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phenomenon [1-3] and is widely applied in different fields includ-
ing physics, economics, combustion science, biology and engineer-
ing [4-15]. Indeed, FC provides a realistic description of a physical
phenomenon and also helps to achieve greater degrees of freedom
in physical models because the analysis in FC provides a general-
ization of the classical differentiation and integration to the arbi-
trary order (noninteger state). Thus, FC has been attracted a great
deal of attention owing to its intrinsic advantages in modeling of
natural phenomena involved with memory and hereditary proper-
ties. Moreover, FC has been utilized to define many physical mod-
els in which fractional differential and integral operators have been
successfully used to describe their nature. However, to explain
these physical phenomena in fractional language, authors have
used several definitions. Among them are the well-known frac-
tional derivative definitions used by Riemann-Liouville [16],
Caputo [17] and Caputo-Fabrizio [18].

In fact, nonlocal differential and integral operators are better
candidates for handling the chaotic behaviors of fractional deriva-
tives, which are also classified based on their kernels. The
Riemann-Liouville and Caputo derivatives possess nonlocal opera-
tors with singular kernels; however, the fractional derivative
defined by Caputo and Fabrizio has a nonlocal operator with a non-
singular kernel.

Recently, the applications of fractional derivatives in physical
models have been widely examined owing to their usefulness in
many fields of physics such as viscoelasticity, transient heat diffu-
sion, steady-state heat conduction, electrochemical double layer
capacitors, dielectric polarization, DNA chain, electromagnetic
waves, hybrid nanofluid, quantum mechanics, and quantum evolu-
tion of complex systems. Moreover, the exhibition of chaos in a
fractional physical model and its suppression in such a model are
two of the main problems that have been encountered. Chaotic
attractors have also been reported in some physical models with
fractional order such as the Liu system [19], the Van der Pol-
Duffing circuit [20], a Volta’s model [21], and novel hyperchaotic
circuits [22,23]. Furthermore, the suppression of chaos in differen-
tial models involving fractional derivatives has received increasing
attention [24-28].

In [29], Constantinescu et al. proposed a model for quasi-
periodic plasma perturbations that consists of an integer-order
system of ordinary differential equations with two nonlinear
terms. This low dimensional integer-order model for quasi-
periodic plasma perturbations explores the dynamical behaviors
of the amplitude of magnetic field displacement and the plasma
pressure gradient in tokamaks. In addition, Constantinescu et al.
[30] studied existence of Hopf bifurcation in this model of quasi-
periodic plasma perturbations and analyzed the fast-slow dynam-
ics of this model. Moreover in [31], qualitative dynamical study in
this integer-order model of quasi-periodic plasma perturbations
like existence of Bogdanov-Takens bifurcation, pitchfork bifurca-
tion, homoclinic bifurcation and chaotic states, was reported by
Elsadany et al.

In this work, we explore dynamics of the quasi-periodic plasma
perturbations model with fractional derivatives. We use the
Caputo type fractional differential operator, which is widely used
in real applications. Indeed, imposing nonlocal fractional differen-
tial operators to the quasi-periodic plasma perturbations model
allows us to obtain more accuracy and adequacy of describing
the natural phenomena, and to obtain greater degrees of freedom
in this model. Consequently, the proposed fractional form of the
quasi-periodic plasma perturbations model is better candidate
for describing the expected complex dynamics since it is defined
by integration. However, the existence of unpredictable or complex
dynamics is not desirable in many practical situations. Therefore,
erasing the unpredictable dynamics that may arise from the
fractional-order quasi-periodic plasma perturbations model

becomes a focal point of our interest. To the best of our knowledge,
the results in this work are the first to report the complex dynam-
ics and chaos suppression in the fractional-order quasi-periodic
plasma perturbations model.

Here, new Routh-Hurwitz stability conditions in three dimen-
sional fractional-order systems as the orders lie in the interval
[0,2), are proved and applied to the proposed model. A condition
for the existence and uniqueness of the solution of the quasi-
periodic plasma perturbations model is obtained. Conditions for
the approximating periodic solutions in this system are also dis-
cussed. Chaos in the proposed model is also found for fractional
orders above and less than 1. Furthermore, chaotic behaviors in
this model are suppressed to its steady states as the orders lie in
the interval (0,2). Thus, our study helps to understand the complex
dynamics arising from the quasi-periodic plasma perturbations
model involving fractional derivatives based on Caputo nonlocal
fractional operator which provides more appropriate and realistic
description of the resulting complex dynamics and also our study
helps to eliminate unpredictable dynamic behaviors of the pro-
posed model.

Basic concepts of FC

The Caputo nonlocal fractional differential operator with singu-
lar kernel [17] is given as

Do) = [ “(r ) LTk g), 1)

where and ¢ refers to the kth-order derivative of ¢(l). Moreover,
the stability of nonlinear systems involving fractional derivatives
is summarized by the following results:

Assume that

DIX(t) = H(X(1)), (2)

where 0 < g < 2X € R®, and the vector function H is nonlinear. If

X® is an equilibrium point of (2) with the following eigenvalue
equation:

OA) =22 +5122 + 530 +53 =0, 3)

then the Matignon’s inequalities [32] are used to discuss local
stability of X© as follows

larg(/4)| > qm/2, 1=1,2,3. (4)

The corresponding region describing the local stability of X© is
depicted in Fig. 1. Also, the following fractional Routh-Hurwitz
(FRH) criterion [33] is obtained for q € [0, 2):

(i) X is locally asymptotically stable (LAS) for q € [0,2), if the
discriminant of ¢(Z) is positive in addition to s; > 0, s3 >0
and s;s; —s3 > 0.

(i) X®© is LAS for q < 2 if the discriminant of ¢(2) is negative in
additiontos; > 0, s, > 0 and s; > 0.

(iii) X© is LAS for q € (0, 1) if the discriminant of ¢ (/) is negative
in addition to s; > 0, s; > 0 and s;5; —s3 = 0.

Here, we also provide the following theorem.

Theorem 1 ((Matouk’s).). For the eigenvalue equation (3);

(a) If g € [1,2), s3 = 515, and the discriminant of ¢(Z) < 0, then
the Matignon’s inequalities (4) are not satisfied;
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Fig. 1. Stability region of linear fractional-order system as: (a) q €[0,1), (b)
qe(l,2).

(b) If g € [0,2) then s; > 0 is a necessary condition for X to be
LAS.
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Proof. To prove part (a), we recall that if discriminant of
@(2) < O,then Eq. (3) has the following eigenvalues

M = Ao, /12.’3 :pia)l, I= \/7‘17 io7p,weR, w#0. (5)
So, Eq. (3) has the following coefficients
$1 = *Zp — Ao, S2= sz‘z + 2p),0, S3 = */lo|/12|2. (6)

Consequently, Eq. (3) has two pure imaginary roots if and only if
S3 = 5157, since the last condition implies that

(2D + J0) (|72 + 2D70) = Jolda|?, ™)
that is reduced to
p(@? + (4o +p)*) = 0. (8)

It is now clear that p =0 as s; = s;S; which means that the
eigenvalues /, 3 lie in the unstable region (See Fig. 1b) of the lin-
earized fractional order system as q € [1,2). O

To prove part (b), we firstly assume that the discriminant of
©(2) < 0,q €[0,2) then s3 = —p|4,|*> < 0 implies that %, > 0 which
also means that /g lies in the unstable region of Fig. 1b. Secondly,
we assume that the discriminant of ¢(4) >0, then
S3=—J14223 <0, ; €R, i=1,2,3 implies that there exists at
least one 4; > 0 which also implies that 4; lies in the unstable
region of Fig. 1b. Also, the case s3 = 0 is obviously belong to the
unstable region. O

Theorem 2. (See [34]). Let system (2) be described as

DX(t) = AX(t) + B(X(t)), 9)

where 0 < g <2, AeR*?3, and B is a nonlinear function such
that
| BXX(®)) |l

22 1o, (10)

xoi—o || X(¢) ||

then X© = 0 is LAS if |arg(/(A))| > qr/2, i =1,2,3, where | . ||
is the [,—norm.
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Fig. 2. Asymptotically periodic signal near S; =(0,0,u): (a) 2D plot using wu=0.5 v=0.1, 6=0.0001 and q=0.9999549838; (b) 2D plot using

©u=0.001, v=0.2, 5§ =0.0003140024694 andq = 0.9999.
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Fig. 3. 2D plot of an asymptotically periodic signal near: (a) S;(0,\/u—1,1) using pu=1.2, v=0.2, §=0.2 and q = 0.8703517205; (a) 2D plot S3(0,—+/u —1,1) using
u=12,v=0.2, §=0.2 andq = 0.8703517205.
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Fig. 4. Chaotic attractors appearing in the fractional model (12) using the parameter values 4 =3.5, v=0.1, § = 0.5 and the following fractional order: (a) g = 1.1, (b)
q=1.0and (c) g = 0.99.
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Fig. 5. Lyapunov spectrum of the fractional model (12) using v=10.1 and § =0.5 :
(a) The Lyapunov exponents are functions of u with q =0.99. (b) The Lyapunov
exponents are functions of g with p = 3.5.

The model

Here, we introduce the integer-order form of the model as
follows:

&= y(z—1) - ox,
& —x, (11)

where J, 1 and v are all positive real numbers, with § denoting
the relaxation of the perturbation; u the input normalized power;
and v the characteristic relation of the heat diffusion coefficients
[29]. In fact imposing the Caputo fractional differential operator
to system (11), provides a generalization of the existing classical
differentiation to the arbitrary order (noninteger state). The
fractional-order form of model (11) is given as

DX(t) = y(£)(2(t) — 1) — ox(t),
Dy(t) = x(t), (12)
D2(t) = v(p - 2(t) - yA(D)2(1)),

where q € (0,2). So, higher degrees of freedom in the quasi-
periodic plasma perturbations model (12) are obtained than the
integer-order counter-parts. Moreover, the resulting long-term
memory effect and hereditary properties of this operator are very
useful to describe complicated natural dynamical phenomena. Thus,
it is shown that the quasi-periodic plasma perturbations model (12)
generalizes the original integer-order models in [29,30] and helps to
obtain more adequacy and realistic description of the resulting
dynamical phenomena. The Model (12) has three equilibria, i.e.,
51(0,0, i), S2(0,\/u—1,1),and S5(0, —/pt — 1, 1), for p > 1. More-
over, it has the unique equilibrium S; (0, 0, 1), where u € (0, 1].

Existence and uniqueness

According to the familiar existence and uniqueness procedure
given in [22,35], the following conditions are straightforwardly
obtained.

Lemma 1. A solution of the model for quasi-periodic plasma pertur-
bations (12) exists and is unique in the region Q x (0,7] with the
initial conditions (x(0),y(0),z(0)) = (Xo,¥0,20) and t € (0, 7] if

v 2 2
0<n7r(1+q)max{1+5,1+y+2vy,v+y+vy}<1. (13)

Stability of the quasi-periodic plasma perturbations model (12)

The Jacobian of the fractional model for quasi-periodic plasma

perturbations (12), computed at S = (s, Sy, Sz), is described by

-0 s;—1 sy
Js =11 0 0 . (14)

0 -2vs,s, —Vv(1+s,)

Theorem 3. The equilibrium S, (0, 0, i) of the fractional the model for
quasi-periodic plasma perturbations (12) is (i) a saddle point if u > 1
or (ii) LAS if o> =41 —wu<1, or & <4(1-pwu<l,
q< %arctani‘/‘WA

Proof. The Jacobian (14) evaluated at S;(0,0, ) is given by

-0 u-1 0
0 0 -V

The Jacobian matrix J(S1(0,0,u)) has

=V <0, dpy = 2=V WD ”22”(“'”. Therefore, if 1> 1, then /, >0,
which implies that S;(0,0, u) is a saddle point. Furthermore, if
6% > 4(1 — p),u < 1, then 4 <0 for all i =1,2,3, which implies
that $;(0,0, u) is LAS. Moreover, if 6 < 4(1 — p),u < 1, then J(S;)
possesses two complex conjugate eigenvalues and the condition
2 VAai-p-o* ; P H
q < 2arctan¥——~— implies that |arg(4)| > qm/2, i=2, 3, which
means that S; (0,0, i) is LAS.
On the other hand, the Jacobian (14) evaluated at S, 3 yields the
same characteristic equation, i.e.,

2 (U + 82 + (uvd)d+2v(u—1)=0. (15)

Therefore, according to the FRH criterion, we obtain the follow-
ing theorems which are easily to be proved by straightforward uti-
lization of the classic FRH conditions (i)-(iii):

the eigenvalues
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Fig. 6. Trajectories of the controlled fractional model (16) approach to the equilibrium point S; (0,0, 1) using 4 = 3.5, v=0.1, 6 = 0.5 and the following fractional order: (a)
q=1.1, k; =300, k; =200, ks = 10; (b) g = 1.0, k; = 300, k; = 200, k3 = 10; and (¢) ¢ =0.99, k; =3, k, =1, k3 = 10.

Theorem 4. If the discriminant of the polynomial given in
Eq. (15) is positive, then S,3 are LAS for 0 <q <2 and 6 > v2.
However, if this discriminant is negative, then S, 3 are LAS for q <%

and also LAS for 0<q<1 when 6<+v2-+v83v, u=pu,, or
5 2:2 N
5 < /2 /Bov, 1= iy, where i, , = —0T2EV 20 8o

20v
However, the results of applying the new FRH conditions given
in Theorem 1 are summarized by the following lemma.

Lemma 2. If q€[1,2) and the discriminant of ¢(.) <0; then
$1(0,0, 1) is not LAS for p=v? +6v+1, and Sy3 is not LAS for
W=y (or u= p,). Moreover when q € [0,2); S1(0, 0, u) is LAS only if
W <1, however S, 3 are LAS only if > 1.

For the incommensurate case of the model (12), we have the
following theorem that is proved in [36].

Theorem 5. Consider the fractional model for quasi-periodic
plasma perturbations (12) with incommensurate orders q; € N,
0<gq;<1,i=1,2,3, where q; is the fractional order on the ith
equation of system (12). Also, define the ratio q; :%:, di,gicZt,

whose denominators have LCM = m, and (d;,g;) = 1. Hence, the
equilibrium Sy, k = 1,2,3 of the fractional model for quasi-periodic
plasma perturbations (12) with incommensurate orders are LAS iff

T

;r _

arg(i)| > 5.,

where ;s and b; = % s must satisfy the following condition
k
M — byy b1z —bs

—b21 ﬂ.qu — bzz —b23 =0.
—b3 —bs, A3 — bss

Conditions for the approximating periodic solution via Hopf
bifurcation theory

In autonomous fractional-order system (AFOS), periodic solu-
tion cannot be analytically existed [37]. Only there are some
asymptotically periodic signals satisfying the conditions of classi-
cal Hopf bifurcation theory, i.e. an approximation to the periodic
solution around the steady state is expected as the AFQS, with
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Fig. 7. Trajectories of the controlled fractional model (16) approach to the equilibrium point S,(0, /u —1,1) using = 3.5, v=0.1, 6 = 0.5 and the following fractional
order: (a) g = 1.1, k; =300, k, = 200, k; = 10; (b) q = 1.0, k; = 300, k, = 200, k3 = 10; and (c) q=0.99, k; =3, k, =1, ks = 10.

order less than one, has negative real eigenvalues and a pair
of complex conjugate eigenvalues 115 = u(ign) +W(ign), I=
V-1, w0, where 1y is a critical value of the dynamical parame-
ter, in addition to the existence of a function Z(1) such that
E(1gn) = 0 and £ #0.

=lerh

Asymptotically periodic signals near S; = (0,0, i)

Obviously, the fractional parameter q affects the stability of the
quasi-periodic plasma perturbations model (12). So, we can use it

V-7 ATy

as a dynamical parameter. Now, let Z(q) = 4 — arctan( 5
Thus, S; = (0,0, 1) changes its stability in the neighborhood of

5 = .
qon = 2arctan(¥*518=0) - Furthermore, the quantity Z2| s
q=Acrn

not vanished. For pu=0.5, v=0.1, § =0.0001, the fractional
parameter has the critical value g, = 0.9999549838. So, asymp-
totically periodic signal is expected near S; = (0,0, u) for these
parameter values. In Fig. 2a, we summarize these results.

Moreover, the parameter § can be selected as bifurcation

parameter by setting Z(5) = —arctan(¥A1--%) 4 ¢ |n this case,

(1= (1+tan? (@)

the  critical bifurcation value 4 = £2 T’
0<g<1,0<u<1and €Y is not vanished since it equals
3=0¢rh
Cot(Lh) /erh, Ocrn#O0. With the parameter selection

pu=0.001, v=0.2, ¢=0.9999, the critical value ., becomes
0.0003140024694. So, asymptotically periodic signal is expected
near S; = (0,0, ). The indicated approximation to periodic signal
is illustrated in Fig. 2b.

Asymptotically periodic signals near S;3(0,++/pt —1,1)

If the discriminant of the polynomial (15) is negative, then
$23(0,+,/u—1,1) has a negative real root and a pair of complex
conjugate roots. Then let ZE(q) =% - arctan(}), where
N#0, I + N> = @ — uvow? — 2(5+ uv) (v — uv)@ —4(uv —v)*> = 0.
The equilibrium points S,3(0,£+/u — 1,1) change their stability

oy . 2
near the critical fractional parameter qcrh:2cos*1(\/%)/7r.
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Fig. 8. Trajectories of the controlled fractional model (16) approach to the equilibrium point S3(0, —/u —1,1) using u = 3.5, v=0.1, 6 = 0.5and the following fractional
order: (a) g = 1.1, k; = 300, k, = 200, k; = 10; (b) ¢ = 1.0, k; =300, k, = 200, k3 = 10; and (c) ¢ =0.99, k; =3, k» =1, k3 = 10.

Obviously, df,—f;’)‘ is not vanished. For u =12, v=02, 6§ =0.2,

q=Aerp

we get (., =0.8703517205. Hence, periodic solutions are
expected near S;3(0,++/u — 1,1). The indicated approximation to
periodic signals around S, and Ss, are depicted in Fig. 3a and b,
respectively.

Remark 1. According to Proposition 3 of [30], Hopf bifurcation occurs
in the quasi-periodic plasma perturbations model (12) near

$23(0,+/u—1,1) forq=1,0 € (0,v/2), v < % and (= iy (or
1= ).

Chaos in the fractional quasi-periodic plasma perturbations
model

The fractional model for quasi-periodic plasma perturbations
(12) is numerically integrated using pu=3.5, v=0.1 and
6 = 0.5. Using the previous parameter values, the initial conditions
(0.1,0.1,0.1), the fractional parameters g =1.1, g = 1.0, ¢ = 0.99
and q = 0.13, the system has a positive maximal Lyapunov expo-

nent Amax = 0.0172,0.0518,0.0739 and 0.1320 respectively,
according to the algorithm given in [38]. The chaotic dynamics of
system (12) are illustrated in Fig. 4. It can be seen that the lowest
order in the commensurate fractional-order system for which
chaos exists is approximately 3 x 0.13 = 0.39. Furthermore, we
perform computations of the Lyapunov spectrum as the parameter
(or the fractional order) are varied, as illustrated in Fig. 5, which
also depicts the existence of a positive maximal Lyapunov expo-
nent (MLE) that refers to the occurrence of a sensitive dependence
on the initial conditions in the model.

Thus, it is shown that chaotic dynamics are found in the frac-
tional quasi-periodic plasma perturbations model (12) for a wide
scale of fractional orders q € (0, 2) which confirm that the proposed
model exhibits more rich complex dynamics comparing to the
models reported in previous literatures such as Refs. [30] and [31].

Achieving chaos control

Here, we will apply the stability results given by the FRH crite-
rion and Theorems 2 to stabilize system (12) to its equilibrium
points.
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Fig. 9. Trajectories of the controlled fractional model (19) approach to the equilibrium point S;(0,0, 1) using = 3.5, v=20.1, 6 = 0.5, k; = 100, Kk, = k3 = 30 and the

following fractional order: (a) g = 1.1, (b)g = 1.0 and (c) q = 0.99.

Stabilizing system (12) using the FRH criterion

We first consider the following controlled form of quasi-
periodic plasma perturbations model (12):

Dix =y(z—1) = 6x — k(X — Sy),
Dly =x—ky(y —sy), (16)
Dz =v(i—z—y?2) — ks(z—s,),

where k; € R*, i=1,2,3. In the case of the point (sy, sy,s,) = S, the
characteristic polynomial of system (16) has the following
coefficients:

3
S1 :5+V+Zki’

i-1
S = V(ki +ka) + d(ky + k3) + kika + kaks + kiks +1 — i+ dv,
S3 = 5’(2(\) + k3) + V(k]kz +1-— ,u) + k3(1 — ,u) + k]l(2k3. (17)

However, the other equilibrium points S, and S; have the same

coefficients of the eigenvalue equation of system (16). They are
given as follows:

3
S]Zé-k[,lV-‘eri, S
i=1

= /,LV(k] + kz) + (5(’(2 + k3) + k]kz + ’(2]{3 + k1k3 + 5/1\),53
= Oko (v + k3) + v(ukiky — 2 4+ 20) + kikaks. (18)

For the parameter set w©=3.5,v=01,6=05 and
ki =3,ky, =1, ks =10 or k; =300, k, = 200, k3 = 10, it is clear
that the first FRH condition is satisfied for Eqs. (17) and (18). There-
fore, system (16) is controlled to its equilibria. The simulation
results that verified the stabilization of system (16) to the points
S1, S2, and S3 are respectively illustrated in Figs. 6, 7, and 8 for
g=1.1, 1, and 0.99.

Stabilizing system (12) using the results of Theorem 2

A controlled form of the fractional model for quasi-periodic
plasma perturbations (12) is represented as

DIX(t) = (A — K)X(t) + B(X(t)) — U, (19)
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Fig. 10. Trajectories of the controlled fractional model (19) approach to the equilibrium point S,(0, /u — 1,1) using 4 =3.5, v=0.1, § = 0.5, k; = 100, k> = k3 = 30 and

the following fractional order: (a) g = 1.1, (b) g = 1.0 and (c) g = 0.99.

given that

-5 -1 0
A=|{1 0 0 |,
0 0 -v

K = diag(ii1X — K1Sx, K2y — K2Sy, K3Z — K3S;), Ki € R", i=1,2,3,

)

For the point $1(0,0, w), the condition
larg(4(A — K))| > qm/2, i=1,2,3, is always satisfied and the non-
yz

linear function has the form B(X(t)) = ( 0

. Hence, condition
—Vy?z

(10) is given by
[ BX(®) Il

. /yZZZ + v2y422
lim —~ %= lim Y“———
IXel—o || X(@E) | Xwi-0 /x2 +y2 + 22

y2 (ZZ + V2y222)

DG VY2
= lim /z2 +v2y2z2 = 0.
IX(6)|-0

Consequently, all the hypotheses of Theorem 2 are achieved,
which implies that system (19) is controlled toS; (0, 0, ().
To stabilize system (19) to the other equilibrium points

S2(0,y/p—1,1) and S3(0,—/p — 1,1), we utilize the transforma-

tion X' = X — S, which transforms S to the origin. Hence, it is clear
that all the conditions of Theorem 2 are also satisfied. Conse-
quently, (x — Sy, ¥ — Sy,Z — ;) is stabilized to the origin according
to the postulates of Theorem 2.

Now, the controlled system (19) with orders g =1.1, 1, and
0.99 is numerically integrated using the selection
w=35 v=01, =05, 11 =100, kK, =30 and x;=30. The
numerical results show that system (19) is controlled to S, S,
and Ss, which are respectively depicted in Figs. 9, 10, and 11.

Conclusion

A novel model for quasi-periodic plasma perturbations using
nonlocal fractional differential operator with singular kernel has
been proposed. A sufficient condition has been used to show that
the solution of the proposed system exists and is unique in a speci-
fic region. Local stability of the system'’s equilibria has been inves-
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Fig. 11. Trajectories of the controlled fractional model (19) approach to the equilibrium point S3(0, —/u —1,1) using 4 = 3.5, v=0.1, § = 0.5, k; = 100, K, = k3 = 30 and

the following fractional order: (a) g = 1.1, (b) ¢ = 1.0 and (c) g = 0.99.

tigated with both commensurate and incommensurate orders.
Conditions for the approximating periodic solution in this model
via Hopf bifurcation theory have been obtained. Chaotic dynamics
have been found in the commensurate system for a wide range of
fractional orders. The Lyapunov exponents and Lyapunov spectrum
of the model’s parameters and fractional order have also been cal-
culated. Suppressing chaos in this system has been achieved via
two different approaches.

The obtained results provide us with fundamental and useful
information to further better understand the complex dynamics
arising from the quasi-periodic plasma perturbations model and
also help to erase its unpredictable dynamical behaviors. In addi-
tion, our study provides more appropriate and realistic description
of the proposed model. Therefore, our results might be very useful
for the physicists who work with tokamaks models.
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