrial electromechanical potential and mito-
chondrial transport chain, the energy charge inside the cell 
(ATP+1/2 ADP/ ATP+ADP+AMP ratio), and the reactive 
oxygen species (ROS) scavenger NADPH/NADP+ ratio.3,10

In this report, interaction with environmental factors and 
other as yet unknown processes will not be discussed here.11

Results
Facing complex biological data in cancer research

A mathematical model relates the dependent variables (such as 
a population growth or a particular molecular concentration 
growth) by means of a mathematical equation demonstrating 
the output cell response for a given input. Through molecular 
growth, we refer to a time series of concentration growth over-
time of proteins, messenger RNAs (mRNAs), or other biomol-
ecules all of which were cited above. Moreover, the model’s 
objective is to quantify the system’s behavior by the parameters 
that affect the process dynamics.

Steady state or equilibrium.  Actual biological systems do not 
always exist in equilibrium because they contain many negative 
feedback loops by which the system’s action is based on some 
previous state and not on the current state. Feedbacks are neces-
sary so that the system may assume a resting and an active state. 
Because of the consequent time-delayed effects, this situation is 
likely to cause the system to miss or overshoot its goal either 
before the equilibrium target or before the “carrying capacity” of 
the system is reached (see infra). Studying equilibrium of a bio-
logic process is important not because equilibrium reflects reality 
but because it is an important reference point for analyzing the 
final behavior of the model. The pure behavior of the model is 
then obtained by “shocking” the system out of equilibrium and 
knowing how the system responds to sudden input using a “step 
function.” Equilibrium is stable if it does not change following 
this small but swift disturbance. A step function is a process that, 
when forced on the input, the output changes from zero and 
achieves a higher steady state in an instant. A steady-state level 
of any biomolecule is important for its optimal function. Com-
puter programs can be set up to simulate the step function.

In mathematics, a function is a pairing of any set of inputs 
observed by changing the independent variables with their cor-
responding output responses. Functions can be linear or non-
linear, continuous or discrete. A function is continuous when 

its graph is a single unbroken curve. Polynomial functions, 
trigonometric, exponentials, logarithmic, and root functions are 
all continuous functions at every number in their domains.12

For an exponential input, of first-order or nth-order poly-
nomial, the response will also be an exponential almost every 
time with the exception when there is resonance or near reso-
nance between input and output frequencies.13

A graph is the best way to represent a function in which one 
element depends on another. Power functions and biological 
oscillations are typically nonlinear.

Cancer biology worlds are also nonlinear and are often dis-
continuous. In a discontinuous function, the rate of change at 
any point cannot be determined no matter how much we zoom 
in on that particular point. Linear systems exhibit growth, 
decay, equilibrium, or oscillations. A step function that is gen-
erated by a switch-like interaction can also be used to approxi-
mate the discontinuous function by a continuous one.14

Critical or f ixed points.  Fixed or critical points represent equi-
libria or steady states. Fixed points can be stable or unstable 
and only stable fixed point represents a stable equilibrium. It is 
also fundamental that one determines what is happening near 
the neighborhood of the critical points to estimate robustness 
as well as finding the limits of a given system’s parameters. The 
critical points are found at the intersection of the graph, and 
either the 45° straight diagonal line of zero population growth 
or the identity coordinate y (output) = x (input), where the 
function’s rate of change is 0 corresponding to constant operat-
ing conditions.12 In other words, the diagonal line is where 
inputs get converted to outputs and vice versa.

Evaluating what happens near the fixed points is equivalent 
to a linearization technique at those points to determine the 
stability. If the system that begins close to the equilibrium 
approaches the steady state converges in a finite time reaching 
a fixed point, it is then stable; if it diverges from the fixed points 
and it grows indefinitely as time increases, it is then unstable, 
meaning it “approaches” infinity.12,15 Cancer is considered to be 
an unstable process and by definition is neither in a steady state 
nor in equilibrium. Any dynamic system can settle down to 
equilibrium, keep repeating in periods, or become chaotic.16 In 
contrast to oscillations, chaos never settles down to a periodic 
state and depends totally on the initial conditions.

For nonlinear dynamics in discrete time, it is simple to check 
for stability by linearization of the model locally, ie, when the 
time interval becomes shorter or using nonlinear ordinary dif-
ferential equation (ODE). After linearizing the function, its 
transform is then computed (to eliminate dependence on time) 
and the result is just an easier algebraic function of the output. 
The output is then plotted using a graphing calculator. 
However, when we are dealing with too many interdependent 
nonlinear partial derivative equations, the disadvantage of lin-
earization is that it becomes mathematically intractable and 
computationally prohibitive to implement.17
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Carrying capacity.  In nonlinear systems, when expressing the 
time evolution of molecular species of interest, the logistic model 
is used to predict the maximum growth limit in the long run. 
The simplest example of nonlinear population growth is the 
logistic equation or the sigmoidal stretched out “s” curve similar 
to the Hill function. Here, the molecular growth moves slowly, 
and then rapidly, before slowing down and tapering off through 
a negative feedback interaction. A critical stage in the evalua-
tion of this function is to establish the upper value or the final 
steady state of the population size. The tapering off upper value 
is called the population’s “carrying capacity.”

When the molecular population is above the carrying capac-
ity, it decreases, and when it is below the carrying capacity, it 
increases. In the logistic molecular growth model, the fixed 
points—here it means the final carrying capacity or the 
dependent variable—may switch stability as the parameter of 
growth rate (the independent variable) varies depending on the 
changes of external feedback factors. A more practical method 
to solve this type of growth capacity that is drifting in values is 
nondimensionalization of parameters. This is based on the fact 
that when parameters become dimensionless, the analysis is 
simplified because the parameters are reduced to either unity or 
less than unity. Nondimensionalization is obtained by dividing 
each parameter’s value by the average of the total sum values or 
by their steady-state parameters value.

For future predictions of the maximum growth, applying 
the discrete logistic model is preferable to continuous exponen-
tial functions when there might be periodicity, sequences in the 
process, or when molecular successive generations do not over-
lap as time passes. When time is thus inherently discrete and 
consequently the carrying capacity becomes a drifting param-
eter, a more reliable model called the logistic difference equation 
should be considered.14,15,17–19 The difference equations can 
easily be simulated on digital computers. Thus, the logistic 
function treats time as continuous, whereas the difference 
equation looks at discrete time steps.

Multistability.  The presence of positive feedback loop can 
induce multiple steady states. Example of 2 possible equilibria 
or bistability is when considering a system composed of 2 genes 
that express transcription factors regulating each other, but in a 
negative manner.20 A bistable system that can be constantly 
switched between 2 steady states following a transit input per-
turbation is called a toggle switch.20 Bistability of regulatory 
circuits occurs when the rate of positively autoregulated gene 
product, by means of positive feedback loops, is strong com-
pared with its degradation rate. MAPK is an example of a 
bistable signal in which the feedback loop enhances the robust-
ness of 2 stable output states in response to a stimulus.21 More-
over, on interconnection, such as in gene circuit, where the 
behavior of downstream system significantly affects the behav-
ior of the upstream system, multistability may occur. The gen-
erally accepted reason for this behavior is that the activated 

state ignores random small changes of signals (noise). If there 
are environmental heavy changes, some phenotypes will keep 
on ensuring survival. Furthermore, bistability generally widens 
the distribution of protein concentration per cell in which the 
distribution of proteins becomes bimodal.22 Multistability 
includes an additional intermediate state called the hybrid 
state.

Multistable nonlinear dynamics.  This is a system with multiple 
state equilibria in which a small variation leads to diverse steady 
states. Multistable systems cannot be described by a determin-
istic continuous equation but by a discrete stochastic modeling 
that evolves according to discrete jump Markov process. This 
leads to a probabilistic description of the system dynamics, ie, 
the likelihood of states and output variables is random and 
whose properties (mean, standard deviation) are governed by a 
probability density function (PDF).17

In a nonlinear dynamic system, there are interactions 
between its elements—part of the output has a feedback loop 
into the input. Unlike a time-independent Markovian process, 
the nonlinear dynamic is recursive and is time-dependent on 
previous events.23 Nonlinear dynamic inputs of numerical data 
can be transformed to a reduced-order model which is derived 
using dynamic mode decomposition (DMD) algorithm. 
Dynamic mode decomposition extracts from flow of data only 
dynamically relevant or dominant features that contribute to 
the overall evolution of sequence.24,25 Dynamic mode decom-
position is a dimensionality reduction technique and is data 
driven where only snapshots and a set collection of time series 
of state measurements are needed.24

Stochastic systems.  In biology, a stochastic system is a dynamic 
biological system that displays a noisy behavior possibly 
because of random fluctuation of all or parts of its compo-
nents,26-28 for example, the stochastic noise related to produc-
tion and degradation of RNA molecules and the stochasticity 
from association and from dissociation of the transcription 
factors in the gene regulatory networks. Because of the sto-
chastic noise, repeated experimental data do lead to different 
results. Because the stochastic system is a Markov process, sev-
eral update functions need to be defined to formulate the sys-
tem.28,29 Based on the idea that a Markov process is aperiodic 
and irreducible, its probability distribution will end up in a sta-
tionary state in the long run. Its probability distribution can be 
approximated in a computationally favored way using a likeli-
hood-based Markov chain Monte Carlo (MCMC) method. 
This is a repeated random sampling method from a uniform 
probability distribution (0, 1). The stable stationary state of 
Markov process allows the identification of RNA molecular 
PDF and by which deterministic approximation of the process 
is valid.29

Stochastic systems may have a deterministic linear compo-
nent that is due either to an external event such as environmental 
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changes or to internal fluctuations inherent to random binding 
and unbinding of molecular elements. One important indication 
of stochastic behavior is bimodality or multiequilibria.27,29

As alluded to above, ODE cannot be applied to solve sto-
chastic process which is usually discrete. Stochastic process can 
be otherwise described only using stochastic calculus in which 
the random function is approximated by dividing it into infi-
nite numbers of small time steps which are then linear.

The uncertainty or the stochastic effect perturbing the sys-
tem is generally assumed to have a Gaussian or normal PDF of 
mean zero and variance σ2, similar to continuous version of a 
random walk or to the dynamics of diffusion-based phenom-
ena. Solving the random function, ie, stochastic part is available 
in MATLAB (Mathworks.com) which provides a random 
number generated from a normal PDF (0, 1), ie, of mean 0 and 
variance of 1. After many runs simulating the stochastic pro-
cess numerous times, the average of the runs will converge to 
the deterministic solution.

For the time evolution of a large ensemble of stochastic sys-
tems and averaging out their stochastic effects, a “master equa-
tion” is applied.27 This equation, which is a system of ODEs, 
expresses the dynamics of a population fraction in a particular 
state that jumps to other state. Because the probability of the 
next transition depends on the current state only, the master 
equation is considered a continuous-time discrete-space 
Markov chain.

In the simplest cases, the master equation is analytically 
solvable. For larger models, more computationally efficient 
simulations of growth have been developed. The MCMC types 
of simulations are used that produce a random walk through 
the possible states of the system.

A stochastic simulation algorithm is also available to 
describe each particular trajectory of individual stochastic ele-
ment separately.30 The reason for stochasticity is due to the 
presence of many independent parts interacting with feedback 
control elements, cooperatively or competitively that create 
robustness, bistability, or oscillating runaway behavior.28,31–33

Robustness.  Because there is often redundancy in biological 
systems, any small alteration of system’s variables even when 
part of particular pathways is removed, the system can still 
maintain its performance and ignores these disturbances. This 
resiliency to large perturbation is interpreted as robustness,34–36 
which is closely related to the notion of Claude Bernard’s 
homeostasis. To test the robustness of findings, sensitivity and 
specificity analyses should be conducted. In cancer, the param-
eters are not evolutionary fine-tuned; therefore, malignant cells 
maintain their robustness by multiple synergistic interactions 
as we will read later.

Hill function.  Based on the law of mass action of chemical 
kinetics, the reaction rate is proportional to the product of the 
reactants’ concentration. The kinetics of the equation is 

described by parameters called rate constants. In this situation, 
the metabolic rate is constant at high substrate concentration, 
thereby equivalent to a steady state. However, often enough 
enzymes have more than one binding site and their affinity 
changes. Positive cooperativity among macromolecules in 
enzymatic reaction at a steady state can be described by a sig-
moid Hill function, which is a wide-spread function in mode-
ling nonlinear responses, and in particular the regulatory 
pathways. Nonlinear relation can be log-transformed into a 
linear function.

Gene transcription networks are usually viewed as intercon-
nected transcriptional components. An example for the use of 
a Hill function is relating the input of the production rate of a 
gene to the transcription factor concentration. While the Hill 
function makes the response faster, interconnectivity has an 
opposite effect.

Oscillating functions.  Oscillations are common dynamic behav-
iors because they determine the most needed information of 
“delays” in the biological world of networks.36,37

Examples of oscillations in time are the TNF gene expres-
sion, oscillations in NF-κB (nuclear factor κB), and p53 signal-
ing, and hormone secretion.38 These systems are inherently 
nonlinear and exhibit varying behavior over time.

Negative feedback loops affect an oscillatory behavior. 
Positive feedback loops produce robustness and facilitate 
bistability.35,36

Oscillation means that if the system is perturbed slightly, it 
always returns to its periodic orbit. Cardiac rhythm, circadian 
rhythm, hormone secretions, and certain biochemical reactions 
oscillate spontaneously. Another example is glycolysis, a bio-
chemical metabolic process that proceeds in oscillatory 
pattern.

If there is stochastic transcription of mRNA, stochastic syn-
thesis of proteins, and in addition there is stochastic degrada-
tion of the same elements, the global behavior leads to a 
nonlinear dynamical system. Such example involves parameters 
that govern the degradation rates of both proteins and mRNA. 
To estimate the stable stationary-state solution and to solve 
these states, the response is transformed. At any fixed time, any 
periodic function with interacting parameters can be trans-
formed into a sum of harmonics or frequencies with ampli-
tudes or modes depending on the time at which the snapshots 
were taken. Most of the higher order exponential terms are 
ignored. Thus, the random distribution of inputs will end up 
with a simple system and lower dimension ODEs with a cor-
responding real solution.15,26

Nonequilibrium systems.  A random type of motion, termed 
Brownian motion of a small macroscopic particle due to colli-
sions with other molecules of the fluid when immersed in a 
liquid, may be applied to approximate the dynamics of non-
equilibrium systems. Based on the central limit theorem, the 
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equilibrium PDFs of the fluctuating stochastic noise or “error” 
obey a Gaussian PDF.15

As alluded to earlier and because this process is discrete, it 
cannot be linearized and ODE cannot be applied. A statistical 
description by probabilistic manner is used instead. A com-
puter-based MCMC simulation then determines the time 
evolution of the drift’s PDFs from the deterministic trajectory, 
thus removing the uncertainty of the probabilistic component 
of the random variable’s movement.4,18

Discerning chaos and chaotic system’s prediction.  In a simple lin-
ear or periodic system, when taken in isolation, its future 
behavior is well determined regardless of the initial starting 
points. In contrast, when that system is acted on by multiple 
dynamic and nondeterministic components (⩾3 dimensions), 
different long-term trajectories will occur.16 In this higher 
dimension, the motion becomes chaotic. Overall, chaos is not 
equivalent to randomness because early on it is predictable 
(deterministic) but within a “time horizon” after which the sys-
tem becomes effectively unpredictable.16 Examples of chaotic 
systems are the movement of the galaxies, the weather, and in 
biological context, tumor cells; each system has its own time 
horizon that spans from days (for weather prediction) to mil-
lions of years (for galaxies).

After a transient time, the system settles into an irregular 
self-similar oscillation that persists without ever repeating and 
becomes aperiodic.16 This view was labeled as Panta Rhei—
meaning everything flows or “all entities move and nothing 
remains still”—by Heraclitus more than 2500 years ago. We 
now call this condition “fractal.”

The distance or the separation between the trajectories 
grows exponentially fast, on average. Their rate of separation is 
the property of the system. Their distances follow a simple rule 
and can be quantified as a function of time. Because it is expo-
nential, the logarithm of the distance is approximated by a 
trending line that is growing in time. The system can also com-
pound or be damped nonlinearly overtime and self-similar 
without ever actually repeating.16 For very complicated nonlin-
ear dynamics with 1 degree of freedom and in which time is 
discrete, the difference equation can be applied at least early on 
in the deterministic transient period of the system.16 Chaos 
then can have a simplistic mathematical model to represent it, 
and its dynamics is then defined by a recursive iterated steps. 
The population level at any given time step depends on the 
growth rate parameter and the previous time step’s population 
level.39–41 Thus, iterating the process many times by changing 
the growth rate parameter allows us to visualize the global 
behavior at a glance in a meaningful way.

You have gathered the experimental biological data 
in a series of snapshots, now what?

In this section, we provide the broad overview for modeling 
time-evolution analysis that can be applied to describe the 

behavior of a complex process such as tumorigenesis. Before 
analyzing the temporal sequential data points, the data should 
initially be normalized by either log-transforming or by divid-
ing each value by their mean or by their steady-state value 
across total time interval.

For the analysis of high-dimensional time evolution data 
analysis, the available steps are given in the following sections.

Intuitively, visualize the data and make a rough sketch of scat-
ter plot of each time point in the data set.12,14 The next step is to 
graph the time series of the independent values to the dependent 
ones, and then check what the function looks like using com-
puter programs. The packages MATLAB, Pylab, and 
Mathematica have such programs. Is the graph linear or polyno-
mial (quadratic, cubic, or quartic, or higher order)? Is it periodic 
trigonometric, or is it power or exponential function? The expo-
nential function grows much faster than the power function and 
is of interest because it occurs very frequently in mathematical 
models of nature. Finally, is there a need to reflect, shift, stretch, 
or compress the function to obtain the desired graph?

Ordinary least square regression.  We build and graph the ordi-
nary least square (OLS) that allows us to deduce the model 
with the use of a graphing computer, and the best fitting poly-
nomial is chosen. Now the question is, “How tight is the fit?” 
To get the perfect fit, we use the coefficient of determination or 
R2 value for test data. This coefficient is dimensionless and 
scale independent with a range from 0 (worst) to 1 (best). The 
higher range of this coefficient means that the model fits 
tightly and that it explains most the variability in the estimates. 
So we select a model that has the highest R2 value.

Bayesian computation of large data.  This approach seeks to infer 
the parameters from the available observations. Bayesian clas-
sification can be used to classify the function (output) of vari-
able attributes, numeric or categorical, based on the highest 
computer probability (likelihood) of the class that explains the 
given observations. The maximum likelihood is then chosen 
that explains the single best parameter which maximizes the 
observed data. Because writing the posterior distribution ana-
lytically becomes intractable in these cases, it will be necessary 
to use computational approaches, such as MCMC techniques 
which will be outlined later.42,43 For instance, it is an approach 
that is suitable to address differential gene expression.23 In the 
inferential statistics, the biggest impediment is that the prior or 
the apriori likelihood of a class (ie, without knowing the cur-
rent attributes) remains unidentified. The other hindrance is 
that Bayesian classifier cannot differentiate classes if the attrib-
utes are correlated (ie, multicollinearity) with similar distribu-
tion parameters’ PDFs.

Solving the problem of multicollinearity.  When we are dealing 
with too many variables, which is often the case in cancer 
research, multicollinearity may be a problem. Multicollinearity 
means that a large set of potential covariates exist, and that 
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those variables are highly correlated with high variance between 
samples and with completely different values of the regression 
coefficients. In an ideal data set, we need high variations 
between the elements, meaning the diagonals of the data 
regression matrix, but we want small covariations, meaning all 
off-diagonal entries of the matrix. In that situation, neither 
OLS nor t test should be used.

What do we do if there is a problem with multicollinearity? 
The standard approach is to eliminate the variables that are 
closely correlated with the other variables and do not include 
them in the model.

Ridge regression is the preferred method, however, and more 
importantly, it is only used as diagnostic for multicollinearity. 
Here, we inflate the variances of the diagonals’ matrix by a 
small “bias factor,” less than 1 to match the covariance. If the 
coefficients of the independent variables change in magnitude 
or if they flip in sign when compared with those in the original 
OLS, then we chose the smallest amount of bias factor that 
keeps the slope estimates relatively stable.

The second method is using the principal component anal-
ysis (PCA) in which each sample is displayed and graphed. The 
distances (variability) between data points are represented on 
the coordinates in this graph. The largest distances provide 
information about the network’s dominant properties. 
Unfortunately, these variabilities are completely decorrelated 
from each other, making this method too difficult to interpret, 
and the correlation with the original data becomes meaning-
less. Of note, in light of the fact that signaling networks are 
dynamic and nonlinear due to multiple feedback loops and that 
some are oscillatory, PCA-based methods cannot be applied in 
these sinusoidal mode behaviors.

The third method is “Centering.” This is done by rescaling, 
ie, by subtracting each dependent variable or attribute from the 
mean. Its disadvantage is that it applies only when we have very 
few interaction terms.

Finally, if the number of relevant variables surpasses the 
number of available observations, then the least absolute 
shrinkage and selection operator (LASSO) regression should 
be used to achieve sparsity.44 The LASSO further reduces the 
coefficients of regression by eliminating the ones with zero val-
ues and keeping the nonzero ones thus achieving sparsity and 
therefore there will be fewer features to keep in the model.

In silico validation.  All models need to be validated before 
applying them for long-term prediction.43,45

Due to the presence of noise (or error) in estimating the 
parameters, we cross-validate to determine whether the model 
can be applied to an independent data set in the real world. 
This is done by splitting the data into a training data set and a 
testing data set. The next step is to choose the set with the low-
est error. Then, the simplest model possible not only accounts 
for the data at hand but also predicts new data effectively. 
Other ideas based on cross-validation include use of resam-

pling to directly estimate the prediction error and leave-one-
out cross-validation when the data set is not too large.

MCMC technique and simulation.  The MCMC is actually sim-
ilar to a random walk that models each state at each time point 
as a linear process that proceeds in steps. When the next step 
occurs, the process can be in the same state or moves to another 
state. All movements between states are represented by a prob-
ability and the sum of each state’s probability must add up to 
one. This model will find the probability of being in the final 
steady state many steps into the process.4 The time that each 
process spent in each state before it jumps to the next state has 
an exponentially distributed waiting time or a Poisson distribu-
tion, for example, reading off the DNA template by RNA 
polymerase.

The results from the analysis that is based on only few 
observations can be highly subjective because the analysis could 
have missed other possibilities. For the inquiry to be more reli-
able or more accurate to simulate reality, we must figure out the 
PDFs of each unknown feature. A more precise analysis is done 
by computer simulation in which the computer generates, for 
each unknown factor, a random number that is between 0 and 
1. The simulation applies each random number to each 
unknown factor’s PDF and finds the value corresponding to 
the random number PDF. The process is repeated to predict 
the final distribution. Running numerous iterations including 
random number sampling to simulate a noise model can be 
applied. This method leaves us better informed about the final 
decision because it is based on all possible outcomes and not 
only restricted to a very few.

Applications of Basic Tools in Computational 
Modeling of Tumorigenesis
Quantitative modeling of complex gene regulation 
in eukaryote from proteomic data

A unifying model of carcinogenesis implicates the induction of 
genetic instability (somatic mutations), inflammation, and the 
release of microenvironmental forces. Specifically, these are the 
regions of intermittent and chronic hypoxia, ROS, and the aci-
dotic milieu generated by active glycolysis. The synergistic 
action of those processes feed backs DNA genotoxicity and 
increases the accumulation of further mutations, inflammation, 
immune suppression, and tumor growth. Furthermore, cell 
death response is inhibited, and more hypoxia-induced glycol-
ysis and acidosis accumulate.46 The dynamics of somatic muta-
tions can be modeled as the main drivers of carcinogenesis.47 
Once mutation rate of a particular gene has been known, the 
alteration likelihood of cardinal signaling pathway can then be 
defined.48 These signaling pathways are involved in balancing 
energy requirement, survival, cell cycle progression through the 
restriction point, and the biomass formation.

The transition between on-and-off gene activities is consid-
ered a stochastic multistep process. This switch depends on a 
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set of sequentially assembled factors for histone modifications. 
Its description includes a specific Markovian chain. Assuming 
that the lifetime of mRNAs is short compared with that of 
proteins, it can be integrated out; then, the burst size is geo-
metrically distributed and the initiation waiting time of the on-
state is exponential. As observed experimentally available from 
single cell data, proteins are produced in random bursts result-
ing in a gamma-distributed steady-state protein concentration 
and exponentially distributed number of protein molecules per 
burst.

Gamma distribution in this context depends on 2 parame-
ters: the burst size and the mean number of proteins produced 
per burst. Analytical solution to stochasticity in gene expres-
sion can then be linked to the steady-state distribution of a 
given protein concentration in a cell population.26

Computational analysis of nonlinear oncogenic and 
inflammatory signals

To identify the key component of a biological system, a basic 
numerical method is used which approximates the curve func-
tion with a series of slopes (rate of change of the reaction) to 
monitor a species concentration over time.21 There are other 
more advanced numerical integration of complex reactions 
with Michaelis-Menten kinetics and comprising multiple bio-
chemical species that concurrently solves all ODEs of the sys-
tem’s attributes.49

The binding of ligand to receptors such as the insulinlike 
growth factor or to the epidermal growth factor allows the acti-
vation of various signaling pathways such as the PI3K-AKT, 
EGF, and MAPK/ERK pathway. MAPK maintains energy 
balance at both the cellular level and whole body level. It moni-
tors the cellular ratios of AMP/ATP and ADP/ATP.

Mammalian target of rapamycin complex 1 (mTORC1) is a 
serine/threonine kinase that promotes ribosomal protein syn-
thesis and controls cellular growth by monitoring nutrient 
availability, cellular energy status, oxygen levels, and mitogenic 
signals. Activation of mTORC1 is achieved through phos-
phatidylinositol 3-kinase and AKT. Aberrant activation of the 
mTORC1 pathway has been implicated in a variety of cancers. 
The E2F-RB pathway controls the G1-to-S-phase transition 
through the restriction point by the timely activation of genes 
involved in DNA synthesis and cell cycle control. Experimental 
evidence, based on regression-type analyses, show that E2F-RB 
pathway is a nonlinear bistable switch.50 The switch is gener-
ated by 2 positive feedback loops. As we learned this notion 
before, bimodularity—meaning high and low different concen-
trations in different cells—is produced by stochastic fluctua-
tions of protein concentrations. Activation by growth factors 
stimulation relieves inhibition of the transcription factor E2F 
by RB and allows the migration of E2F through a cascade of 
events leading to the activation of multiple target genes and 
cellular proliferation. The most common genetically mutated 

pathways in human malignancies are the E2F-RB pathway 
and the p53 tumor suppressor pathway.

Inflammation involves multiple signaling pathways. When 
applied to time series data in the blood, PCA can identify the 
critical drivers of inflammatory phenotype that have most 
influence on cancer progression. The transcription factor 
NF-κB is particularly important in the regulation of inflam-
mation, apoptosis, and proliferation in cancer cells. Inducers of 
NF-κB include inflammatory cytokines, growth factors, 
lipopolysaccharide, oxidative stress, and viral products. 
Experimental and computer simulation implicated NF-κB in 
the control of TNF-induced apoptosis of the inflamed tissues.

Monte Carlo strategy, using sampling to generate random 
sets of parameter values for simulations, then recapitulates in 
silico key feature of the inflammatory mediators’ dynamic. 
Computationally, this involves the concentration for each com-
ponent and the kinetic rates for interactions to be determined. 
Data quantification of time series parameters is essential for 
prediction accuracy, and nonlinear ODE of biochemical path-
ways is then applied for that purpose.

Dynamic Bayesian networks are great frameworks to infer 
such large network interactions by determining how well the 
network can explain observed data. For pairwise nonsequential 
sampling of nonlinear systems (contained in the dependent 
and independent variables), DMD provides the best-fit linear 
approximation. In this method, computation can still identify 
the relationship between future and past values of time series 
data taken from multiple runs of an experiment to reduce the 
noise.24,25,51 Dynamic mode decomposition is similar to the 
difference equation in which the recursive sampling for the 
data migrates the values of a parameter to the origin becoming 
sufficiently stationary. Dynamic mode decomposition is used 
to lower dimensions for dynamical systems with irregular time 
interval by collecting only few snapshots.

Ordinary least square and ridge regression both have draw-
backs based on low predictive accuracy. Furthermore, they 
should be used only in linear dynamics. If moderate-sized 
effects in a large biologic data, Lasso is best.44

Computational modeling of metabolic energetics 
and the immune response

In all living organisms, metabolites are derived from only 12 
precursor metabolites such as glucose-6-P, ribose-5-P, fruc-
tose-6-P, erythrose-4-P, glyceraldehyde-3-P, oxaloacetate, 
3-P-glycerate, P-enolpyruvate, 2-oxyglutarate, pyruvate, succi-
nyl-CoA, and acetyl-CoA. Their biosynthesis requires the use 
of 3 pairs of cofactors such as ATP/ADP, NADH/NAD, and 
NADPH/NADP. In addition, there are approximately 50 
building blocks which need to be included in any mathematical 
model chosen.52

The enzyme pyruvate kinase (PMK) isoform 2 catalyzes 
the crucial step in glycolysis, thus facilitating the switch from 
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oxidative phosphorylation to glucose metabolism and gener-
ating ATPs in cancer cells (Warburg effect). Nuclear translo-
cation of PMK2 reprogramming is both activated by and 
activates hypoxia-inducible factor 1–dependent transcrip-
tion. Both phosphofructokinase and PMK2 have been shown 
to generate glucose metabolic transition mediated by lactate 
and AKT.

Certain enzymes play critical roles in the metabolism of 
cancer. ALDH3B1 acts against oxidative stress derived from 
lipid peroxidation. IDO1 is involved in tryptophan metabolism 
and immune suppression.3

The citric acid cycle is catalyzed by 8 enzymes of which 
α-ketoglutarate dehydrogenase has the lowest activity and 
thus is considered the rate-limiting enzyme in the cycle. 
Computational modeling of the mitochondrial respiratory 
and energy metabolism encompasses integrating a series of 
ODEs for each state variable with respect to time. Model 
simulation is run till it reaches a steady state. The basic com-
ponents included in the model are the reactions at electron 
and substrates (ATP/ADP/AMP) transport system and the 
transporters/antiporters of K+/H+ cations with their own 
parameter values.53

Flux balance analysis is also available for dynamic simula-
tion. Flux balance analysis is a mathematical model that uses 
the flow of metabolites through a stoichiometric metabolic 
network.54

The overcoming of immune incursion can be described by 
the predator-prey iterations (logistic function type model as 
we noted earlier) that is simulated by a population-based 
model between tumor and immune cells.54 To accommodate 
their energy needs, immune cells use the glycolytic pathways. 
The immune check point ligand present on cancer cells can 
suppress the immune cells check point proteins and the gly-
colytic signaling pathways such as AKT and mTOR. This 
process impairs immune cells and leads to promoting cancer 
progression.55

Study of biological oscillators
Sustained oscillations of interacting proteins or genes could be 
generated by negative feedback loops. Many biological oscilla-
tors including p53, cell cycle, RB-E2F, NF-κB, and cardiac and 
circadian rhythms also have positive feedback loops. The feed-
back loops transform the p53 responses from periodic pulses to 
a single sustained pulse. The p53 has major roles in genomic 
stability. In response to DNA damage, p53 can show a tran-
sient response leading to cell cycle arrest and DNA repair.54 
Pulsatile responses induce cell apoptosis, and sustained 
responses mainly trigger senescence. The additional loops have 
been shown, through computational studies and tested using 
Monte Carlo approach, to impart some performance advan-
tages over simple negative feedback loops. Positive-plus-
negative oscillations appear to be more robust and to have 
better adjustable frequency without compromising output. The 

parameterized oscillator models were simulated over a wide 
range of the Hill function coefficients.56

Epithelial-mesenchymal transition

In cancer, epithelial-mesenchymal transition (EMT) is a nec-
essary switch from an epithelial to a mesenchymal phenotype 
that enhances metastatic cell dissemination. Different path-
ways, a variety of transcription factors and microRNAs (miR-
NAs), have been shown to activate EMT, including TGF-β, 
p53, NF-κB, WNT, Notch, EGF receptor (EGFR), and 
Hedgehog. Transcriptomic analysis has revealed that TGF-β is 
a master regulator of EMT.57 The EGFR is most frequently 
altered in cancer through either overexpression or mutation. 
The ROS, high in hypoxic condition, leads to an enhanced 
production of TGF-β. Recent works focused more on compu-
tational systems biology models of EMT rather than on the 
kinetics of individual players in the network and have eluci-
dated the underlying mechanisms of this transition.54,58

Epithelial-mesenchymal transition is regulated by interca-
lated systems of 2 positive and 2 negative feedback loops 
between miR-mediated reactions (including translational reg-
ulation, alternative splicing, and epigenetic modifiers) and 
EMT-inducing transcription factors such as ZEB1/2, 
SNAIL1/2, and TWIST1. Activation of EGFR induces high 
miR/low ZEB levels (epithelial phenotype), and TGF-β 
induces high ZEB/low miR levels (mesenchymal phenotype). 
The combination of these states can produce a multistable 
EMT phenotype.54

Total integration of multi “omics” data

To acquire the expected value of a continuous variable, we inte-
grate the nonzero values of the variable times the probability 
mass density (PMD). For a discrete and random variable, we 
use a sum instead of an integral. Getting PMD requires 2 steps: 
identifying the type of function by reviewing the data graph 
and then we look up the table of moment-generating function 
(MGF). The probability distribution of a random variable is 
uniquely determined by MGF.

Analyzing complex biological systems such as cancer com-
prises high-dimensional global sets. These data include sto-
chastic genome transcriptions, epigenetic alterations, proteome, 
metabolome, and signaling molecules. These biological systems 
and their interactions maintain phenotype stability and robust-
ness which are strongly chosen by evolution. Positive feedback 
enhances sensitivity, whereas negative feedback dampens 
diverse perturbations imposed by the environment ensuring 
stability for homeostasis.59

Both normal and cancerous cells use time integral of the 
error which is fed back into the system. The error is the differ-
ence between the actual output and the desired steady-state 
output. This type of control maintains the error as low as pos-
sible despite perturbations in the input.60
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Because the examined number of independent variables is 
very high and the number of their associated samples is low, a 
proposed and easy model based on nonlinear regression can be 
implemented. When the system is first linearized and then its 
transfer function is determined, the other efficient algorithm 
uses an iterative approximation to estimate a solution for a sys-
tem of linear equations. In a manner similar to autoregression 
algorithm, we use the efficient and preferred Gauss-Seidel 
method with an initial guess value to solve system of equations 
iteratively in which convergence is guaranteed if the matrix of 
coefficients is square and diagonally dominant. If no conver-
gence, then we use stopping criteria in percentage. The other 
method is a finite difference method where the systems 
unknowns are solved simultaneously knowing the boundary 
constraints values.

Protein-protein interactions with a functional role can be 
selected based on their degree of centrality.61 Network inter-
connections that are responsible for the behavior of the cell are 
dominated by a power-law degree distribution indicating that 
a few hubs hold the most redistribution points and enzymes are 
considered in their links.62 The networks include protein- 
protein interactions, metabolic, signaling, and transcription-
regulatory networks. Deciding which species are to be included 
in the evaluation of kinetic data is crucial. It should be based on 
both the previously accumulated experimental research in the 
literature and the theoretical intuitive considerations.

Conclusions and Outlook
The intricately connected genetic somatic mutations/epige-
netic alterations and the environmental cues differentially 
affect cancer initiation and clonal expansion making cancer 
an intriguing disease to decipher.1–3,63 The extensive pro-
gress that has elucidated the complex biological functions 
necessary for cellular communications has led to improve-
ment in our understanding related to cell cancer survival 
and proliferation.3

For example, to simulate temporal dynamics of molecular 
networks in cancer, kinetic modeling has revealed transient, 
oscillatory, sustained, or toggle-switch-like systems properties 
among cancer regulatory networks. In these situations, it is cru-
cial to identify the nodes that control this dynamic circuitry. 
These different specific adaptation states and response dynam-
ics depend greatly on the amplitude and duration of signals as 
well as the different feedback adjustments.

A high-throughput biological technology has resulted in a 
large amount of high-dimensional data that we are only now 
starting to investigate cancer as an entire system.42,43

Is mathematical modeling all that is needed to simulate the 
real world?63 The answer is not conclusive because interaction 
with environmental factors and other as yet unknown processes 
remains not well understood. Furthermore, it remains unclear 
whether what we are modeling captures the essence of how can-
cer cells operate. The answer is becoming increasingly distinct, 
in the near future. With further refinement in mathematical 

modeling as outlined in this review and experimental validation, 
it may become even pure.
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