
Citation: Qabalin, M.K.; Naser, M.;

Alkasassbeh, M. Android Spyware

Detection Using Machine Learning:

A Novel Dataset. Sensors 2022, 22,

5765. https://doi.org/10.3390/

s22155765

Academic Editors: Jose

Manuel Molina López and

Nikos Fotiou

Received: 8 June 2022

Accepted: 29 July 2022

Published: 2 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Android Spyware Detection Using Machine Learning:
A Novel Dataset
Majdi K. Qabalin * , Muawya Naser and Mouhammd Alkasassbeh

Department of Computer Science, Princess Sumaya University for Technology, Amman 11941, Jordan;
m.aldalaien@psut.edu.jo (M.N.); m.alkasassbeh@psut.edu.jo (M.A.)
* Correspondence: maj20208012@std.psut.edu.jo

Abstract: Smartphones are an essential part of all aspects of our lives. Socially, politically, and
commercially, there is almost complete reliance on smartphones as a communication tool, a source
of information, and for entertainment. Rapid developments in the world of information and cyber
security have necessitated close attention to the privacy and protection of smartphone data. Spyware
detection systems have recently been developed as a promising and encouraging solution for smart-
phone users’ privacy protection. The Android operating system is the most widely used worldwide,
making it a significant target for many parties interested in targeting smartphone users’ privacy. This
paper introduces a novel dataset collected in a realistic environment, obtained through a novel data
collection methodology based on a unified activity list. The data are divided into three main classes:
the first class represents normal smartphone traffic; the second class represents traffic data for the
spyware installation process; finally, the third class represents spyware operation traffic data. The
random forest classification algorithm was adopted to validate this dataset and the proposed model.
Two methodologies were adopted for data classification: binary-class and multi-class classification.
Good results were achieved in terms of accuracy. The overall average accuracy was 79% for the
binary-class classification, and 77% for the multi-class classification. In the multi-class approach,
the detection accuracy for spyware systems (UMobix, TheWiSPY, MobileSPY, FlexiSPY, and mSPY)
was 90%, 83.7%, 69.3%, 69.2%, and 73.4%, respectively; in binary-class classification, the detection
accuracy for spyware systems (UMobix, TheWiSPY, MobileSPY, FlexiSPY, and mSPY) was 93.9%,
85.63%, 71%, 72.3%, and 75.96%; respectively.

Keywords: spyware; spying systems; stalkerware; machine learning; random forest; privacy;
spyware dataset

1. Introduction

Spyware detection is the process of identifying programs that collect data for the
purpose of espionage activity [1]. Smartphones are becoming an essential requirement of
daily life. By 2023, it is expected that there will be four billion people using smartphones.
The Android operating system is the most extensively utilized in the mobile devices market.
In May 2021, it had a 70% share of the market. Apple iOS has 26.99 percent of the market
share; other smaller suppliers make up the remaining 3 percent [2]. The official applications
store for Android smartphones is Google Play. As of May 2021, there were more than
2.9 million applications on it. Of these, AppBrain categorizes 2.5 million as “normal
applications” and the remaining 0.4 million as “low-quality apps”. Viruses and malware
are more likely to attack Android systems because of their extensive distribution, making
it an easier target for thieves. Various strategies for identifying these attacks have been
presented, and machine learning is among the most notable. This is because machine
learning algorithms may generate a classifier from a complex collection of instances. By
using examples instead of defining signatures directly, spyware detectors might avoid
having to write more code. It is a difficult and time-consuming process to come up with

Sensors 2022, 22, 5765. https://doi.org/10.3390/s22155765 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22155765
https://doi.org/10.3390/s22155765
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5582-5390
https://orcid.org/0000-0001-8396-7441
https://doi.org/10.3390/s22155765
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22155765?type=check_update&version=1

Sensors 2022, 22, 5765 2 of 25

signature definitions for all possible attack situations, and although there may be no clear
rules (signatures) for some of them, examples may be found very simply, which is the main
concept in machine learning [3].

Since the first android smartphones were introduced with Android 1.6 Donut, An-
droid’s internal security has significantly improved. Since the introduction of Google Play
Protect, the privileges of applications have been substantially reduced since they now
have to directly obtain all permissions from the user. Security has also been relocated to a
separate, updatable component that is not tied to a specific vendor [4].

However, the ability to install applications (apps) from untrusted sites is a security
vulnerability that exists in recent Android versions. This is a true “window of opportunity”
for hackers. For this reason, a slew of third-party platforms for the distribution of Android
applications has appeared. Downloads from these sites vary from famous software clones
to various spyware classes. In addition to the platform, however, there are other dangers.
Apps may also be loaded and installed into the system using the client that works with it,
similar to the official “Google Play” client. Allowing the installation of these applications
actually provides a wide scope for violating the privacy of the smartphone, and the numbers
confirm this, according to a report by Kaspersky [5]. In the past two years, attacks against
Android phones have increased dramatically, as shown in Figure 1.

Sensors 2022, 22, x FOR PEER REVIEW 2 of 28

having to write more code. It is a difficult and time-consuming process to come up with
signature definitions for all possible attack situations, and although there may be no clear
rules (signatures) for some of them, examples may be found very simply, which is the
main concept in machine learning [3].

Since the first android smartphones were introduced with Android 1.6 Donut, An-
droid’s internal security has significantly improved. Since the introduction of Google Play
Protect, the privileges of applications have been substantially reduced since they now
have to directly obtain all permissions from the user. Security has also been relocated to a
separate, updatable component that is not tied to a specific vendor [4].

However, the ability to install applications (apps) from untrusted sites is a security
vulnerability that exists in recent Android versions. This is a true “window of oppor-
tunity” for hackers. For this reason, a slew of third-party platforms for the distribution of
Android applications has appeared. Downloads from these sites vary from famous soft-
ware clones to various spyware classes. In addition to the platform, however, there are
other dangers. Apps may also be loaded and installed into the system using the client that
works with it, similar to the official “Google Play” client. Allowing the installation of these
applications actually provides a wide scope for violating the privacy of the smartphone,
and the numbers confirm this, according to a report by Kaspersky [5]. In the past two
years, attacks against Android phones have increased dramatically, as shown in Figure 1.

Figure 1. Number of cyberattacks against Kaspersky Android mobile solutions users 2020–2021
[5].

One of the most common complications that causes scientific confusion is the failure
to clarify the exact difference between malware and spyware. In terms of technical opera-
tions, the technical details of malware differ from spyware, even if spyware is a subclass
of malware [6]. Therefore, it is impossible to rely on malware datasets to propose detection
models through machine learning capable of detecting commercial or non-commercial
spyware systems. According to Kaspersky, spyware is informally described as harmful
software meant to penetrate your computer or mobile device, capture data about you, and
transfer it to a third party without your knowledge [7]. In today’s world, spyware is one
of the most prevalent dangers to organizations and individuals alike on the internet since
it can steal and harm vital data; personal information is collected and sent to advertising,
data businesses, or other external users through spyware [8].

The term malware refers to software installed without the user’s permission with the
express purpose of causing harm to or destroying systems. Malware is any malicious pro-
gram that is meant to damage your computer. Cybercriminals use malware to obtain ille-
gal access to a system, destroy your data, or even lock your machine. Malware often func-

Figure 1. Number of cyberattacks against Kaspersky Android mobile solutions users 2020–2021 [5].

One of the most common complications that causes scientific confusion is the failure to
clarify the exact difference between malware and spyware. In terms of technical operations,
the technical details of malware differ from spyware, even if spyware is a subclass of
malware [6]. Therefore, it is impossible to rely on malware datasets to propose detection
models through machine learning capable of detecting commercial or non-commercial
spyware systems. According to Kaspersky, spyware is informally described as harmful
software meant to penetrate your computer or mobile device, capture data about you, and
transfer it to a third party without your knowledge [7]. In today’s world, spyware is one
of the most prevalent dangers to organizations and individuals alike on the internet since
it can steal and harm vital data; personal information is collected and sent to advertising,
data businesses, or other external users through spyware [8].

The term malware refers to software installed without the user’s permission with
the express purpose of causing harm to or destroying systems. Malware is any malicious
program that is meant to damage your computer. Cybercriminals use malware to obtain
illegal access to a system, destroy your data, or even lock your machine. Malware often
functions unnoticed, and you will not realize that your machine is infected until after the
damage has been done. Thus, the word malware is used to describe a wide variety of
malicious software, such as viruses, ransomware, spyware, trojans, adware, stalkerware,
and scareware) [9].

Sensors 2022, 22, 5765 3 of 25

It important to explain methodologies used in spyware detection models in term
of analysis, detection, and deployment. Spyware is purposely created to spy on the
mobile device without the smartphone user’s knowledge. One of the main problems in
spyware detection systems is that they do not actually depend on analyzing the behavior
of applications and only rely on superficial information related to the digital signature of
these applications [10].

Some approaches have been developed to assist researchers in detecting and over-
coming the existence of spyware. Therefore, before addressing these studies, we must
talk about the basic architecture on which those studies were built. Figure 2 describes the
various spyware detection approaches [11].

Sensors 2022, 22, x FOR PEER REVIEW 3 of 28

tions unnoticed, and you will not realize that your machine is infected until after the dam-
age has been done. Thus, the word malware is used to describe a wide variety of malicious
software, such as viruses, ransomware, spyware, trojans, adware, stalkerware, and scare-
ware) [9].

It important to explain methodologies used in spyware detection models in term of
analysis, detection, and deployment. Spyware is purposely created to spy on the mobile
device without the smartphone user’s knowledge. One of the main problems in spyware
detection systems is that they do not actually depend on analyzing the behavior of appli-
cations and only rely on superficial information related to the digital signature of these
applications [10].

Some approaches have been developed to assist researchers in detecting and over-
coming the existence of spyware. Therefore, before addressing these studies, we must talk
about the basic architecture on which those studies were built. Figure 2 describes the var-
ious spyware detection approaches [11].

Figure 2. Spyware detection approaches.

Analysis techniques can be classified under two approaches, dynamic and static. The
analysis technique represents the way in which the detection system handles the analysis
phase. Static and dynamic approaches will be explained in detail [12]. Detection ap-
proaches, in general, can be classified under three classes: anomaly, which depends on the
behavior of the spyware; a signature-based class, which depends on spyware milestones;
and finally—the most successful model—the hybrid model, which adopts both anomaly
and signature. For the deployment, there are three cases in which the detection ap-
proaches can be used: host-based, in which the detection system works on the target de-
vice; network-based, which depends on the processing of data through the network infra-
structure; and hybrid-based, which adopts both host-based and network-based with strict
conditions [13].

AI includes a subfield called “machine learning” that aims to mimic the learning pro-
cess of humans by using data and improve its accuracy over time. Analytical model con-
struction is automated via the use of machine learning. In this field of AI, computers are
trained to learn from data, recognize patterns, and make choices on their own with the
lower amount of human input possible. Data science is becoming more dependent on ma-
chine learning. In data mining projects, algorithms may be taught to generate classifica-
tions and predictions using statistical approaches [14].

This study aims to present a novel dataset for the most advanced Android-based
spywares that are commercially available. In addition, it presents a proposed detection
model based on that dataset. Therefore, the objectives of this work can be summarized as
follows:

Figure 2. Spyware detection approaches.

Analysis techniques can be classified under two approaches, dynamic and static.
The analysis technique represents the way in which the detection system handles the
analysis phase. Static and dynamic approaches will be explained in detail [12]. Detection
approaches, in general, can be classified under three classes: anomaly, which depends on
the behavior of the spyware; a signature-based class, which depends on spyware milestones;
and finally—the most successful model—the hybrid model, which adopts both anomaly
and signature. For the deployment, there are three cases in which the detection approaches
can be used: host-based, in which the detection system works on the target device; network-
based, which depends on the processing of data through the network infrastructure; and
hybrid-based, which adopts both host-based and network-based with strict conditions [13].

AI includes a subfield called “machine learning” that aims to mimic the learning
process of humans by using data and improve its accuracy over time. Analytical model
construction is automated via the use of machine learning. In this field of AI, computers
are trained to learn from data, recognize patterns, and make choices on their own with
the lower amount of human input possible. Data science is becoming more dependent
on machine learning. In data mining projects, algorithms may be taught to generate
classifications and predictions using statistical approaches [14].

This study aims to present a novel dataset for the most advanced Android-based
spywares that are commercially available. In addition, it presents a proposed detection
model based on that dataset. Therefore, the objectives of this work can be summarized
as follows:

• First, provide a profound understanding of the concept of spyware and common
headlines about spyware detection approaches.

• Second, discuss literature review that proposed Android-based spyware detection
model approaches. To understand the knowledge gap and determine the weakness of
each of these studies.

• Third, create a novel benchmark dataset based on a unified activity list for the top five
advanced spyware systems (UMobix, TheWiSPY, MobileSPY, FlexiSPY, and mSPY).

Sensors 2022, 22, 5765 4 of 25

The dataset includes network traffic data collected in two phases: the installation
phase and the operation phase.

• Fourth, evaluating and discussing the experimental results of the proposed detection
model regarding the F-measure, true positive rate, and accuracy. A proposed model is
conducted based on a novel dataset.

• Ultimately, validate the novel dataset legibility using a confusion matrix analysis.

The main contribution of this paper is the dataset itself, along with the dataset collec-
tion methodology; further, a detection model for Android-based spyware is proposed.

2. Background and Related Works

Because of the lack of technical information and the difficulty of obtaining technical
reports about advanced spyware systems for smartphones, there are a limited number of
studies that mention the advanced spyware systems targeted in this paper, and a large
part of the research confuses malware and spyware. Therefore, a literature review of
Android spyware is a critical analysis of the extant literature on a topic. Such a review
aims to synthesize what has been learned from past research and provide insight into
future research. Four common approaches to a structure literature review are chronological,
thematic, methodological, and theoretical. In our case, the thematic structure is the most
optimal. We have arranged our data depending on the relevance and significance of the
many literature sources we have gathered.

The FlexiSPY, Mobilespy, mSPY, TheWiSPY, and UMobix spyware tools are the spy-
ware apps targeted explicitly in this study and any other commercial spyware tool men-
tioned belongs to the same classification. The following methodology was adopted to select
research papers related to the literature review: A title keyword-based search on “Android”
and “Spyware” was conducted, along with a content keyword-based search on “FlexiSPY,
Mobilespy, mSPY, TheWiSPY, and UMobix”.

Using network traffic analysis, Conti et al. [15] proposed what can be considered
the first Android-based detection model based on network traffic. The rooting approach
provides applications with extensive authority over the mobile phone. This is one of
the most significant technical flaws in this study regarding the data collection phase, as
this research does collect network traffic from Android devices without root permissions.
Depending on whether the phone is rooted or not, the network data collected by a spying
system will differ. Therefore, the data collected cannot be relied on. As for the iOS phones,
the research does not mention technical limitations that restrict mSPY from accessing
iCloud data only. This study did not address other applications from the same class and
only focused on “mSPY”. Additionally, it is essential to note that the study did not address
the issue of the mSPY program’s accessibility to social networking applications, such
as WhatsApp, where numerous technical details are reported and not included in the
study [16].

Using Aspect droid, Ali-Gombe et al. [17] developed an application-level approach to
investigate Android apps for potential malicious behavior. A study proposes spying on
Android applications to detect if they are adopting spying activities. This study does not
include any datasets and is limited to application-level scenarios.

Saad et al. [18] proposed monitoring the permissions requested by the application
and classifying the applications as malicious and healthy accordingly. This study did
not provide real solutions for collecting and analyzing network traffic data and relied
on a simple and basic way of analyzing the required permissions. The significant gap in
this research is that spyware applications work in the case of rooting. In this case, the
permissions granted to the application cannot be known. Thus, it cannot be relied upon to
detect the mentioned spying apps.

Carlsson et al. [19] describe an app called KAUDroid that monitors smartphone
permission requests. A web interface provides access to information about user permissions.
This was an attempt to analyze the permissions of the applications rather than provide any

Sensors 2022, 22, 5765 5 of 25

real meaning for detecting spying tools. As we have said before, the permissions granted to
applications can no longer be trusted with the new spyware mechanism of action in place.

The research of Abualola et al. [20] addressed the spying problem by following up and
monitoring notifications. In order to gain access to incoming messages, spy systems rely
on notifications. Encryption prevents them from being retrieved from the phone’s internal
application databases. Advanced spyware exploits the notification to obtain sensitive
messages because the messages remain locally encrypted on the phone. Researchers tested
the Galaxy S4 with two different Android versions, 4.3 and 5.0, to see if any malware
was present. Several popular apps were tested for their ability to spy on other people’s
conversations. It was found that, WhatsApp and Facebook Messenger notifications content
could only be taken from Android devices running Android 4.3 or lower. In both Android
4.3 and Android 5.0, however, BBM and SMS messages can be sent to the attacker.

The primary goal of Pierazzi et al. [21]’s research was to develop a model that char-
acterizes spyware. In their research, malware and spyware were relied upon without
distinguishing between them. As clearly stated in this research, researchers relied on the
following malware: RACE-CARD, HEHE, PINCER UAPUSH, and USBCLEAVER. How-
ever, the stated malware tools are entirely different from the spyware applications that
spy on Android smartphones and cannot be relied upon for building a spyware detection
model. For example, they can only collect limited information about social media services
such as Facebook or bank accounts, and their functions are minimal. Using VirusTotal, they
have downloaded about 5000 spyware tools. Most of the tools that have been reported for
VirusTotal service include many samples between malware and spyware, and they do not
include spy tools or complete spying systems. As a result, even if attributes are extracted
uniquely, there will be no actual accurate data.

Han et al. [22] proposed a model to detect some of the most common attacks related
to malware, the FARM (Feature transformation-based AndRoid Malware) detector. It is
important to note that they have significantly contributed to the assembly of three new and
diverse classes of feature transformations that permanently transform Android malware
prediction’s original feature space. There are three types of transformations: landmark-
based, feature-clustering-based, and correlation graph-based. In addition, numerous tests
combining the new characteristics with those of standard detectors and a post-fusion phase
were assumed as the second contribution. For that study, they tested the FARM strategy
with six different types of Android malware: rooting applications vs. goodware, rooting
applications vs. other malware, spyware vs. goodware, spyware vs. the other malware,
banking trojans vs. goodware, and other malware vs. banking trojans. FARM’s efficacy is
tested in a total of 12 different studies.

Compared to other baseline systems, FARM is nearly twice as resistant to these three
threats as the baseline systems. Furthermore, FARM discovered two rooting programs in
Android APKs before any of the 61 antiviruses on VirusTotal had done so. The data relied
upon in this study had nothing to do with spyware apps for Android phones [23].

Kaur et al. [24] proposed a detection framework based on description analysis, per-
mission mapping, and interface analysis. The researchers proposed gathering data from
three primary sources, description mapping, interface layout, and source code analysis,
along with all permissions gleaned from the XML file; thus, these data are used to create
pre-digital signatures for applications that may engage in espionage activities. This research
suggests relying on a broadcast receiver that issues an alert whenever a new or updated
application is installed or updated in the system. After receiving an alert, the recipient
locates the .apk file and uploads it to the server, even though the Play Store has hidden the
.apk file by default. A real-time server is required for this approach. Various programs are
scanned for malware using antivirus software, such as McAfee, Avira, and others.

In research by Vanjire et al. [25], digital samples or system calls were reviewed to
understand the malicious application’s runtime behavior. Because of the wide variety
of malware families and execution contexts, the system’s built-in malware detection and
threat classification capabilities can be used to identify threats. In addition, supervised

Sensors 2022, 22, 5765 6 of 25

machine learning methods are used to implement various threat alert strategies. They
make use of a behavioral report and a machine-learning algorithm. Subsequently, MDTA
was put through its paces in various datasets and environments. Data on spyware-related
comprehensive surveillance systems were missing from this study.

According to Sutter et al. [26], this research analyzed the background services on the
Android operating system and the activity of several applications that engage in spying
activity. The main problem in this research is that it does not depend on the data in actual
spyware applications such as those targeted in this research.

Malik et al. [27] developed a method called CREDROID, which can detect malicious
programs based on their DNS requests and the data they communicate to distant servers. It
is impossible to rely on the DNS requests to detect spying tools, as most advanced spying
systems periodically change their internet address and even the DNS records.

Anshul et al. [28] proposed a network traffic analyzer for malicious activities. This
detector will catch malware that operates on Android devices by taking advantage of
background connections. A problem that affects both Android and iOS users has to
be addressed.

Taylor et al. [29] suggested a detection model based on data from typical applications;
applications not classified as spying tools have been relied upon. Even if they transfer data
from the user’s device to an external server, it is all done with the user’s knowledge.

After conducting the previously explained methodology and reviewing mentioned
references, we concluded that:

• No dataset was found for such commercial spyware systems;
• No verifiable network-based detection model is available for such tools;
• Most of the research reviewed adopts permission-based parameters with no reliable model.

A complete analysis of the searches that were found according to the keyword search
mechanism that was adopted has been conducted. A summary of the reviewed state-of-art
is listed in Table 1.

Table 1. Summary of the reviewed state-of-art in this area of study.

Paper Dataset Type Permissions/Network Traffic Data Analysis

Conti et al. [15] Limited with only
one spying system Network traffic-based Machine learning-based

Ali-Gombe et al. [17] Malware only Permissions-based Statistical-based
Saad et al. [18] No dataset Permissions Fuzzy logic

Carlsson et al. [19] No dataset Permissions-based Statistical-based
Abualola et al. [20] Generic dataset Internal binary code-based Statistical-based
Pierazzi et al. [21] Generic dataset Permissions-based Machine learning-based

Han et al. [22] Malware only Internal binary code-based Machine learning-based
Kaur et al. [24] No dataset Internal binary code-based Machine learning-based

Vanjire et al. [25] Malware only Internal binary code-based Machine learning-based
Sutter et al. [26] No dataset Internal binary code-based Machine learning-based

Malik et al. [27] Limited with
simple spyware Network traffic-based Machine learning-based

Anshul et al. [28] Malware only Network traffic-based Machine learning-based
Taylor et al. [29] Generic dataset Network traffic-based Machine learning-based

3. Dataset

This section will be dedicated to discussing the dataset in terms of identification, the
mechanism of data collection, data preparation techniques, data structure, composition, and
finally to benchmark data. All dataset files will be shown in a detailed table, knowing that
dataset contents are available for public use for research purposes under CC BY 4.0 license.

3.1. Dataset Identification

This section will list the identification details about the dataset, title, data type, data
class, data source, targeted applications, data format, and other identification parameters
needed for the researchers. The dataset includes network traffic collected from five targeted
spyware applications used commercially. The hybrid deployment approach was conducted

Sensors 2022, 22, 5765 7 of 25

within the process of data collection. Each spyware application was activated within its full
features, and the smartphone used for data collection was rooted using “Dr. Fone Root”.

This dataset does not include any private data that violate the privacy of any person.
The data collection process considers all relevant laws and conforms with the legislation
listed within GDPR and PDPC regulations. The published version of this dataset will
include a written acknowledgment from the person(s) whose data may be contained in this
dataset that they have no objection to publishing any data that may lead to them in the
future. All dataset main identification parameters are listed in Table 2. The dataset content
is explained in detail within the next section.

Table 2. Dataset identification details.

Parameter Value

Dataset Title Android spyware
Data Type PCAP files, CSV files
Data Class Multivariate

Data Source Android-based spyware rools

Applications Targeted FlexiSPY, Mobilespy, mSPY, TheWiSPY, and
UMobix

Data Format PCAP files
Number of Files 24 files
Total Data Size 350 MB

Collection Strategy Unified activity list

Data Scope OSI layers 2–7; data link, network, transport,
session, presentation, and application

Deployment Approach Hybrid, host-based, and network-based
Time Constraints Unified time interval

Number of Classes Three classes: normal class, installation class,
and operation class

File Integrity MD5
License Type CC BY 4.0

Data Privacy Compliance GDPR, PDPC
Dataset Validation Technique Confusion matrix

Data Collection Tool PCAPDroid
Data Conversion Tool CICFlowMeter
Data Preparation Tool Tamr Unify

Data ML Analyzer Tool Weka
Other Tools Dr. Fone Root

3.2. Dataset Structure

In this section, we will list and explain the content of the novel dataset proposed in
this paper. We will list all the files within the dataset along with file details and hashes.
This dataset includes a total of 24 files of 350 MB. This dataset includes network traffic data
collected using a packet sniffer tool operated over an Android-based smartphone under
pre-defined rules and conditions. Spyware systems selected within this dataset are listed in
Table 3, with the relevant commercial and compatibility details.

Table 3. Spyware applications adopted in this research.

System Cost Compatibility

mSPY USD 240 Rooted, non-rooted
uMobix USD 320 Rooted

MobileSPY USD 230 Rooted
FlexiSPY USD 285 Rooted, non-rooted

TheWiSPY USD 325 Rooted, non-rooted

It was necessary to study these applications at the level of their internal design and
analyze the packages of these applications. For this purpose, the Apktool system was

Sensors 2022, 22, 5765 8 of 25

used. Apktool is a reverse engineering tool identifying the programming platforms used
to develop these apps [30]. Regarding reverse engineering, our interest was limited to
identifying the programming platforms. Each spyware system scope, the platform used for
development, upload mechanisms, and sniffing strategy, is presented in Table 4. Spying
scope explains the scope of the spyware system as each spyware provides different spying
scope, representing the main point of advantage for each spyware. The platform represents
the development platform used to program that spyware; all of these spyware systems
as presented were based on Java. The upload strategy explains the time constraint mech-
anism in which each spyware uploads data to the C2C server [31]. Sniffing is one of the
essential internal features that must be considered in analyzing network traffic behavior.
We identified each sniffing strategy according to the spyware documentation and used the
previously mentioned Apktool for reverse engineering.

Table 4. High-level summary of the applications’ features.

System Spying Scope Platform Upload Sniffing

mSPY

- Social media
apps

- Keylogger
- OS activity
- Update

history
- Applications

manifest
- Phone calls
- Microphone

Java, Kotlin Periodic-b ased with
fixed time interval. Events-based

uMobix

- Social media
apps

- Keylogger
- OS activity
- Applications

manifest
- Phone calls
- Microphone

PhoneGap, Java Adjustable periodic
Adjustable in

terms of periodic
or event-based.

MobileSPY

- Social media
apps

- Keylogger
- OS activity
- Update

history
- Applications
- Phone calls
- SIM tracker

React Native, Java Non-adjustable
periodic Events-based

FlexiSPY

- Social media
apps

- Keylogger
- OS activity
- Update

history
- Applications

manifest
- Phone calls

Pure Java Periodic-based with
fixed time interval Events-based

TheWiSPY

- Social media
apps

- Keylogger
- OS activity
- Phone calls
- Microphone

React Native, Java Adjustable periodic
Adjustable in

terms of periodic
or event-based.

The dataset list of files along with basic identification info regarding dataset metadata,
including file name, file size, MD5 Hash, and DataTag, are listed in Table 5. MD5 is listed
to protect the file’s integrity.

Sensors 2022, 22, 5765 9 of 25

Table 5. Dataset files list and description.

File Name System Name File Size MD5 Hash Data Tag

Normal_Traffic.pcap SmartPhone Normal Traffic 78.81 MB 0151d5fc110f6f7a97ee52be29c99c9a Normal Traffic
uMobix_Installation.pcap uMobix 14.37 MB adab9d323fe85115a8cd8b38fcf45b0a uMobix Inst.

uMobix_Traffic.pcap uMobix 16.28 MB d1a8bbe1e6c0ad85ddb3ae3f0386cf83 uMobix Traffic
TheWiSPY_Installation.pcap TheWiSPY 53.24 MB 3b45d0ae1f1c9ca9c6b4542a6c956280 TheWiSPY Inst.

TheWISPY_Traffic.pcap TheWiSPY 21.36 MB f742fe72b9591a6a66e662eafc991c1b TheWiSPY Traffic
mSPY Installation Process.pcap mSPY 11.34 MB a5c90fbbefeb789fcacce36fd69a830a mSPY Inst.

Mspy Traffic- Part1.pcap mSPY 25.94 MB 298d7830454d522524c1fa6e98df9a99 mSPY Traffic
Mspy Traffic- Part2.pcap mSPY 20.32 MB 4ba6bd67e977126087a542715cf8143e mSPY Traffic
MobileSpy_Traffic.pcap MobileSPY 12.76 MB 8d7ec5fef06a896708dc486c6004e9c3 MobileSPY Traffic

Mobilespy_Intallation_01.pcap MobileSPY 8.41 MB 74200634455d33d5501622213f1ee8d0 MobileSPY Inst
FlexSPY_Traffic.pcap FlexiSPY 22.32 MB 3baf2d16713f8d94b1ff723061b8de09 FlexiSPY Traffic

FlexiSPY_Installation.pcap FlexiSPY 16.78 MB 570a6ddfffd72bb4f132823174cade66 FlexiSPY Inst

Figure 3 shows the data volume distribution. Each system’s data volume differs from
the others, even though they have the same period and constraint. The different behavior
of these applications can explain the variation in the size of the data. The behavior of these
applications differed in the network activity, which is directly related to the mechanism of
developing these applications and the mechanism they use to send data; however, it is not
one of the objectives of this study.

A total of 386,963 packets were collected within the data sets. CSV files can provide a
high-level understanding of data distribution in any dataset. Thus, we have analyzed all
CSV files as a high-level data representation to analyze network traffic based on protocol
type. Table 6 shows the data distribution for each protocol within all dataset classes.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 28

Mspy Traffic-
Part2.pcap mSPY 20.32 MB

4ba6bd67e97712608
7a542715cf8143e mSPY Traffic

MobileSpy_Traffic.pca
p

MobileSPY 12.76 MB
8d7ec5fef06a896708

dc486c6004e9c3 MobileSPY Traffic

Mobilespy_Intallation
_01.pcap

MobileSPY 8.41 MB 74200634455d33d55
01622213f1ee8d0

MobileSPY Inst

FlexSPY_Traffic.pcap FlexiSPY 22.32 MB 3baf2d16713f8d94b1
ff723061b8de09 FlexiSPY Traffic

FlexiSPY_Installation.
pcap FlexiSPY 16.78 MB

570a6ddfffd72bb4f1
32823174cade66 FlexiSPY Inst

Figure 3 shows the data volume distribution. Each system’s data volume differs from
the others, even though they have the same period and constraint. The different behavior
of these applications can explain the variation in the size of the data. The behavior of these
applications differed in the network activity, which is directly related to the mechanism
of developing these applications and the mechanism they use to send data; however, it is
not one of the objectives of this study.

Figure 3. Data distribution and volume.

A total of 386,963 packets were collected within the data sets. CSV files can provide
a high-level understanding of data distribution in any dataset. Thus, we have analyzed all
CSV files as a high-level data representation to analyze network traffic based on protocol
type. Table 6 shows the data distribution for each protocol within all dataset classes.

Table 6. Network protocol distribution according to class.

Protocol Class A Class B Class C
TCP 77,679 105,347 88,833

QUIC 1411 196 39,160
TLSv1.3 13,432 5853 20,590
TLSv1.2 22,551 6078 9643

UDP 4020 196 1393

Figure 3. Data distribution and volume.

Table 6. Network protocol distribution according to class.

Protocol Class A Class B Class C

TCP 77,679 105,347 88,833
QUIC 1411 196 39,160

TLSv1.3 13,432 5853 20,590
TLSv1.2 22,551 6078 9643

UDP 4020 196 1393
DNS 848 566 1940

GQUIC 161 67 1101
HTTP 33 18 45

Sensors 2022, 22, 5765 10 of 25

As shown in Figure 4, the data represents the protocol type statistics for all files in
the dataset. The TCP protocol is the most significant since it is the primary protocol for
communication and data transfer between the various applications and their C2C servers.
Table 6 shows a complete statistics list for each protocol in terms of class. As explained
before, Class A represents regular traffic, Class B represents spyware installation traffic,
and Class C represents spyware traffic under operation.

3.3. Data Collection Methodology

A novel approach has been adopted to collect data to maintain six main factors: quality
of data volume, quality of data format, quality of data diversity, quality of data rationality,
quality of data eligibility for use in machine learning, and quality of data documentation. A
networking technique known as packet capture involves intercepting data packets within
OSI layers. Data link, network, transport, session, presentation, and application layers
data were collected and packed in this experiment. The data collection methodology was
divided into three main sections according to the data class: Class A, Class B, and Class C.

The sniffing process continually monitors and captures all data packets traversing
a network or device. Network administrators use sniffers to monitor and troubleshoot
network traffic, and researchers use them to build detection models by analyzing sniffed
data using machine learning. Sniffers are implemented in the system as either hardware
or software.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 28

DNS 848 566 1940
GQUIC 161 67 1101
HTTP 33 18 45

As shown in Figure 4, the data represents the protocol type statistics for all files in
the dataset. The TCP protocol is the most significant since it is the primary protocol for
communication and data transfer between the various applications and their C2C servers.
Table 6 shows a complete statistics list for each protocol in terms of class. As explained
before, Class A represents regular traffic, Class B represents spyware installation traffic,
and Class C represents spyware traffic under operation.

Figure 4. Dataset network traffic protocol distribution.

3.3. Data Collection Methodology
A novel approach has been adopted to collect data to maintain six main factors: qual-

ity of data volume, quality of data format, quality of data diversity, quality of data ration-
ality, quality of data eligibility for use in machine learning, and quality of data documen-
tation. A networking technique known as packet capture involves intercepting data pack-
ets within OSI layers. Data link, network, transport, session, presentation, and application
layers data were collected and packed in this experiment. The data collection methodol-
ogy was divided into three main sections according to the data class: Class A, Class B, and
Class C.

The sniffing process continually monitors and captures all data packets traversing a
network or device. Network administrators use sniffers to monitor and troubleshoot net-
work traffic, and researchers use them to build detection models by analyzing sniffed data
using machine learning. Sniffers are implemented in the system as either hardware or
software.

A hybrid deployment approach was adopted in the sniffing process, which includes
collecting network traffic data at the packet level using a PCAPdroid sniffer locally from
the smartphone. Transmission control protocol (TCP), user datagram protocol (UDP), and
internet control message protocol (ICMP), among others, underpin packet-based data.

As mentioned before, the dataset collection methodology adopted three classes of
data, Class A, Class B, and Class C, listed as follows:
• Class A: This class represents smartphone standard data traffic needed during the

classification process using machine learning. This class collected data without any
active spyware within the smartphone. This means data collected in this class repre-
sent clean data. It does not include any malicious activity of any application on the

Figure 4. Dataset network traffic protocol distribution.

A hybrid deployment approach was adopted in the sniffing process, which includes
collecting network traffic data at the packet level using a PCAPdroid sniffer locally from
the smartphone. Transmission control protocol (TCP), user datagram protocol (UDP), and
internet control message protocol (ICMP), among others, underpin packet-based data.

As mentioned before, the dataset collection methodology adopted three classes of
data, Class A, Class B, and Class C, listed as follows:

• Class A: This class represents smartphone standard data traffic needed during the
classification process using machine learning. This class collected data without any
active spyware within the smartphone. This means data collected in this class represent
clean data. It does not include any malicious activity of any application on the phone,
which was ensured by performing a complete format process of the phone before
collecting this data.

• Class B: This class represents network traffic during the spyware installation. These
data can be used to develop a pre-infection detection model. In this stage, we collected

Sensors 2022, 22, 5765 11 of 25

data that can be used in hybrid approach detection: spyware package file traffic
and spyware exchanged packets between C2C and infected devices. Briefly, this
stage represents the data collected during the downloading and installing stage of
the spyware.

• Class C: This class represents standard spyware traffic for each spyware system. In
this class, data were collected by operating a spyware system with full features. In
this class, a unified list of activity applied over the smartphone to guarantee data
consistency within all data collected from all other spyware. These data can be used to
develop a post-infection detection model.

A unified activity list is a pre-set list of activities sequentially. The activity list includes
specific events and activities applied within specific time constraints to have identical
experimental conditions. Activity list events and actions are listed within Table 7.

3.3.1. Class A—Collection Methodology

As shown in Figure 5, the process starts with a mobile format that guarantees that no
other apps are installed; then, PCAPdroid is installed along with other social apps listed
within the activity list. To use social apps, we must activate them on an actual phone
number and complete the verification process. After checking the installation process
for PCAPdroid and other installed apps, we activate PCAPdroid and other social apps
according to the listed activity list. This step is meant to collect clean network traffic without
any malicious traffic [32].

Table 7. Activity list adopted during data collection.

Activity Activity Type Description

Unlocking screen Operating system security

Unlocking screen, which will trigger an event
for spying system to log this event and sent it

to control panel, also collecting pin key
using keylogger.

Using instant messaging apps (WhatsApp,
WeChat, Facebook, QQ, Snapchat, Telegram)

Data exchange, triggering OS APIs related to
network infrastructure.

Notifications are used by spying systems to sniff
such messages.

Simulate a real conversation between two
accounts for each app and monitor the spying
process to collect exchanged data between the

spying client and control panel.

Opening camera and activating voice
recording through dashboard panel.

Sensors related, camera and microphone
handled under sensors APIs on the Android

operating system.

Use the dashboard to open the camera and
microphone to start eavesdropping.

Using encrypted end-to-end calls through
messaging apps (WhatsApp, Telegram) Sensors related; notifications related. Spying systems do rely on notifications to sniff

encrypted messages.

File exchange activity Memory related Receiving new files from Bluetooth and other
communication infrastructure.

3.3.2. Class B—Collection Methodology

As shown in Figure 6, Class B represents spyware installation traffic data. Mobile
formatting is critical in each phase. As shown, installation and downloading start after
running the PCADPdroid app. Once we downloaded the spyware package, we collected
all packets content that can be used for packet-level detection and can provide vast data
about spyware digital signatures. At this stage, we are collecting the necessary signatures
without encryption because we collect the packet information up to the seventh layer of
the OSI layer. This class of data is used for the post infection process.

Sensors 2022, 22, 5765 12 of 25

Sensors 2022, 22, x FOR PEER REVIEW 13 of 28

PCAPdroid and other installed apps, we activate PCAPdroid and other social apps ac-
cording to the listed activity list. This step is meant to collect clean network traffic without
any malicious traffic [32].

Figure 5. Class A data collection methodology workflow.

3.3.2. Class B—Collection Methodology
As shown in Figure 6, Class B represents spyware installation traffic data. Mobile

formatting is critical in each phase. As shown, installation and downloading start after
running the PCADPdroid app. Once we downloaded the spyware package, we collected
all packets content that can be used for packet-level detection and can provide vast data
about spyware digital signatures. At this stage, we are collecting the necessary signatures
without encryption because we collect the packet information up to the seventh layer of
the OSI layer. This class of data is used for the post infection process.

Figure 6. Class B data collection methodology workflow.

All spyware systems targeted in this study have the identical installation mechanism
in terms of procedures, and these procedures were followed accurately as described by

Figure 5. Class A data collection methodology workflow.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 28

PCAPdroid and other installed apps, we activate PCAPdroid and other social apps ac-

cording to the listed activity list. This step is meant to collect clean network traffic without

any malicious traffic [32].

Figure 5. Class A data collection methodology workflow.

3.3.2. Class B—Collection Methodology

As shown in Figure 6, Class B represents spyware installation traffic data. Mobile

formatting is critical in each phase. As shown, installation and downloading start after

running the PCADPdroid app. Once we downloaded the spyware package, we collected

all packets content that can be used for packet-level detection and can provide vast data

about spyware digital signatures. At this stage, we are collecting the necessary signatures

without encryption because we collect the packet information up to the seventh layer of

the OSI layer. This class of data is used for the post infection process.

Figure 6. Class B data collection methodology workflow.

All spyware systems targeted in this study have the identical installation mechanism

in terms of procedures, and these procedures were followed accurately as described by

Figure 6. Class B data collection methodology workflow.

All spyware systems targeted in this study have the identical installation mechanism
in terms of procedures, and these procedures were followed accurately as described by the
manufacturers of these systems [33]. The network traffic collection process must include
spyware package data and operational data. Here, it is essential to explain the mechanism
for installing these applications, followed during the data collection process. Five essential
steps to install these systems are explained in detail as follows:

• 1—Purchase spyware subscription: Each spyware system has specific features and
prices. Most of the vendors provide almost the same features with a tiny difference
between each one of them.

• 2—Disable security notification on Play Store: Play Store provides a security mech-
anism that alerts the user whenever a malicious application is about to be installed.
This step is critical and guarantees hiding security notifications.

• 3—Downloading spyware package: In this step, the user downloads a spyware system
package; spyware providers usually use anonymous servers as a source for the package
downloading process.

Sensors 2022, 22, 5765 13 of 25

• 4—Installing spyware package: The installation process is fast and easy; you have to
follow the instructions and have your system running. Each system uses a code name
the user can identify within the Android apps list. The spyware system’s names are
listed in Table 8.

• 5—Activate monitoring panel: The control panel provides access to various data types.

Table 8. Activity list adopted during data collection.

System Code Name

mSPY Update services
uMobix Play services

MobileSPY Settings
FlexiSPY Sync Services

TheWiSPY System Settings

3.3.3. Class C—Collection Methodology

Class C represents the data for the spyware system while it operates on the smartphone.
That is, while carrying out its actual espionage activity. From here the actual value of the
unified activity list is obtained, which is applied while collecting the data in this class in
a clear, predefined order. As shown in Figure 7, the workflow and after starting PCAP
droid. It is essential to apply a unified activity list accurately to ensure the integrity of the
data between the various applications and achieve similar measurable conditions in the
analysis stage.

Sensors 2022, 22, x FOR PEER REVIEW 15 of 28

Figure 7. Class B data collection methodology workflow.

3.4. Dataset Benchmark
Producing high-quality benchmark datasets is a complex and time-consuming oper-

ation—one of the most critical phases in dataset preparation. A dataset to be accurately
labeled as a benchmark must first be evaluated according to predetermined criteria bench-
mark. Objectively interpreted, comparable, and repeatable algorithm benchmarks are es-
sential to validate any dataset. In general, benchmarks are more helpful and essential if
they can be shown to be beneficial. However, the benchmark dataset does not have to be
exhaustive or conclusive to be suitable for the job. Dataset copyrights must be available to
the public. This signifies that it is licensed under a permissive and open license [34].

A benchmark dataset has to be accessible and available to the general public. For
example, everyone should have access to it without enrolling on a webpage or waiting for
an email, without ever doing anything that halts their research rate. The openness of a
dataset should ensure that it can be copied elsewhere. It must have sufficient characteris-
tics to be engaging. It should be the result of genuine experimental activity. The charac-
teristics should be independent; derivatives may be generated at any time. Therefore, this
section will list a table representing the most reliable criteria for scientifically measuring
the benchmark. A benchmark is a predetermined metric for assessing the quality of a
product or service. Variance is the difference between the benchmark and the statistic
against which it is compared [35]. The deviations from the stated benchmark are used to
determine whether or not a data rule has continuously met or exceeded its objective for
data monitoring. Benchmarks may be used for any statistics arising from data rule testing
or metric value calculations—Table 9 lists our novel dataset’s main benchmark features.

Table 9. Dataset benchmark parameters.

Benchmark
Specification

Value

Defined rules A dataset that can be used to build models capable of detecting
spyware on Android efficiently and effectively.

Dataset quality All training samples generated through real-world process
without simulation tools.

Dataset quantity Almost 14,000 instances collected.

Figure 7. Class B data collection methodology workflow.

3.4. Dataset Benchmark

Producing high-quality benchmark datasets is a complex and time-consuming operation
—one of the most critical phases in dataset preparation. A dataset to be accurately labeled
as a benchmark must first be evaluated according to predetermined criteria benchmark.
Objectively interpreted, comparable, and repeatable algorithm benchmarks are essential to
validate any dataset. In general, benchmarks are more helpful and essential if they can be
shown to be beneficial. However, the benchmark dataset does not have to be exhaustive
or conclusive to be suitable for the job. Dataset copyrights must be available to the public.
This signifies that it is licensed under a permissive and open license [34].

A benchmark dataset has to be accessible and available to the general public. For
example, everyone should have access to it without enrolling on a webpage or waiting for an

Sensors 2022, 22, 5765 14 of 25

email, without ever doing anything that halts their research rate. The openness of a dataset
should ensure that it can be copied elsewhere. It must have sufficient characteristics to be
engaging. It should be the result of genuine experimental activity. The characteristics should
be independent; derivatives may be generated at any time. Therefore, this section will list
a table representing the most reliable criteria for scientifically measuring the benchmark.
A benchmark is a predetermined metric for assessing the quality of a product or service.
Variance is the difference between the benchmark and the statistic against which it is
compared [35]. The deviations from the stated benchmark are used to determine whether
or not a data rule has continuously met or exceeded its objective for data monitoring.
Benchmarks may be used for any statistics arising from data rule testing or metric value
calculations—Table 9 lists our novel dataset’s main benchmark features.

Table 9. Dataset benchmark parameters.

Benchmark Specification Value

Defined rules A dataset that can be used to build models capable of detecting
spyware on Android efficiently and effectively.

Dataset quality All training samples generated through real-world process without
simulation tools.

Dataset quantity Almost 14,000 instances collected.

Dataset diversity
The selection of the targeted spyware systems was made after

reviewing previous research in this field, which belongs to different
companies.

Dataset efficiency A two-phase data collection adopted for each spyware system to
provide more efficiency samples (installation, operation).

Dataset eligibility
Dataset eligibility has been tested using random forest algorithm

after analyzing data using CICflowmeter, results has been listed in
details and confirmed using machine learning.

Dataset consistency To guarantee a consistency dataset we adopted a unified activity list
that has been applied with respect to time for every spyware listed.

Dataset accessibility Dataset will be published online.

Dataset documentation Dataset is fully documented.

Dataset rules testing
A model built using machine learning based on the dataset to

detect android spyware, results ranged between 72% and 93% with
proper analysis and explanation.

4. Proposed Model

In order to determine if a dataset is eligible for use in a detection model, it must
be tested and analyzed. The model results are an actual and scientific examination of
the dataset, especially those collected in real environments without using virtual data
generation tools. In this section, we will explain our proposed model, a model designed to
detect Android-based spyware systems in two scenarios: pre-infection and post-infection.

4.1. Baseline Algorithm

The random forest algorithm is a supervised learning algorithm for classification and
regression. It creates a random forest, or ensemble, of decision tree nodes. This improves
the accuracy of predictions to create an effective model with low bias and high variance.
This algorithm is practical when many variables are present in the dataset. The goal is to
predict the value derived from these variables based on multiple inputs. Random forests are
often used as predictive analytics in data mining or applied statistics problems to identify
patterns in large data sets [36]. It uses a voting process at prediction time to obtain the
classification or regression votes from individual trees. The algorithm starts by selecting a
single feature randomly and splitting the dataset into two parts—“Training” and “Testing”.

Sensors 2022, 22, 5765 15 of 25

It then uses the Testing set to train a decision tree. Once again, it selects a single feature and
splits the Training set into two parts, “Training set 1” and “Training set 2”. The algorithm
continues this process until all features have been tested on both sets. The process ends
when there are no Training data left. For the random forest to make predictions about new
cases, it votes for its prediction using all trees in it. To make an accurate prediction, at
least 50% of votes should be positive [37]. Decision trees represent a predictive model as
a sequence of three layers in which several data variables split the input data space into
successively narrower subspaces. Choosing random samples from a dataset is the first step
in the random forest algorithm process. This method will then build a decision tree for
each sample. Each decision tree’s forecast outcome is then obtained. Subsequently, each
anticipated outcome will be put to the vote. Then, the highest voted forecast result as the
final prediction result is chosen. The random forest process is simplified in Figure 8.

Sensors 2022, 22, x FOR PEER REVIEW 17 of 28

Figure 8. Random forest algorithm for decision tree simplification.

The random forest algorithm was used because of the following characteristics: com-
pared to the decision tree algorithm, it is more accurate; it offers a practical method for
dealing with missing data; it can provide a good forecast without hyper-parameter ad-
justment; it fixes the overfitting problem of decision trees. A subset of characteristics is
chosen randomly at the node’s splitting point in every random forest tree [38].

4.2. Detection Model
A pre-infection scenario represents the detection of the spyware during the installa-

tion phase; the lifecycle for any spyware system starts with installation. The proposed
dataset includes a separate class for spyware installation data which will be used in this
model as “Class B”. Post-infection is the second phase within the spyware lifecycle; in this
phase, the spyware system is installed and activated with complete operation activity.
This means that the spyware fully exercises its espionage functions, which represent col-
lecting data as it has been programmed, sending it to the control center, and receiving
other related commands such as deleting specific existing data. Data related to this stage
are labeled under “Class C”.

The overall function and workflow of this model can be summarized in the following
steps:
• Step 1: Import the data and determine the detection approach, pre-infection or a post-

infection; in this step, you can use online live feed data collected from smartphone
traffic or even apply offline data within the model. Import data files using WEKA.

• Step 2: Train the model. This step involves training the model on a variety of smaller
datasets and evaluating them against a smaller testing set. This characteristic is
known as K-fold cross-validation. Cross-validation is a statistical technique used to
assess the proficiency of machine learning models. A single parameter named k spec-
ifies the number of groups into which a given data sample is to be partitioned. When
a particular value for k is selected, it may be substituted for k in reference to the
model. In this model, k = 10 is used for 10-fold cross-validation. As shown in Figure
9, this stage includes shuffling the dataset randomly and splitting the dataset into ten
groups for each unique group. Then, taking the group as a holdout or test dataset,
the remaining group as a training dataset, and finally fitting a model on the training
set and evaluating it on the test set.

Figure 8. Random forest algorithm for decision tree simplification.

The random forest algorithm was used because of the following characteristics: com-
pared to the decision tree algorithm, it is more accurate; it offers a practical method for
dealing with missing data; it can provide a good forecast without hyper-parameter adjust-
ment; it fixes the overfitting problem of decision trees. A subset of characteristics is chosen
randomly at the node’s splitting point in every random forest tree [38].

4.2. Detection Model

A pre-infection scenario represents the detection of the spyware during the installation
phase; the lifecycle for any spyware system starts with installation. The proposed dataset
includes a separate class for spyware installation data which will be used in this model as
“Class B”. Post-infection is the second phase within the spyware lifecycle; in this phase, the
spyware system is installed and activated with complete operation activity. This means
that the spyware fully exercises its espionage functions, which represent collecting data
as it has been programmed, sending it to the control center, and receiving other related
commands such as deleting specific existing data. Data related to this stage are labeled
under “Class C”.

The overall function and workflow of this model can be summarized in the following steps:

• Step 1: Import the data and determine the detection approach, pre-infection or a post-
infection; in this step, you can use online live feed data collected from smartphone
traffic or even apply offline data within the model. Import data files using WEKA.

• Step 2: Train the model. This step involves training the model on a variety of smaller
datasets and evaluating them against a smaller testing set. This characteristic is known
as K-fold cross-validation. Cross-validation is a statistical technique used to assess
the proficiency of machine learning models. A single parameter named k specifies
the number of groups into which a given data sample is to be partitioned. When
a particular value for k is selected, it may be substituted for k in reference to the

Sensors 2022, 22, 5765 16 of 25

model. In this model, k = 10 is used for 10-fold cross-validation. As shown in Figure 9,
this stage includes shuffling the dataset randomly and splitting the dataset into ten
groups for each unique group. Then, taking the group as a holdout or test dataset, the
remaining group as a training dataset, and finally fitting a model on the training set
and evaluating it on the test set.

Sensors 2022, 22, x FOR PEER REVIEW 18 of 28

Figure 9. K-fold cross validation process [39].

• Step 3: Identify the most important features. Your dataset’s attributes (also known as
columns or features) are assessed using the attribute evaluation approach (e.g., the
class). Several techniques may narrow an extensive data collection to a few valuable
characteristics. A significant number of characteristics in a database means that many
attributes will not be relevant in the present study. As a result, deleting the dataset’s
undesirable features is a critical step in building a solid machine learning model. In
this model, we adopted the 18 features listed in Table 10.

Table 10. Network traffic features set.

Feature Name Description
Src Port Packet source port
Dst Port Packet destination Port
Protocol Packet protocol

Flow duration Duration of the flow in microseconds
total Fwd Packet Total packets in the forward direction
total Bwd packets Total packets in the backward direction

total Length of Fwd Packet Total size of packet in forward direction
total Length of Bwd Packet Total size of packet in backward direction

Fwd Packet Length Min Minimum size of packet in forward direction
Fwd Packet Length Max Maximum size of packet in forward direction

Fwd Packet Length Mean Mean size of packet in forward direction

Fwd Packet Length Std
Standard deviation of packet size in forward

direction
Bwd Packet Length Min Minimum size of packet in backward direction
Bwd Packet Length Max Maximum size of packet in backward direction

Bwd Packet Length Mean Mean size of packet in backward direction

Bwd Packet Length Std
Standard deviation of packet size in backward

direction
Flow Bytes/s Number of flow bytes per second

Flow Packets/s Number of flow packets per second

• Step 4: Tuning the model. This step includes searching for the best number of param-
eters. Primarily, three elements may be adjusted to increase the predictive ability of
the model:

Figure 9. K-fold cross validation process [39].

• Step 3: Identify the most important features. Your dataset’s attributes (also known as
columns or features) are assessed using the attribute evaluation approach (e.g., the
class). Several techniques may narrow an extensive data collection to a few valuable
characteristics. A significant number of characteristics in a database means that many
attributes will not be relevant in the present study. As a result, deleting the dataset’s
undesirable features is a critical step in building a solid machine learning model. In
this model, we adopted the 18 features listed in Table 10.

• Step 4: Tuning the model. This step includes searching for the best number of param-
eters. Primarily, three elements may be adjusted to increase the predictive ability of
the model:

max_features: Generally, increasing the maximum number of features increases
the model’s performance since each node must now examine a more significant
number of alternatives. However, this is not always true since this reduces the
variety of individual trees, which is the unique selling proposition of random
forests. However, if you increase the max features, the algorithm’s performance
will undoubtedly fall. Therefore, you must strike the appropriate balance and
choose the ideal max features.

n_estimators: This is the number of trees you want to plant before calculating
the maximum voting or prediction averages. The greater the number of trees,
the greater the performance, but the slower the code. It would help to choose
the maximum figure your CPU can manage since this will strengthen and
stabilize your forecasts.

min_sample_leaf: If you have previously constructed a decision tree, you
understand the significance of the minimum sample leaf size. The terminal
node of a decision tree is the leaf. A smaller leaf makes the model more
susceptible to catching training data noise. In general, a minimum leaf size
greater than 50 is preferred. However, it would help if you experimented with
various leaf sizes to see which is optimal for your use case [40].

• Step 5: Evaluate the model. A model’s ability to accurately predict the target based
on new and future data should continually be evaluated. The accuracy measure of
the ML model must be checked on data for which the target result is already known.

Sensors 2022, 22, 5765 17 of 25

This evaluation should be used as a proxy for prediction accuracy on future data since
future occurrences have unknown target values.

Figure 10 shows the workflow model in which our novel dataset is being utilized.
Multi-class and binary-class classification are accomplished using random forest algorithms.
In the algorithm, all processed data are examined to determine whether it is spyware traffic
or regular traffic, and the appropriate action is made based on the classifier results. Feature
selection is a technique for minimizing the amount of data that goes into your model by
removing irrelevant or useless information. Feature selection is the process through which
machine learning automatically selects relevant characteristics depending on the sort of
issue you are attempting to solve. It has been performed by simply adding and subtracting
features without altering them.

Table 10. Network traffic features set.

Feature Name Description

Src Port Packet source port
Dst Port Packet destination Port
Protocol Packet protocol

Flow duration Duration of the flow in microseconds
total Fwd Packet Total packets in the forward direction
total Bwd packets Total packets in the backward direction

total Length of Fwd Packet Total size of packet in forward direction
total Length of Bwd Packet Total size of packet in backward direction

Fwd Packet Length Min Minimum size of packet in forward direction
Fwd Packet Length Max Maximum size of packet in forward direction

Fwd Packet Length Mean Mean size of packet in forward direction
Fwd Packet Length Std Standard deviation of packet size in forward direction
Bwd Packet Length Min Minimum size of packet in backward direction
Bwd Packet Length Max Maximum size of packet in backward direction

Bwd Packet Length Mean Mean size of packet in backward direction
Bwd Packet Length Std Standard deviation of packet size in backward direction

Flow Bytes/s Number of flow bytes per second
Flow Packets/s Number of flow packets per second

Sensors 2022, 22, x FOR PEER REVIEW 20 of 28

Figure 10. Proposed detection model flow diagram.

The testing results for this model were within reasonable and acceptable limits, and
our goal in this research is to prove the eligibility of the database for use and not to obtain
a very high accuracy of results. Therefore, this research did not address any aspects re-
lated to feature engineering.

5. Results and Discussion
In this section, we will list and discuss the results we obtained through the use of the

random forest algorithm and explain some of the observed phenomena. First, we will de-
fine the evaluation metrics we adopted in this experiment. Then, we will list experimental
results (accuracy and confusion matrix results). Finally, we will compare our results with
other research and discuss the results accordingly. As mentioned before, this result was
conducted based on three data classes: Class A, Class B, and Class C.

5.1. Evalaution Metrics
There are several measures for testing the effectiveness of the machine learning

model. This section aimed to demonstrate the adopted metric measures used for random
forest algorithm, including accuracy, true positive rate, F-measure, and confusion matrix.
This study evaluated binary- and multi-class classifications, which we adopted in this re-
search. Evaluation metrics for classification algorithm used are based on four main values:
TP, FN, FP, and TN [41].
• True Positive (TP) represents the number of records labeled “Normal” that are cor-

rectly classified as “Normal”.
• False Negative (FN) represents the number of records labeled “Spyware” but classi-

fied as “Normal”.
• False Positive (FP) represents the number of records labeled “Normal” but classified

as “Spyware”.
• True Negative (TN) represents the number of records labeled “Spyware” that are

correctly classified as “Spyware”.

Figure 10. Proposed detection model flow diagram.

Sensors 2022, 22, 5765 18 of 25

The testing results for this model were within reasonable and acceptable limits, and
our goal in this research is to prove the eligibility of the database for use and not to obtain
a very high accuracy of results. Therefore, this research did not address any aspects related
to feature engineering.

5. Results and Discussion

In this section, we will list and discuss the results we obtained through the use of the
random forest algorithm and explain some of the observed phenomena. First, we will define
the evaluation metrics we adopted in this experiment. Then, we will list experimental
results (accuracy and confusion matrix results). Finally, we will compare our results with
other research and discuss the results accordingly. As mentioned before, this result was
conducted based on three data classes: Class A, Class B, and Class C.

5.1. Evalaution Metrics

There are several measures for testing the effectiveness of the machine learning model.
This section aimed to demonstrate the adopted metric measures used for random forest
algorithm, including accuracy, true positive rate, F-measure, and confusion matrix. This
study evaluated binary- and multi-class classifications, which we adopted in this research.
Evaluation metrics for classification algorithm used are based on four main values: TP, FN,
FP, and TN [41].

• True Positive (TP) represents the number of records labeled “Normal” that are correctly
classified as “Normal”.

• False Negative (FN) represents the number of records labeled “Spyware” but classified
as “Normal”.

• False Positive (FP) represents the number of records labeled “Normal” but classified
as “Spyware”.

• True Negative (TN) represents the number of records labeled “Spyware” that are
correctly classified as “Spyware”.

Accuracy is a well-known performance parameter that distinguishes a robust clas-
sification model from a poor model when assessing binary classification. Accuracy is
computed as in Equation (1).

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(1)

Precision represents the percentage of all genuinely positive instances despite being
anticipated to belong to the positive class. Precision is computed as in Equation (2).

Precision =
TP

TP + FP
(2)

Recall, or true positive rate, represents the percentage of instances expected to fall into
the positive class. Recall is computed as in Equation (3).

TPR =
TP

TP + FN
(3)

F1-score measures the accuracy. It calculates the harmonic mean of the Precision
and Recall. The F-measure’s value is between 0 and 1; when it becomes close to 1, it has
achieved the best score, and the results of both Precision and Recall are perfect, and vice
versa. F1-score is computed as in Equation (4) [42].

F1 Score = 2 × Precision × TPR
Precision + TPR

(4)

Sensors 2022, 22, 5765 19 of 25

A classification problem’s predicted outcomes are collected in a confusion matrix.
A confusion matrix represents the total values that describe the number of accurate and
inaccurate predictions for each class. In simple words, the confusion matrix demonstrates
how your classification model produces predictions while being confused. Confusion
matrix results will be listed in the binary- and multi-class classification experimental
results [43].

5.2. Experimental Results

This section will list the experimental results; classification results along with confusion
matrix results. The average accuracy was 79% for the binary-class classification and 77% for
the multi-class classification. In the multi-class approach, detection accuracy for spyware
systems (UMobix, TheWiSPY, MobileSPY, FlexiSPY, and mSPY) was 90%, 83.7%, 69.3%,
69.2%, and 73.4, respectively, and in the binary-class classification, detection accuracy for
spyware systems (UMobix, TheWiSPY, MobileSPY, FlexiSPY, and mSPY) was 93.9%, 85.63%,
71%, 72.3%, and 75.96%; respectively.

As shown in Figure 11, the overall average accuracy varies from one system to another.
A slight difference is observed between the binary class and the multi-class. The multi-class
is generally more accurate because it divides the data into different parts, thus providing
more differences between them in the classification process and enabling the classifier to be
more accurate. In the binary classification, the result is limited to two cases: (normal data,
spyware data).

Sensors 2022, 22, x FOR PEER REVIEW 22 of 28

Figure 11. Classification accuracy results.

5.2.1. Detailed Classification Results
In this section, we will list and explain the detailed classification results, carried out

through the random forest algorithm, and clarify the meaning of the detailed results table.
In general, and to analyze the results of any classification process, four essential criteria
must be known, which are the basis for measuring the success of the classification process
or not. These criteria can be summarized as follow:
• Correctly classified instances: This parameter explains the value and percentage of

the total number of instances in which the system could classify them correctly. In
our case, this value represents the number of instances in which the system success-
fully classified malicious instances that belong to spyware systems and are directly
related to a specific spyware system.

• Incorrectly classified instances: This parameter determines the number of instances
in which the system failed to classify, this means that they are instances that belong
to a specific class, but the system incorrectly classifies them as belonging to a different
class.

• Relative absolute error: RAE is a performance metric for prediction models. It is used
mainly in machine learning. RAE should not be confused with relative error, an all-
encompassing measure of precision or accuracy for devices such as clocks, rulers,
and scales.

• Root relative squared error: RRSP is a performance statistic for predictive models
including regression. It is a fundamental indicator that provides the first indication
of your model’s performance. Additionally, it is an expansion of the relative squared
error (RSE).
Binary classification is a limited classification process that can provide one of two

options: normal traffic or spyware traffic. In multi-class classification, we have more spe-
cific results; the classifier provides more specific classifying results: normal traffic, spy-
ware installation traffic, and spyware operation traffic. As mentioned before in this re-
search, this dataset can be used in the pre-infection or post-infection process; for this rea-
son, the spyware data are separated into classes: Class B and Class C.

As shown by the overall classification results in Table 11, UMobix achieved the high-
est true positive rate of 94%, WiSPY achieved an 85% true positive rate, while MobileSPY
achieved a 76% TP rate. mSPY achieved a 76% TP rate. Finally, FlexiSPY achieved a 72%
TP rate.

Figure 11. Classification accuracy results.

5.2.1. Detailed Classification Results

In this section, we will list and explain the detailed classification results, carried out
through the random forest algorithm, and clarify the meaning of the detailed results table.
In general, and to analyze the results of any classification process, four essential criteria
must be known, which are the basis for measuring the success of the classification process
or not. These criteria can be summarized as follow:

• Correctly classified instances: This parameter explains the value and percentage of
the total number of instances in which the system could classify them correctly. In our
case, this value represents the number of instances in which the system successfully
classified malicious instances that belong to spyware systems and are directly related
to a specific spyware system.

• Incorrectly classified instances: This parameter determines the number of instances in
which the system failed to classify, this means that they are instances that belong to a
specific class, but the system incorrectly classifies them as belonging to a different class.

• Relative absolute error: RAE is a performance metric for prediction models. It is
used mainly in machine learning. RAE should not be confused with relative error, an

Sensors 2022, 22, 5765 20 of 25

all-encompassing measure of precision or accuracy for devices such as clocks, rulers,
and scales.

• Root relative squared error: RRSP is a performance statistic for predictive models
including regression. It is a fundamental indicator that provides the first indication
of your model’s performance. Additionally, it is an expansion of the relative squared
error (RSE).

Binary classification is a limited classification process that can provide one of two
options: normal traffic or spyware traffic. In multi-class classification, we have more specific
results; the classifier provides more specific classifying results: normal traffic, spyware
installation traffic, and spyware operation traffic. As mentioned before in this research,
this dataset can be used in the pre-infection or post-infection process; for this reason, the
spyware data are separated into classes: Class B and Class C.

As shown by the overall classification results in Table 11, UMobix achieved the highest
true positive rate of 94%, WiSPY achieved an 85% true positive rate, while MobileSPY
achieved a 76% TP rate. mSPY achieved a 76% TP rate. Finally, FlexiSPY achieved a 72%
TP rate.

Table 11. Classification results.

Parameter
FlexiSPY MobileSPY mSPY TheWiSPY UMobix

Binary Multi Binary Multi Binary Multi Binary Multi Binary Multi

Total Instances 3186 3169 3050 2227 2298
Correctly Classified 2306 2207 2253 2199 2239 2239 1907 1865 2160 2096
Incorrectly Classified 880 979 916 970 811 811 320 362 138 229
Correct Percent 72.30% 69.20% 71% 69.30% 73.40% 73.40% 85.60% 83% 93.90% 90%
Incorrec Percent 27.60% 30.70% 28.90% 30.60% 26.50% 26.50% 14.30% 16.20% 6% 9.90%
Relative absolute error 70.20% 71.40% 74.20% 75.40% 65% 67.30% 66.10% 70.20% 36.10% 45.90%
Root relative squared error 85.40% 86.20% 87.50% 88.10% 81% 82.60% 81% 84.10% 54.40% 64.30%

5.2.2. Confusion Matrix Analysis Results

The primary issue with classification precision is that it masks the information nec-
essary to measure the success of your classification model. The situation in which this
issue is most likely to arise is when your data have many classes. You may get a 90 percent
classification accuracy with three or more classes. However, you do not know whether
this is because all classes are predicted equally well or if the model is overlooking either
one or two classes. This is why a confusion matrix is required, which is a summary of
prediction outcomes for a classification task. In simple terms, a confusion matrix is a
table that can tell us when our model succeeded in prediction and when the classifier
became confused in classification. For FlexiSPY, the classifier model successfully managed
to classify 1446 instances out of 3186 instances that belong to FlexiSPY data traffic as normal
traffic and was confused in classifying 126 instances of spyware traffic. This represents
a percentage of 30% of total malicious instances, which is almost identical to incorrectly
classified instances explained in Table 12. In other words, confusion matrix analysis is the
proper mathematical model to validate machine learning-based analysis results. Table 13
represents the detailed confusion matrix analysis. As mentioned, we adopted three classes
of data (Class A, Class B, and Class C) and two classification methodologies (binary class
and multi-class). The binary classification shows the results between two classes Normal
(Class A) and Spyware (Class B + Class C); as mentioned before, Class B includes spyware
installation data while Class C represents spyware operation data.

Sensors 2022, 22, 5765 21 of 25

Table 12. Multi-class confusion matrix results.

T*

FlexiSPY MobileSPY mSPY TheWiSPY UMobix

3186 3169 3050 2227 2298

A B C A B C A B C A B C A B C

Class A* 1446 282 32 1419 330 11 1503 235 22 1697 42 21 1723 32 5
Class B* 432 676 35 512 765 9 382 658 23 165 136 14 88 321 20
Class C* 126 72 85 71 37 15 91 58 78 102 18 32 24 60 25

T*—Total Instances. Class A*—Normal traffic. Class B*—Spy application operation traffic. Class C*—Spy
application installation traffic.

Table 13. Detailed accuracy results.

FlexiSPY MobileSPY mSPY TheWiSPY UMobix

Normal Malicious Normal Malicious Normal Malicious Normal Malicious Normal Malicious

Total
Instances 3186 3169 3050 2227 2298

*TP Rate 0.794 0.637 0.792 0.61 0.826 0.699 0.955 0.486 0.975 0.825
*FP Rate 0.363 0.206 0.39 0.208 0.331 0.174 0.514 0.045 0.175 0.025

F-Measure 0.761 0.674 0.753 0.652 0.799 0.702 0.913 0.587 0.961 0.865

*TP—True Positive. *FP—False Positive.

A confusion matrix essentially represents results according to four basic parameters,
TP (True Positive), TN (True Negative), FP (False Positive), FN (False Negative), and F
Score—a weighted average of the true positive rate—which are explained and listed in a
number of instances in Table 12 and used to calculate true positive rate and false positive
rate, as shown in Table 13.

Finally, from the above results, we can confirm that the novel dataset is mathematically
valid and can be relied upon in other advanced research to build different models based on
different features, especially the aforementioned feature engineering.

5.3. Comparison with Other Works

Comparing scientific research with other research must be adopted on pre-defined
criteria. Therefore, we will adopt several benchmarks to compare this research with other
research. Targeted spyware systems, deployment approach, analysis technique, analysis
algorithm, dataset availability, and analysis results are the primary benchmarks in this
comparative analysis.

Conti et al. [15] and Malik et al. [27] confirm research attempts to build detection
models for spyware systems. Table 14 includes a scientific comparison between their
research and this research based on previously determined criteria. The main drawbacks
for Conti et al. [15] include dataset availability, limited targeted spyware systems, and not
defining the method that was used to collect the dataset. On the other hand, Malik et al. [27]
suggested a detection model based on analyzing DNS requests without analyzing network
traffic in general. The main drawbacks in Malik et al. [27] include using generic spyware
tools usually embedded within other applications used for essential functions, the absence
of a comprehensive monitoring spyware system, and the dataset availability.

After a lengthy and detailed search, it was found that this is the only research that
has created a dataset for research purposes for such tools. All other relevant research is
based on studying the behavior of these applications in terms of the permissions they
request or their programmatic behavior. However, it does not include spyware applications
mentioned in this paper.

Sensors 2022, 22, 5765 22 of 25

Table 14. Literature comparison list.

Paper Spyware Systems Deployment
Approach

Analysis
Technique

Analysis
Algorithm

Dataset
Availability Results

Conti et al. [15] Cerberus, mSPY,
TruthSPY Network-based Dynamic

technique RF, k-NN Not available RF 85%, k-NN 65%, and
47% for LR

Malik et al. [27]
Generic embedded
spyware tools not

monitoring systems
Network-based Static technique RF Not available 63%

This research
UMobix, TheWiSPY,
MobileSPY, FlexiSPY,

and mSPY

Hybrid
approach

Hybrid
approach RF Available under

CC BY 4.0

79% for the binary-class
classification and 77%

for the multi-class
classification

5.4. Discussion

According to the findings that were provided, it is abundantly evident that there is a
disparity in the accuracy rate of the suggested model for each spyware system. According
to the findings, it is evident that it is possible to rely on the analysis of network traffic data
to construct accurate detection models for this kind of application so that they can function
during various stages of the life cycle of these systems.

These spyware applications have a high ability to conceal themselves, as shown by
the fact that some of them can hide a significant portion of their digital footprints related to
network traffic. One example of this would be the results obtained from the moderate level
of accuracy provided by the FlexiSPY and MobileSPY systems. Because of this, further
research and development concerning feature engineering are required.

In this particular research, the data were segmented into three distinct classes; each
of these classes reflects a distinct phase of the life cycle of the operation of the spyware
system, and segmenting it in this manner yielded highly verified findings. This can be seen
in the results for the TP rate of Classes B and C.

Because of the use of the unified activity list rather than a spontaneous activity, it
is evident from the fundamental structure of the dataset that the overall statistics for the
various spyware systems are relatively comparable. The reason for this is the usage of the
unified activity list.

6. Conclusions

This paper presented a novel dataset for android-based spyware detection purposes.
Initially, an overview of the spyware concept was presented and how it impacts Android-
based smartphone privacy. Additionally, an overview of the Android OS security structure
is presented better to understand related security threats to users’ privacy. Then, sev-
eral spyware detection approaches from previous studies were discussed to obtain the
knowledge gap and prove the need for a benchmarked dataset.

The presented dataset includes data from the network traffic of the most advanced
Android-based spyware tools (FlexiSPY, Mobilespy, mSPY, TheWiSPY, and UMobix); these
tools were selected based on relevant, reliable global ratings. A total of 18 features were used
during testing on the proposed model. Model testing was conducted using a random forest
algorithm to validate the dataset’s usefulness as a benchmarked dataset. Model testing and
dataset validation were in two phases: binary and multi-class classifications. It is concluded
that the detection model achieved slightly better results in binary classification than in
multi-class classification. The model was tested and evaluated for multi-class classification
according to the dataset’s main categories represented by normal data, installation data,
and operation data categories. The detection model achieved good performance. The
average accuracy was 79% for the binary-class classification and 77% for the multi-class
classification. In multi-class approach, the detection accuracy for spyware systems (UMobix,
TheWiSPY, MobileSPY, FlexiSPY, and mSPY) was 90%, 83.7%, 69.3%, 69.2%, and 73.4,
respectively, and in binary-class classification. the detection accuracy for spyware systems

Sensors 2022, 22, 5765 23 of 25

(UMobix, TheWiSPY, MobileSPY, FlexiSPY, and mSPY) was 93.9%, 85.63%, 71%, 72.3%, and
75.96%; respectively.

7. Future Work

This research opens the pathway for future work in developing and working on
spyware detection models. There is a tremendous potential for future research, including
various areas of development that can be studied based on this research. Future research
contributions can be summarized as follows:

• Expand the circle of targeted spyware applications, as many spyware programs have
not been conducted in similar studies;

• Analyzing the dataset in this research using other algorithms, as the results of this
thesis are based on the random forest algorithm to verify the eligibility and validity of
the dataset;

• Conducting detailed research related to the reverse engineering of these applications
and studying its relationship in detail with the results of network traffic analysis.

• Expand on feature engineering analysis and compare the different results;
• Develop the dataset to be comprehensive for Apple and Android smartphones.

Author Contributions: M.K.Q. and M.N. handled the process of raw data collection along with M.A.,
who was responsible for data preparation and normalization. M.K.Q., M.N. and M.A. managed the
processes of data analysis and data validation. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset presented in this study are available in the following URL:
https://majdiqabalin.com/datasets/AndroidSDS2022 (accessed on 7 June 2022).

Acknowledgments: The authors would thank the administration of Princess Sumaya University
to provide the necessary materials needed for this research and also provide tools for applying
proposed solutions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pushpa, M.; Santhiya, S.; Sharma, K. Review on Spyware—A Malware Detection Using Datamining. Int. J. Comput. Trends Technol.

2018, 60, 157–160. [CrossRef]
2. Statistica. Android Statistics. 2021. Available online: https://www.statista.com/statistics/273840/global-market-share-of-tablet-

operating-systems-since-2010/ (accessed on 18 May 2022).
3. Panda, S. Self Propogating Malware with Varying Signature. Int. J. Res. Appl. Sci. Eng. Technol. 2019, 7, 1385–1388. [CrossRef]
4. Girsang, A.S. Analyzing Android Users Based on Google Play Store Using K-Prototype Algorithm. Int. J. Emerg. Trends Eng. Res.

2020, 8, 2691–2694. [CrossRef]
5. Kaspersky Security Bulletin. Statistics. Kaspersky. 2021. Available online: https://go.kaspersky.com/rs/802-IJN-240/images/

KSB_statistics_2021_eng.pdf (accessed on 22 May 2022).
6. Heinrich, A.; Bittner, N.; Hollick, M. AirGuard-Protecting Android Users from Stalking Attacks by Apple Find My Devices. In

Proceedings of the 15th ACM Conference on Security and Privacy in Wireless and Mobile Networks, San Antonio, TX, USA,
16–19 May 2022; pp. 26–38.

7. Mobile Malware Evolution. Mobile Malware Kaspersky. 2021. Available online: https://securelist.com/mobile-malware-
evolution-2021/105876/ (accessed on 23 May 2022).

8. Chan, S. Hidden but Deadly: Stalkerware Usage in Intimate Partner Stalking. In Introduction to Cyber Forensic Psychology:
Understanding the Mind of the Cyber Deviant Perpetrators; World Scientific Publishing: Singapore, 2021; pp. 45–66.

9. Leander, A. Parsing Pegasus: An Infrastructural Approach to the Relationship between Technology and Swiss Security Politics.
Swiss Political Sci. Rev. 2021, 27, 205–213. [CrossRef]

10. Lu, S.; Guo, D.; Ren, S.; Huang, J.; Svyatkovskiy, A.; Blanco, A.; Liu, S. Codexglue: A machine learning benchmark dataset for
code understanding and generation. arXiv 2021, arXiv:2102.04664.

https://majdiqabalin.com/datasets/AndroidSDS2022
http://doi.org/10.14445/22312803/ijctt-v60p124
https://www.statista.com/statistics/273840/global-market-share-of-tablet-operating-systems-since-2010/
https://www.statista.com/statistics/273840/global-market-share-of-tablet-operating-systems-since-2010/
http://doi.org/10.22214/ijraset.2019.5234
http://doi.org/10.30534/ijeter/2020/76862020
https://go.kaspersky.com/rs/802-IJN-240/images/KSB_statistics_2021_eng.pdf
https://go.kaspersky.com/rs/802-IJN-240/images/KSB_statistics_2021_eng.pdf
https://securelist.com/mobile-malware-evolution-2021/105876/
https://securelist.com/mobile-malware-evolution-2021/105876/
http://doi.org/10.1111/spsr.12441

Sensors 2022, 22, 5765 24 of 25

11. Flanders, A.E.; Prevedello, L.M.; Shih, G.; Halabi, S.S.; Kalpathy-Cramer, J.; Ball, R.; Nath, J. Construction of a machine learning
dataset through collaboration: The RSNA 2019 brain CT hemorrhage challenge. Radiol. Artif. Intell. 2020, 2, e190211. [CrossRef]

12. Harkin, D.; Molnar, A. Operating-System Design and Its Implications for Victims of Family Violence: The Comparative Threat of
Smart Phone Spyware for Android Versus iPhone Users. Violence Women 2020, 27, 851–875. [CrossRef]

13. Hutchinson, S.; Karabiyik, U. Forensic analysis of spy applications in android devices. In Proceedings of the Annual ADFSL
Conference on Digital Forensics, Security and Law, Daytona Beach, FL, USA, 15–16 May 2019.

14. Dedola, P.; Vorozhtsov, G.; Nazarov, V.K.K.; Schuricht, A.S.K. It Threat Evolution in Q1 2022. Mobile Statistics. Securelist
English Global Securelistcom. Available online: https://securelist.com/it-threat-evolution-in-q1-2022-mobile-statistics/106589/
(accessed on 24 May 2022).

15. Conti, M.; Rigoni, G.; Toffalini, F. ASAINT: A spy App identification system based on network traffic. In Proceedings of the ARES
’20—The 15th International Conference on Availability, Reliability and Security, Virtual, 25–28 August 2020. [CrossRef]

16. Tan, Y.-A.; Xue, Y.; Liang, C.; Zheng, J.; Zhang, Q.; Zheng, J.; Li, Y. A root privilege management scheme with revocable
authorization for Android devices. J. Netw. Comput. Appl. 2018, 107, 69–82. [CrossRef]

17. Ali-Gombe, A.; Ahmed, I.; Richard, G.G.; Roussev, V. AspectDroid: Android app analysis system. In Proceedings of the CODASPY
2016—6th ACM Conference on Data and Application Security and Privacy, New Orleans, LO, USA, 9–11 March 2016; pp. 145–147.
[CrossRef]

18. Saad, M.H.; Serageldin, A.; Salama, G.I. Android spyware disease and medication. In Proceedings of the 2015 2nd International
Conference on Information Security and Cyber Forensics, InfoSec, Cape Town, South Africa, 15–17 November 2015; pp. 118–125.
[CrossRef]

19. Carlsson, A.; Pedersen, C.; Persson, F.; Soderlund, G. KAUDroid: A Tool that Will Spy on Applications and How They Spy on Their
Users; Karlstad University: Karlstad, Sweden, 2018.

20. Abualola, H.; Alhawai, H.; Kadadha, M.; Otrok, H.; Mourad, A. An Android-based Trojan Spyware to Study the NotificationLis-
tener Service Vulnerability. Procedia Comput. Sci. 2016, 83, 465–471. [CrossRef]

21. Pierazzi, F.; Emilia, R.; Subrahmanian, I.V.S. A Data-Driven Characterization of Modern Android Spyware. ACM Trans. Manag.
Inf. Syst. 2020, 11, 1–38. [CrossRef]

22. Han, Q.; Subrahmanian, V.S.; Xiong, Y. Android Malware Detection via (Somewhat) Robust Irreversible Feature Transformations.
IEEE Trans. Inf. Forensics Secur. 2020, 15, 3511–3525. [CrossRef]

23. Wang, H.; Si, J.; Li, H.; Guo, Y. Rmvdroid: Towards a reliable android malware dataset with app metadata. In Proceedings of the
2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR), Montreal, QC, Canada, 25–31 May 2019;
pp. 404–408.

24. Kaur, P.; Sharma, S. Spyware Detection in Android Using Hybridization of Description Analysis, Permission Mapping and
Interface Analysis. Procedia Comput. Sci. 2015, 46, 794–803. [CrossRef]

25. Vanjire, S.; Lakshmi, M. Behavior-Based Malware Detection System Approach for Mobile Security Using Machine Learning. In
Proceedings of the 2021 International Conference on Artificial Intelligence and Machine Vision (AIMV), Gandhinagar, India,
24–26 September 2021. [CrossRef]

26. Sutter, T.; Lapagna, K.; Berlich, P.; Rennhard, M.; Germann, F. Web Content Signing with Service Workers. arXiv 2021,
arXiv:2105.05551.

27. Malik, J.; Kaushal, R. CREDROID: Android malware detection by network traffic analysis. In Proceedings of the PAMCO
2016—2nd MobiHoc International Workshop on Privacy-Aware Mobile Computing, Paderborn, Germany, 5–8 July 2016; pp.
28–36. [CrossRef]

28. Arora, A.; Garg, S.; Peddoju, S.K. Malware detection using network traffic analysis in android based mobile devices. In
Proceedings of the 8th International Conference on Next Generation Mobile Applications, Services and Technologies, NGMAST,
Oxford, UK, 10–12 September 2014; pp. 66–71. [CrossRef]

29. Taylor, V.F.; Spolaor, R.; Conti, M.; Martinovic, I. Robust Smartphone App Identification via Encrypted Network Traffic Analysis.
IEEE Trans. Inf. Forensics Secur. 2018, 13, 63–78. [CrossRef]

30. Gonzalez, H.; Kadir, A.A.; Stakhanova, N.; Alzahrani, A.J.; Ghorbani, A.A. Exploring reverse engineering symptoms in Android
apps. In Proceedings of the Eighth European Workshop on System Security, Bordeaux, France, 21–24 April 2015; pp. 1–7.

31. Kosta, S.; Perta, V.C.; Stefa, J.; Hui, P.; Mei, A. Clonedoc: Exploiting the cloud to leverage secure group collaboration mechanisms
for smartphones. In Proceedings of the 2013 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS),
Turin, Italy, 14–19 April 2013; pp. 19–20.

32. Yu, K.F. Monitor Network Traffic with Packet Capture (PCAP) on an Android Device; Army Research Lab Adelphi Md Computational
and Information Sciences Directorate: Garden City, NY, USA, 2015.

33. Butler, R. A systematic literature review of the factors affecting smartphone user threat avoidance behavior. Inf. Comput. Secur.
2020, 28, 555–574. [CrossRef]

34. Goyette, N.; Jodoin, P.M.; Porikli, F.; Konrad, J.; Ishwar, P. Changedetection. net: A new change detection benchmark dataset. In
Proceedings of the 2012 IEEE computer society conference on computer vision and pattern recognition workshops, Providence,
RI, USA, 16–21 June 2012; pp. 1–8.

35. Mesquita, F.; Cannaviccio, M.; Schmidek, J.; Mirza, P.; Barbosa, D. Knowledgenet: A benchmark dataset for knowledge
base population. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th

http://doi.org/10.1148/ryai.2020190211
http://doi.org/10.1177/1077801220923731
https://securelist.com/it-threat-evolution-in-q1-2022-mobile-statistics/106589/
http://doi.org/10.1145/3407023.3407076
http://doi.org/10.1016/j.jnca.2018.01.011
http://doi.org/10.1145/2857705.2857739
http://doi.org/10.1109/InfoSec.2015.7435516
http://doi.org/10.1016/j.procs.2016.04.210
http://doi.org/10.1145/3382158
http://doi.org/10.1109/TIFS.2020.2975932
http://doi.org/10.1016/j.procs.2015.02.148
http://doi.org/10.1109/AIMV53313.2021.9671009
http://doi.org/10.1145/2940343.2940348
http://doi.org/10.1109/NGMAST.2014.57
http://doi.org/10.1109/TIFS.2017.2737970
http://doi.org/10.1108/ICS-01-2020-0016

Sensors 2022, 22, 5765 25 of 25

International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019; pp.
749–758.

36. Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm.
Remote Sens. 2016, 114, 24–31. [CrossRef]

37. Xu, B.; Guo, X.; Ye, Y.; Cheng, J. An improved random forest classifier for text categorization. J. Comput. 2012, 7, 2913–2920.
[CrossRef]

38. Chaudhary, A.; Kolhe, S.; Kamal, R. An improved random forest classifier for multi-class classification. Inf. Process. Agric. 2016, 3,
215–222. [CrossRef]

39. Ju, Z.; Cao, J.-Z.; Gu, H. Predicting lysine phosphoglycerylation with fuzzy SVM by incorporating k-spaced amino acid pairs into
Chou’s general PseAAC. J. Theor. Biol. 2016, 397, 145–150. [CrossRef]

40. Trithipkaiwanpon, T.; Taetragool, U. Sensitivity Analysis of Random Forest Hyperparameters. In Proceedings of the 18th
International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology
(ECTI-CON), Chiang Mai, Thailand, 19–22 May 2021; pp. 1163–1167.

41. Kosicki, J. Should topographic metrics be considered when predicting species density of birds on a large geographical scale? A
case of Random Forest approach. Ecol. Model. 2017, 349, 76–85. [CrossRef]

42. Smithies, T.D.; Campbell, M.J.; Ramsbottom, N.; Toth, A.J. A Random Forest approach to identify metrics that best predict match
outcome and player ranking in the esport Rocket League. Sci. Rep. 2021, 11, 19285. [CrossRef] [PubMed]

43. Vintrou, E.; Soumaré, M.; Bernard, S.; Bégué, A.; Baron, C.; Seen, D.L. Mapping Fragmented Agricultural Systems in the
Sudano-Sahelian Environments of Africa Using Random Forest and Ensemble Metrics of Coarse Resolution MODIS Imagery.
Photogramm. Eng. Remote Sens. 2012, 78, 839–848. [CrossRef]

http://doi.org/10.1016/j.isprsjprs.2016.01.011
http://doi.org/10.4304/jcp.7.12.2913-2920
http://doi.org/10.1016/j.inpa.2016.08.002
http://doi.org/10.1016/j.jtbi.2016.02.020
http://doi.org/10.1016/j.ecolmodel.2017.01.024
http://doi.org/10.1038/s41598-021-98879-9
http://www.ncbi.nlm.nih.gov/pubmed/34588549
http://doi.org/10.14358/PERS.78.8.839

	Introduction
	Background and Related Works
	Dataset
	Dataset Identification
	Dataset Structure
	Data Collection Methodology
	Class A—Collection Methodology
	Class B—Collection Methodology
	Class C—Collection Methodology

	Dataset Benchmark

	Proposed Model
	Baseline Algorithm
	Detection Model

	Results and Discussion
	Evalaution Metrics
	Experimental Results
	Detailed Classification Results
	Confusion Matrix Analysis Results

	Comparison with Other Works
	Discussion

	Conclusions
	Future Work
	References

