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ABSTRACT Whole-genome sequencing was used to examine a persistent Enterococ-
cus faecium bacteremia that acquired heteroresistance to three antibiotics in re-
sponse to prolonged multidrug therapy. A comparison of the complete genomes
before and after each change revealed the emergence of known resistance determi-
nants for vancomycin and linezolid and suggested that a novel mutation in fabF, en-
coding a fatty acid synthase, was responsible for daptomycin nonsusceptibility. Plas-
mid recombination contributed to the progressive loss of vancomycin resistance
after withdrawal of the drug.
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Multidrug-resistant (MDR) Enterococcus faecium is a common cause of nosocomial
infections (1). Resistance to ampicillin or vancomycin occurs in approximately

90% and 80% of nosocomial E. faecium in the United States, respectively (1). Linezolid
and daptomycin are currently used as first-line treatment options for vancomycin-
resistant E. faecium (VREfm) (2, 3). Although resistance to both agents remains rare
among enterococci (�1% for linezolid and �2% for daptomycin) (4, 5), the emergence
of resistance during treatment with each drug has been documented in multiple cases
(5–7) and can pose significant challenges for infection management. A complication in
assessing emerging resistance during infection is that bacterial isolates sometimes
show a range of susceptibilities to a particular antibiotic due to genetic, epigenetic, or
nongenetic heterogeneity within the isolates; a phenomenon known as “heteroresis-
tance” (8, 9). Heteroresistance can cause significant diagnostic and therapeutic com-
plications, and it has been associated with persistent infections and increased mortality
rates (10–13). Nevertheless, the full extent of heteroresistance and its broader clinical
relevance remain unclear, and only a few cases have been reported in E. faecium
(14–16). In this report, we used complete genome sequencing to characterize the
genetic changes underlying emerging vancomycin, linezolid, and daptomycin hetero-
resistance in a case of persistent E. faecium infection. Note that we will refer to
daptomycin resistance throughout for consistency, rather than the accepted term
“nonsusceptibility.”

In 2015, a 65-year-old male was admitted to Mount Sinai Hospital (MSH) who
developed an E. faecium bacteremia that spanned 3 months and two hospital stays (Fig.
1). E. faecium was detected in 21 of the 48 blood samples collected from the patient,
with additional sporadic detections of Candida glabrata, Stenotrophomonas maltophilia,
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or Enterobacter cloacae. Automated broth microdilution testing (VITEK2) of single
colonies from each isolate culture showed that E. faecium acquired resistance to
vancomycin (day 27), daptomycin (day 50), and linezolid (day 86) following treatment
with each agent (Fig. 1). After the cessation of vancomycin therapy, vancomycin
susceptibility was restored on day 90.

To characterize the susceptibility changes in more detail, we collected six
isolates from the original blood cultures before and after each change (Fig. 1,
labeled A to F). There were no differences in E. faecium colony morphology within
or between isolates. For each isolate, we tested four isogenic strains derived from
single colonies, in duplicates, to confirm vancomycin, linezolid, and daptomycin
susceptibilities (Table 1). The vancomycin Etest results were consistent with the
VITEK2 reports for all isolates except C and E, where susceptibility was restored in
two of four strains tested. The mixed susceptibility phenotypes suggested the
presence of a vancomycin heteroresistant population; therefore, we performed
additional Etests on the original blood isolates, which revealed sparsely distributed
isolated colonies within the zones of inhibition for isolates C, E, and F. Isolate A was
uniformly susceptible, while B and D were uniformly resistant. The lack of hetero-
resistance in B and D may be a result of selection pressure due to vancomycin
treatment (Fig. 1; see also supplemental material) prior to or at the time of their
collection. The linezolid Etests confirmed resistance for isolate F, albeit at lower
MICs, and further identified resistance in isolates D and E, for which results had not
been reported by the automated broth microdilution. Notably, there was significant
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FIG 1 Timeline of antimicrobial treatments and susceptibility changes. Hospital stays and blood culture test results (top) are shown together with
antibiotic and antifungal treatment regimes and E. faecium susceptibility profiles (bottom). Positive blood cultures are grouped by pathogen, and the
E. faecium isolates selected for sequencing are highlighted in blue and labeled A to F. Automated broth microdilution test results (VITEK2) are shown
as colored circles containing MIC values (�g/ml), where available. Red circle outlines indicate instances of acquired or lost resistance. See legend for
further details.
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variation in MICs among the resistant strains tested for isolates D to F, ranging from
24 to 96 �g/ml. Daptomycin Sensititre assays also showed variability within and
between samples. Isolate C tested consistently at the nonsusceptibility threshold
MIC of 4 �g/ml, compared to 8 �g/ml by VITEK2, whereas isolates D to F yielded
mixed results with MICs ranging from 4 to �8 �g/ml. Taken together, our results are
consistent with the emergence of an E. faecium population with heteroresistance to
vancomycin, linezolid, and daptomycin.

We next performed whole-genome sequencing for strain 1 of each of the six
isolates (Table 1) and an additional vancomycin resistant strain from the heterore-
sistant E isolate (E-VR). Complete genomes were obtained for each strain using
PacBio single molecule real-time long-read sequencing and Illumina short-read
sequencing. Multilocus sequence typing indicated that all strains were sequence
type 736 (ST736). This clone is associated with reduced susceptibility and nonsus-
ceptibility to daptomycin (MIC � 3 to 4 �g/ml) due to the presence of liaS
Thr120¡Ala and liaR Trp73¡Cys substitutions (17). The same substitutions were
identified in all sequenced strains (Fig. 2) and presumably explain the low-basal-
level daptomycin tolerance exhibited by strains A to C (Table 1) (18, 19). The
genomes for each strain were nearly identical, with a maximum of seven single
nucleotide variants (SNVs) separating any two genomes (see Table S1). Thus, a
single clone of E. faecium was responsible for the infection, and the resistance
emerged as a result of genetic changes within this clone. A further comparison of
our strain genomes to 27 ST736 E. faecium genomes deposited in GenBank (see Fig.
S1) yielded a maximum distance of 88 core genome SNVs between strain A and a
2012 VREfm isolate from Washington, USA. Notably, most ST736 genomes were
derived from clinical isolates collected in the New York metropolitan (NYC) area
(hospital A, B, and MSH). The small genetic distance between the ST736 genomes
relative to the reported mutation rate for VREfm strains of 9.4E�6 substitutions per
nucleotide per year (20) suggests that the infection in our patient was part of a
larger clonal spread of E. faecium ST736 in the NYC region in recent years.

TABLE 1 Vancomycin, linezolid, and daptomycin susceptibilities of patient isolate clones

Agent Isolate Day

Susceptibility and MIC (�g/ml) from:a

Clinical test
(VITEK2)b

Confirmation test

1c 2 3 4

Vancomycind A 9 S (�0.5) S (�1) S (�1) S (�1) S (�1)
B 27 R (�32) R (�256) R (�256) R (�256) R (�256)
C 75 R (�32) R (�256) S (�1) S (�1) R (�256)
D 79 R (�32) R (�256) R (�256) R (�256) R (�256)
E 83 R (�32) S (�1) R (�256) S (�1) R (�256)
F 90 S (�0.5) S (�1) S (�1) S (�1) S (�1)

Linezolidd A 9 S (2) S (2) S (2) S (2) S (2)
B 27 S (2) S (2) S (2) S (2) S (2)
C 75 S (2) S (2) S (2) S (2) S (2)
D 79 — R (48) R (24) R (24) R (32)
E 83 — R (96) R (48) R (64) R (64)
F 90 R (�256) R (64) R (64) R (24) R (96)

Daptomycine A 9 S (3) S (2) S (2) S (2) S (2)
B 27 S (3) S (2) S (2) S (2) S (2)
C 75 — (8) S (4) S (4) S (4) S (4)
D 79 S (4) R (�8) R (�8) S (4) R (�8)
E 83 — (8) R (�8) R (�8) R (�8) S (4)
F 90 — (8) R (�8) R (�8) R (�8) S (4)

aR, resistant; S, susceptible; —, not reported.
bMaximum tested MIC for vancomycin by automated broth microdilution was 32 �g/ml.
cStrain set selected for complete genome sequencing.
dMICs determined by Etest assays performed in duplicates.
eMICs determined by Sensititre assays performed in duplicates.
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We further examined the genomes for known antibiotic resistance determinants
(Fig. 2, left) that matched the susceptibility changes. Each strain contained a 2.86-Mb
chromosome and three plasmids of approximately 200 kb (p1), 10 kb (p3), and 4 kb (p4)
in size (Table S1 and Fig. S2). An additional 41-kb plasmid (p2) carrying the vanA operon
in a 11,654-bp BC1 Tn1546-type transposon (21, 22) was identified in vancomycin-
resistant strains only (Fig. 2; see also Table S1 and Fig. S2), explaining the observed
susceptibility profiles for this antibiotic. One strain, E-VS, contained an 80-kb plasmid
(p5) that was not found in any other strain. The emerging linezolid resistance was
accounted for by a G2,576U substitution (23) present in two or three of the six copies
of the 23S rRNA in strains D, E-VS, E-VR, and F (Fig. 2). We did not find other
determinants associated with linezolid resistance, such as other mutations in the 23S
rRNA gene (23–25) or genes encoding ribosomal proteins L3, L4, and L22 (23, 26) or the
acquisition of cfr (27, 28) or optrA (29). Consistent with previous observations (24),
strains with higher linezolid MICs had more G2,576U mutant 23S rRNA gene copies,
indicating that these mutations were responsible for the observed heteroresistance
phenotype. Interestingly, we observed consistently higher MICs per 23S rRNA mutant
copy than a previous gene dosage study, which reported a maximum MIC of 32 �g/ml
for 2 to 3 mutant 23S rRNA copies (24) versus 48 to 96 �g/ml in our strains. This
difference may be due to the presence of a 1,417-bp ISEnfa3-like mobile element within
domain I of 23S rRNA gene copy III in all four resistant strains (Fig. 2), as disruption of
one of the wild-type rRNA genes likely increased the effective dosage of mutant 23S
rRNAs.

Daptomycin resistance (�8 �g/ml MIC) arose concurrently with linezolid resis-
tance in strains D to F. This increase in the MIC could not be explained by known
daptomycin resistance determinants (18, 19, 30), indicating that a novel resistance
mutation was present in these strains. It is unlikely that the mutations in 23S rRNA
genes affected resistance, as daptomycin has been shown to remain effective in
linezolid-resistant Enterococci and Staphylococci harboring the G2,576U substitution
(31). Moreover, daptomycin MICs were not affected by differences in the numbers
of mutant rRNA copies in our strains. Longitudinal genome comparisons between
all strains identified 37 additional mutations (Fig. 2; Table S2). Only two other
mutations occurred in a pattern consistent with the increase in daptomycin MIC: a
nonsynonymous G962A mutation in fabF and an insertion of an IS256-like element
in plasmid 1. The IS256-like element was inserted into a noncoding region between
two carbohydrate metabolism genes encoding a putative fructokinase and a sub-
unit of a sugar phosphotransferase system. The G962A mutation in fabF resulted in
a Gly321¡Asp change in the C-terminal domain of the �-ketoacyl-acyl carrier
protein synthase it encodes. FabF is involved in membrane fatty acid metabolism
(32, 33), consistent with the mechanism of action of daptomycin as a lipopeptide
that disrupts the bacterial membrane. Notably, while FabF was not previously
associated with daptomycin resistance in enterococci, a Pro137¡Leu mutation in
its ortholog was implicated in daptomycin resistance in Staphylococcus aureus (34).
Taken together, these data suggest that the fabF mutation was responsible for the
increased daptomycin MIC, although further studies are needed to confirm these
findings and determine the mechanistic basis for its role in resistance.

Vancomycin heteroresistance in blood isolate E emerged 12 days after vanco-
mycin treatment was stopped and within 4 days of that in the uniformly resistant
D isolate (Fig. 1), prompting us to further examine the mechanism behind the loss
of resistance. A comparison of vancomycin-susceptible (E-VS) and -resistant (E-VR)
strains obtained from the same patient isolate revealed a recombination event
between the 41-kb plasmid containing the vanA resistance gene cluster (p2) and
the larger 200-kb plasmid (p1) present in all strains (Fig. 3). This resulted in a new
80-kb plasmid (p5) in strain E-VS that consisted of a 14-kb fragment of p2 and a
copy of a 69-kb segment of p1. Notably, E-VS also retained an intact copy of p1,
suggesting that the recombination event occurred during or shortly after p1
replication. The p5 plasmid retained the rep17 replicon and ori from p2, whereas the
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excised 30-kb p2 fragment containing the vanA resistance operon was lost. Further
sequence analysis identified homologous regions flanking the recombination sites
in p1 and p2, consisting of a 1.3-kb insertion sequence (IS) IS256 on one end and
a 49-bp sequence on the other end. The 49-bp conserved sequence in p1 was
directly adjacent to the rep17 replicon. Thus, the p5 E-VS plasmid resulted from two
separate homologous recombination events between p1 and p2 or from a combi-
nation of homologous recombination and IS256 transposition (35).

The final vancomycin-susceptible strain from heteroresistant isolate F did not
carry the 41-kb p2 plasmid or the p5 recombination product that we identified in
E-VS. This suggests a continued loss of p2 elements after treatment ceased, as also
evidenced by the smaller fraction of resistant colonies we observed in isolate F than
in isolate E. The most likely explanation for this loss is that the presence of the
vancomycin resistance plasmid reduces fitness. Indeed, a similar loss of vanA after
withdrawal of vancomycin therapy has been described (14), and in vitro studies
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have shown that carriage of plasmid-mediated resistance incurs fitness costs (36).
Nonetheless, a single dose of vancomycin on day 75 was sufficient to uniformly
restore resistance in isolate D on day 79, demonstrating that the presence of even
a small fraction of resistant bacteria enables rapid adaptation to treatment. Al-
though we did not detect heteroresistance in the original A isolate, it is likely that
low-level resistance was already present below the detectable limit. We consider
horizontal gene transfer less plausible, especially considering that older ST736
isolates collected at Mount Sinai Hospital (37) all contained nearly identical 41-kb
vanA resistance plasmids.

The present study demonstrates how E. faecium can evolve resistance to antibiotics
of last resort through a combination of known and novel genetic mutations, which can
ultimately result in treatment failure. Notably, heteroresistance emerged to three
different antibiotics, underscoring its clinical relevance during persistent infections and
suggesting that it may be more widespread than currently recognized. The clonal
spread of ST736 in the NYC region is concerning, as its baseline reduced susceptibility
to daptomycin may facilitate the selection of additional resistance variants and reduce
the time to emergence of resistance during treatment. As such, the continued dissem-
ination of ST736 and other clones carrying liaFSR mutations should be closely moni-
tored. Notably, it has been shown that the addition of ampicillin can restore dapto-
mycin bactericidal activity when liaFSR mutations are present (19, 38, 39), and
combination therapy may help curtail further spread.

There are some limitations to our study. We did not sequence all colonies, and we
may not have captured the full extent of genetic heterogeneity within the bacterial
isolates. It is possible that mutations in other genes such as gdpD and cls (18, 19, 30)
contributed to daptomycin heteroresistance. Our analyses were also limited to blood
isolates, and a primary infection, such as the liver abscess the patient was originally
diagnosed with, may have acted as a repository that was less accessible to antibiotics
and from which bacteria continued to spread through the bloodstream. This does not
detract from our main conclusions and would only serve to demonstrate the contri-
bution of additional intrahost variability.

In summary, the ineffectiveness of commonly used agents, such as ampicillin and
vancomycin, has increased our reliance on and use of last-line and off-label agents. The
E. faecium genome has been shown to be highly adaptable, acquiring genes and
chromosomal mutations that confer resistance to these last-line agents. We have
demonstrated the applicability of complete-genome sequencing of longitudinal sam-
ples to comprehensively map all genomic changes responsible for acquired antibiotic
resistance. With the increased reliance on newer agents in treating MDR E. faecium
infections, there is a need to capture these events on a larger scale to better understand
the underlying mechanisms responsible for acquired resistance of commonly used
agents and their impact on treatment outcome.

Accession number(s). Genome sequences have been deposited in GenBank under
BioProject accession number PRJNA407447.
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