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ABSTRACT

MicroRNAs (miRNAs) are short RNA species derived
from hairpin-forming miRNA precursors (pre-miRNA)
and acting as key posttranscriptional regulators.
Most computational tools labeled as miRNA pre-
dictors are in fact pre-miRNA predictors and
provide no information about the putative miRNA
location within the pre-miRNA. Sequence and struc-
tural features that determine the location of the
miRNA, and the extent to which these properties
vary from species to species, are poorly understood.
We have developed miRdup, a computational pre-
dictor for the identification of the most likely miRNA
location within a given pre-miRNA or the validation of
a candidate miRNA. MiRdup is based on a random
forest classifier trained with experimentally validated
miRNAs from miRbase, with features that charac-
terize the miRNA–miRNA* duplex. Because we
observed that miRNAs have sequence and structural
properties that differ between species, mostly in
terms of duplex stability, we trained various clade-
specific miRdup models and obtained increased
accuracy. MiRdup self-trains on the most recent
version of miRbase and is easy to use. Combined
with existing pre-miRNA predictors, it will be
valuable for both de novo mapping of miRNAs and
filtering of large sets of candidate miRNAs obtained
from transcriptome sequencing projects. MiRdup is
open source under the GPLv3 and available at http://
www.cs.mcgill.ca/�blanchem/mirdup/.

INTRODUCTION

MicroRNAs (miRNAs) are short (generally 19–24 nucleo-
tides) noncoding single-stranded RNA molecules that are

involved in posttranscriptional regulation by targeting
messenger RNAs (1–3). In animals, miRNAs expression
is a multistep process (4): (i) transcription of the primary
miRNAs (pri-miRNAs) by RNA polymerase II, (ii) cleav-
age of the pri-miRNA by Drosha and the RNAse III
enzyme to isolate long hairpins called miRNA precursors
(pre-miRNAs) and (iii) extraction by Dicer of the
miRNA–miRNA* duplex from the pre-miRNA. In
plants, Drosha and Dicer are replaced by Dicer Like 1
(5). The miRNA* is the complementary region of the
miRNA on the other arm of the hairpin with a shift of
2 nt in the 50 direction (6). After separation of the two
strands of the duplex, the miRNA is mature and ready
to be attached to the RISC complement. It then targets
mRNAs by perfect or imperfect complementarity (7). In
some cases, both miRNA and miRNA* are functional (8).

Over the past years, a number of studies have shown the
involvement of miRNAs in most biological process (9).
They are involved in developmental and physiological
roles in animals and plants (10,11), such as differentiation
of embryonic (12), muscle (13), skeletal (14),
hematopoietic (15) and many other types of cells. They
are also known to control cell death (16) and proliferation
(17), insulin secretion (18) or lipid metabolism (19). Loss
(20) and misregulation (21) of miRNAs also play an im-
portant role in several diseases (22,23), such as cancers
(24,25). Finally, several studies revealed that organisms
under various stress have a responsive miRNAs signature
pattern, allowing resistance and adaptation (26–31).
MiRNAs are even used by virus to infect hosts (32–34).

Although experimental techniques for unambiguous
identification of miRNAs exist (35), they remain slow
and expensive. Sequencing of short RNAs followed by
mapping to a reference genome has become an approach
of choice (36–38), but many small RNA molecules are
unlikely to be miRNAs, while many true miRNAs are
likely to be expressed only under rare circumstances
not easily covered experimentally. For those reasons,

*To whom correspondence should be addressed. Tel: +1 514 398 5209; Fax: +1 514 398 3883; Email: blanchem@mcb.mcgill.ca
Present addresses:
Mickael Leclercq, School of Computer Science and McGill Centre for Bioinformatics, McGill University, Montreal, Quebec, Canada H3A2B2.
Mathieu Blanchette, School of Computer Science and McGill Centre for Bioinformatics, McGill University, Montreal, Quebec, Canada H3A2B2.

7200–7211 Nucleic Acids Research, 2013, Vol. 41, No. 15 Published online 8 June 2013
doi:10.1093/nar/gkt466

� The Author(s) 2013. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.cs.mcgill.ca/~blanchem/mirdup/
http://www.cs.mcgill.ca/~blanchem/mirdup/
http://www.cs.mcgill.ca/~blanchem/mirdup/


computational prediction of miRNAs continues to play an
important role in genomics.

Most miRNA prediction approaches rely, at least in
part, on the specific hairpin shape of the secondary struc-
ture of the pre-miRNA (39). These include ProMir
(40,41), TripletSVM (42), miRabela (43), miPred (44),
SSCprofiler (45), microPred (46), HHMMiR (47),
SplamiR (48), miRFinder (49), MiRenSVM, the only
tools that handle multiloop hairpins (50), and many
others. All these tools are trained on known miRNAs
stored in MiRbase (51), a repository of miRNAs
(mostly) experimentally validated. The prediction of the
hairpin can be combined with comparative genomics
approaches that posit that, in addition to their typical
secondary structure, pre-miRNAs exhibit high sequence
and structure conservation across species (52,53).
However, most computational approaches labeled as
miRNA predictors are actually pre-miRNA predictors,
in the sense that they identify candidate genomic regions
that may form pre-miRNAs but rarely attempt to deter-
mine the position of the miRNA itself within them.

Computationally predicted pre-miRNAs are often
combined with high-throughput short-RNA sequencing
data, in an attempt to determine which of the large
number of expressed small RNAs may indeed be
miRNAs. This kind of approach is challenging, though,
as short reads may be incorrectly mapped, or may come
from degradation products from the pre-miRNA, espe-
cially from the miRNA*, or from other types of RNA
molecules. Predictions from deep sequencing can be
obtained by considering the abundance and distribution
of reads mapped to a candidate pre-miRNA, where read
stacks and Dicer products mapped on a reference inform
about the location of the miRNA. This strategy is used by
miRdeep (6,54), miRdeep* (55), MIReNA (56) and
miRanalyzer (57,58). However, lowly expressed miRNA,
often lineage-specific (59) or condition-specific (60) ones,
will be difficult to detect because Dicer products and the
miRNA* are completely degraded.

To the best of our knowledge, only six mature miRNA
predictors have been proposed to date. MIRcheck (28)
identifies 20-nt regions of a given plant pre-miRNA
using a predetermined set of rules and constraints.
MiRalign (61) finds miRNAs positions by aligning pre-
miRNAs with miRbase, thereby preventing from finding
new miRNAs. ProMir (40) identifies human pre-miRNAs
and their mature miRNAs by combining sequence and
structural features in a paired hidden Markov model.
MatureBayes (62) identifies 22-nt regions that are likely
mature miRNA candidates based on sequence and sec-
ondary structure information using a Naive Bayes classi-
fier. MaturePred (63) locates fixed-length miRNAs in
plants based on miRNA–miRNAs* features and a
support vector machine predictor. Finally, MiRmat (64)
seeks Drosha and Dicer processing sites in vertebrates
using a random forest predictor.

Although the recent research activity related to miRNA
prediction shows the importance of the problem, existing
tools have severe limitations. First, most tools are trained
specifically on data from certain phyla [e.g. plants (28),
humans (42,44) or viruses (33)], which limits their

applicability. Second, most mature miRNA prediction
tools seek mature miRNA of a fixed length, although in
most species miRNAs lengths vary from 19 to 24 nt.
Third, tools are typically trained once, at the time of pub-
lication, based on the training data available at that time.
This means that they do not benefit from the rapid
increase in the quality and quantity of experimentally
verified miRNAs available. Finally, accessibility remains
an issue, with ProMir 2 being unavailable and
MaturePred, MiRalign and MiRmat being only available
as web servers, which limits that usability for large-scale
analyses.
In this article, we introduce miRdup (miRNA duplex), a

tool for the validation of a candidate mature miRNA or
the prediction of the precise position and length of the
mature miRNA within a candidate pre-miRNA, based
on a combination of sequence and structural features.
We trained models separately on data from five lineages
(mammals, fishes, arthropods, nematodes and plants),
which increases species specificity and allows the discovery
of features that distinguishes miRNAs from different
species. The algorithm works on both single hairpin and
multiloop pre-miRNAs. Finally, miRdup automatically
downloads and trains on the latest miRbase release, to
ensure it benefits from the most up-to-date data.

MATERIALS AND METHODS

Datasets

MiRNAs and pre-miRNAs sequences were downloaded
from miRbase (http://www.mirbase.org/) (52) release 19,
which contains 19 823 unique mature miRNAs/pre-
miRNAs pairs. We note that until recently, miRNAs
and miRNA* used to be annotated separately in
mirBase and were thought to be functionally distinct,
with the former playing a functional role and the latter
being a non-functional by-product. This view has changed
now owing to reports of functional activity of miRNAs*
(65), and miRbase has stopped distinguishing between the
miRNAs and miRNAs* (miRbase blog, 27 April 2011).
We chose to follow this direction by considering all
miRNAs and miRNAs* as functional, labeling them as
either 3 prime or 5 prime depending on their location on
the pre-miRNA hairpin. We note, however, that for
>78% of cases, only one miRNA is annotated in a
given pre-miRNA, with the complementary region not
being annotated as functional.
For the purpose of training classifiers, negative sets of

non-miRNAs were generated as follows. For each positive
example (pair of miRNA and pre-miRNA), a negative
example was generated by randomly relocating the
miRNA along the same pre-miRNA sequence, preserving
the miRNA’s length, but excluding the exact position of
the true miRNA or of any other known miRNAs. Note
that because of the non-deterministic selection of the
negative examples, training results vary slightly from run
to run. The complete training data set consisted of 19 823
positive examples and an equal number of negative
examples.
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Feature vectors and training

Each training example was represented as a set of 100
features listed in Supplementary Table S1. The minimum
free energy (MFE) and the secondary structure of the pre-
miRNAs and the miRNA–miRNA* candidate duplexes
were obtained with RNAfold and RNAduplex, from
Vienna package (66), using default parameters. To
perform the ranking of attributes and classifier training
and evaluation, we used Weka and its libraries (67). All
classifiers were trained using 10-fold cross-validation.
Attributes ranking was performed using information
gain evaluator (InfoGain evaluator) (68) with the Ranker
search method (69) in Weka with default parameters and
10-fold cross validation. Ranker ranks attributes by their
individual evaluations in conjunction with other attribute
evaluators like ReliefF (70), GainRatio (71) and Entropy
(72).
MiRdup uses a random forest classifier [a combination

of decision tree predictors trained on a random subset of
features sampled independently (73)], combined with the
Adaboost M1 method (74). Adaboost is a machine
learning meta-algorithm that is used in combination of
many other machine learning algorithms to improve
their performance (75). The random forest was trained
with an unlimited maximum depth of the trees and 50
generated trees (Weka options: -I 50 -K 0 -S 1).
Adaboost used 10 iterations, reweighting and a weight
threshold of 100 (Weka options: -P 100 -S 1 -I 10). The
other classifiers considered were (i) a support-vector
machine (SVM) classifier (76), working with libSVM
library (77), using with radial kernel (Weka options: -S 1
-K 2 -D 3 -G 0.0 -R 0.0 -N 0.5 -M 40.0 -C 1.0 -E 0.0010 -P
0.1) and (ii) the C4.5 decision tree classifier (J48) (78),
trained with Adaboost (Weka options: AdaBoostM1 -P
100 -S 1 -I 10 -W trees.J48 – -C 0.25 -M 2).
The efficiency of a given classifier was measured as a

function of its number of true positive (TP), false positive
(FN), true negative (TN) and false negative (FN) predic-
tions. A classifier performance is typically measured
by its sensitivity Sn ¼ TP=ðTP+FNÞ and specificity
Sp ¼ TN=ðTN+FPÞ, as well as by its total prediction
accuracy ACC ¼ ðTP+TNÞ=ðTP+TN+FP+FNÞ (44)
and its Matthew’s correlation coefficient (79)
MCC ¼ TP�TN�FP�FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTP+FPÞ�ðTN+FNÞ�ðTP+FNÞ�ðTN+FPÞ
p .

MiRNA prediction

MiRdup can be used in two modes. In the validation
mode, miRdup takes as input a pre-miRNA sequence
and the position of a candidate miRNA, and returns a
score that reflects the likelihood that the candidate is a
true miRNA. In the prediction mode, the only input to
miRdup is a pre-miRNA sequence, and it evaluates all
possible miRNAs and reports the most likely miRNA-
containing duplex. For each candidate, starting position
p and length 16� l� 30 on a pre-miRNA of length n,
miRdup calculates score (p, l) using the random forest
classifier, as described above. Although candidate
miRNAs could simply be ranked based on these scores,
we found that the following post-processing approach
produced more accurate predictions. We first calculate,

for each starting position p, the consensus scores for
starting position score S(p) and ending position E(p):

S pð Þ ¼
X

16 � l � 30 s:t:

scoreðp,lÞ > 0:99

scoreðp,lÞ

E pð Þ ¼
X

16 � l � 30 s:t:
scoreðp� l+1,lÞ > 0:99

scoreðp� l+1,lÞ

We then identify the position p and length l that results in
the largest combined start and end position scores:

Predicted miRNA ¼ argmax
16 � l � 30

1 � p � n� l+1

½S pð Þ+Eðp+l� 1Þ�

RESULTS AND DISCUSSION

We developed miRdup, a classifier for the mature miRNA
validation and identification in a given pre-miRNA
sequence (see ‘Materials and Methods’ section). In the
former case, miRdup assigns a score to a given candidate
mature miRNAs within its pre-miRNA sequence. In the
latter, it determines the most likely position of a mature
miRNA within a given pre-miRNA sequence. MiRdup is
based on a random forest binary classifier using a set of
sequence and structural features of the candidate
miRNA–miRNA* duplex. By training mirDup on
lineage-specific subsets of miRbase, one obtains classifiers
that can take advantage of miRNA features that are
specific to that clade, which helps improve the accuracy
of predictions. Here, we report on the accuracy of miRdup
predictions in various settings, and contrast sequence and
structure features that are informative for five selected
clades: Mammals (mostly primates, rodents and carni-
vores), plants (mostly crucifers, maize and rice), fish
(mostly zebrafish and fugu), arthropods (insects and crust-
aceans, etc.) and nematodes (Caenorhabditis and
Pristionchus pacificus, etc.).

Evaluation of individual predictive features

We evaluated a set of sequence and structural features
(Supplementary Table S1), summarized in Table 1,
which may potentially help characterize the position of
the miRNA on the pre-miRNA hairpin. They were
chosen based on previous studies focusing on miRNA pre-
diction (42,44) and on the many properties that could
characterize the duplex. These include numerical features
describing the position and length of particular structural
elements in the putative miRNA, such as bulges and bases
pairs, or distance of the miRNA from the start/end of the
hairpin (Figure 1). We also included summary statistics on
the primary miRNA sequence (e.g. mononucleotide and
dinucleotide frequencies) and the predicted secondary
structure of the miRNA/miRNA* duplex [frequency of
base pairs types (G-U, C-G or A-U), frequency of local
sequence/structure triplets (A sequence/structure triplet
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corresponds to a nucleotide coupled by the sequence of
presence/absence of base-pairing at that position and the
two flanking positions. For example, ‘A(.(’ represents a
case where a nucleotide A is in a bulge surrounded by
two base pairs, and ‘U.(.’ means that a U is paired but
its two neighbors are not.) (42) and MFE of the duplex].
We note that we also considered adding structural features
based on ensembles of structures rather than MFE struc-
tures. However, these features did not prove more inform-
ative than their MFE-based counterparts and were not
retained.
Features vary in their power to distinguish positive

from negative examples. Identifying and removing unin-
formative features is often important to avoid overfitting
and improve computational time (80), although this
problem is less of an issue for algorithms based on
decision trees and forests of random decision trees (81)
than for SVMs (82). Features were ranked based on the
information gain they provide (Table 2). We observe that
the most influential features are those related to structural
aspects of the miRNA–miRNA* duplex (number of base
pairs, MFE, number/size of bulges, position of miRNA in
the pre-miRNA hairpin loop). On the opposite, primary
sequence features and triplet frequencies showed little dis-
criminative power. We note that because our positive and
negative examples were size-matched, miRNA length was
not considered informative.

Mature miRNAs exhibit species-specific properties

We then assessed the power of each feature at
distinguishing true miRNA from negative examples in
specific lineages. Figure 2A–H shows distribution of
feature values for some of those that vary significantly
between lineages based on Kolmogorov–Smirnov test
(P-value< 0.05 for at least one of the comparisons
between lineage-specific distribution and the distribution
obtained from all MirBase). The length of miRNAs varies
significantly between species, where plant miRNA are gen-
erally 21 nt long and almost never 23 nt, while animal
miRNAs have a broader, more regular miRNA length
distribution with a mode at 22 nt (Figure 2A). Plant

Table 1. Features used in miRdup

Features Number Description

miRNA primary sequence
Single nucleotide frequency 4 Frequency of each nucleotide
Dinucleotide frequency 16 Frequency of each dinucleotide
GC content 1 Frequency of C or G
First/last nucleotide 8 Nucleotide type at the miRNA start and end
Length 1 miRNA length

miRNA–miRNA duplex
Triplets 32 Frequency of each sequence/structure triplet (42)
Bulges 22 Bulge(s) at positions �4 to +4nt around start and end of the miRNA. Bulges

lengths and number of bulges in the miRNA.
Base pairing 10 Average number of base pairs in duplex and in a sliding window of length 3, 5

and 7 nt. Presence and start position of a perfect 5, 10 and 20 nt base pairs.
Pairs type 3 Percentage of bases forming each type of canonical/wobble base pairs (C-G,

A-U, G-U) in the duplex
Loop 2 Percentage of the miRNA overlapping the hairpin loop
MFE 1 MFE of the duplex

Figure 1. Structure of a pre-miRNA hairpin. The dashed box repre-
sents the duplex from which features are computed.
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miRNAs also stand out with duplexes that are on average
more stable (lower free energy) than animals’ (Figure 2B),
while arthropods and, to a lesser extent, nematodes are
often less stable. This is also reflected in various structural
properties such as the presence of fewer and shorter bulges
(Figure 2C, D). In fact, >13% of plant miRNAs have no
bulge at all (100% base-paired positions, Figure 2E) and
>33% have at least 10 consecutive base pairs starting at
positions 0 (start) or 1 (Figure 2F), two properties that are
much more rare in animals. Sixty percent to 90% of
animal miRNAs are located within 10 bp of the terminal
loop of the pre-miRNA (Figure 2G), whereas plant
miRNAs are often found much further, in agreement
with the fact that plants usually have longer precursors
(83). The GC content of miRNAs exhibits significant vari-
ations between species (Figure 2H), with fish miRNAs
being notably less GC-rich than those of other species.
Finally, we noted a remarkable nucleotide composition
bias at the first position of the miRNA with 40%
(in mammals) to 60% (in fish) of miRNAs starting with
a U nucleotide (Figure 2I).
Feature ranking was then repeated on each set of

species separately. While certain structural features such

as those relating to the number of base pairings ranked
consistently high for all lineages, others, in agreement with
the results presented in Table 2, are ranked differently for
different species (Table 2 and Supplementary Tables S1).
In particular, the distance to and overlap with the terminal
loop showed decreased informativity in plants, while the
MFE and the number of base pairs in the duplex were
more informative in plants than animals.

Training and evaluation of miRNAs classifiers

We first evaluated the classification accuracy of various
binary classifiers that, when presented with a candidate
miRNA and its pre-miRNA, determine whether the can-
didate is a positive or negative example. Classifiers were
first trained on a balanced data set consisting of 19 823
miRNAs from MirBase (irrespective of species) and the
same number of negative instances (randomly selected
regions of actual pre-miRNAs, with lengths matched
with positive examples; see ‘Materials and Methods’
section) and were evaluated using 10-fold cross-validation
(Table 3). Classifiers included a SVM (using a radial basis
kernel), a decision tree classifier (C4.5 with Adaboost) and

Table 2. Attribute ranking scores evaluated on all miRbase, mammals and plants data sets with Information Gain ranker

Features (Total: 22) miRbase
rank score

Mammals
rank score

Plants rank
score

Arthropods
rank score

Nematodes
rank score

Fishes rank
score

Average number of paired bases
in 3 bp sliding widow

0.186 [1] 0.181 [2] 0.218 [1] 0.165 [2] 0.190 [5] 0.220 [5]

Length of the longest bulges (%
of miRNA length)

0.185 [2] 0.176 [3] 0.203 [5] 0.153 [4] 0.190 [3] 0.193 [3]

Length of the longest bulges (nt) 0.183 [3] 0.175 [4] 0.197 [7] 0.147 [6] 0.196 [2] 0.189 [2]
Average number of paired bases
in 5 bp sliding widow

0.174 [5] 0.171 [5] 0.21 [4] 0.163 [3] 0.168 [6] 0.201 [6]

Distance to the terminal loop 0.174 [4] 0.248 [1] 0.151 [9] 0.190 [1] 0.306 [1] 0.274 [1]

Number of paired bases in the
miRNA–miRNA* duplex

0.165 [6] 0.151 [8] 0.213 [3] 0.137 [7] 0.182 [4] 0.188 [4]

Average number of paired bases
in 7 bp sliding widow

0.159 [7] 0.156 [7] 0.2 [6] 0.136 [8] 0.146 [7] 0.181 [7]

Length of miRNA overlap within
the hairpin loop

0.147 [8] 0.167 [6] 0.107 [14] 0.115 [9] 0.145 [8] 0.150 [8]

MFE of the duplex 0.137 [9] 0.112 [10] 0.214 [2] 0.162 [5] 0.102 [12] 0.196 [12]
Percentage of GC base pairs in
the duplex

0.122 [10] 0.09 [14] 0.102 [15] 0.060 [16] 0.059 [17] 0.068 [17]

Percentage of AU base pairs in
the duplex

0.118 [11] 0.068 [18] 0.083 [19] 0.027 [22] 0.058 [18] 0.046 [18]

Triplet U 0.117 [12] 0.114 [9] 0.124 [10] 0.106 [10] 0.107 [11] 0.128 [11]
Distance to the start of the
hairpin

0.112 [13] 0.094 [13] 0.155 [8] 0.077 [14] 0.144 [9] 0.107 [9]

Triplet A 0.111 [14] 0.099 [12] 0.113 [11] 0.085 [12] 0.126 [10] 0.114 [10]
miRNA included in loop (yes/no) 0.107 [15] 0.105 [11] 0.076 [20] 0.058 [17] 0.088 [14] 0.067 [14]
Triplet C 0.082 [16] 0.074 [17] 0.09 [17] 0.063 [15] 0.091 [13] 0.101 [13]
Percentage of GU base pairs in
the duplex

0.074 [17] 0.076 [16] 0.084 [18] 0.034 [20] 0.045 [19] 0.055 [19]

Triplet G 0.068 [18] 0.08 [15] 0.069 [21] 0.082 [13] 0.082 [15] 0.110 [15]
Position of the first 5 nt bulge-
free region

0.066 [19] 0.059 [19] 0.098 [16] 0.103 [11] 0.076 [16] 0.124 [16]

Triplet G 0.059 [20] 0.029 [22] 0.058 [22] 0.027 [21] 0.022 [21] 0.040 [21]
Maximum length without bulges
(nt)

0.058 [22] 0.05 [21] 0.112 [12] 0.038 [19] 0.037 [20] 0.056 [20]

Maximum length without bulges
(% of the miRNA length)

0.058 [21] 0.051 [20] 0.11 [13] 0.049 [18] 0.033 [22] 0.063 [22]

Scores are based on the information gain between the attribute and the class (67). Best score is bold. Features with substantially different scores
(>0.05) in mammals versus plants are underlined. Full ranking values are in Supplementary Tables S1 for miRbase, mammals and plants.
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a random forest classifier (with Adaboost). Other learning
algorithms were also considered but were found to be less
accurate (data not shown); these included RIPPER (84), a
feed-forward artificial neural network (85) and a logistic
regression classifier (86). Each classifier was trained on
either the full set of 100 features or on the subset of 22
best features of the Table 2. The best overall prediction
accuracies were obtained by the random forest classifier
using all features (Figure 3, Table 3), with an accuracy of
80.6%, an area under the Receiver–operating characteris-
tic curve of 89.2%, and a Matthews correlation coefficient

(MCC) of 61.4%. Boosting on C4.5 tree produced similar
but slightly inferior results. The SVM classifier trained
using all features performed poorly, with an AUC at
75.8%. The SVM’s accuracy improved slightly when re-
stricted to only the 22 most informative features but it
remained inferior to that of the random forest classifier.
Knowing that miRNAs properties are different between

species, the training and evaluation steps were repeated
separately on each of the five clades. We chose to train
lineage-specific classifiers using the random forest classifier
with no feature selection, as this is the approach that

Figure 2. Properties of miRNAs from six different lineages: all eukaryotes (19 823 miRNAs), mammals (6959), fish (766), nematodes (1087),
arthropods (2620) and plants (4732). Each panel shows the distribution of a selected feature. (A) MiRNA length (nt). (B) MFE of the miRNA–
miRNA* duplex (kcal/mol). (C) Length of the largest bulge in the miRNA (nt). (D) Number of bulges in the miRNA–miRNA* duplex. (E) Length
of longest bulge-free stem in the miRNA–miRNA* duplex. (F) Start position of the first 10 nt bulge-free stem in the miRNA–miRNA* duplex; �1
means no such region is present. (G) Distance to the terminal loop of the hairpin (nt). (H) miRNA GC-content. (I) Nucleotide type (A, U, G or C) at
the first position of the miRNA.

Table 3. Results of various classifiers trained on all features of miRbase (all lineages) evaluated using 10-fold cross-validation

Classifier Correctly classified
instances (out of 39 646)

Sensitivity Specificity Accuracy MCC AUC

Random forest with AdaBoost 31 940 0.863 0.748 0.806 0.614 0.892
C4.5 decision tree with AdaBoost 31 317 0.809 0.771 0.79 0.58 0.875
SVM with radial basis kernel 25 878 0.344 0.962 0.653 0.385 0.653
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worked best on the full data set. Results are presented in
Table 4. Accuracy levels were generally improved as
compared with the multilineage classifier, ranging from
81.7 to 86.4%, but with the exception of arthropods, for
which the predictions were only 77.7% accurate. For
almost all lineages, the accuracy of the lineage-specific
predictor (measured using 10-fold cross-validation) is
also higher than that of predictors trained on another
lineage (Table 5). The inferior performance of the arthro-
pod-specific predictor is likely due to a combination of the
small size of the data set, the variability of features within
the data set and large diversity of species within the data
set.
To illustrate an important use of miRdup, we used it to

reanalyze a set of 1670 miRNA predicted by MiRdeep2 (54)
from short-RNA sequencing data in human cancer lines
(SRA SRR029124). MiRdup-mammals validated only 755
(45%) of these candidate miRNAs. There are multiple lines
of evidence that suggest that the candidates that were
rejected by miRdup were indeed MiRdeep2 false positives.
First, only 3% of the candidate miRNAs that were rejected
by miRdup overlapped annotated miRNAs from MiRbase,

whereas this fraction was of 47% among candidate miRNAs
that were validated by miRdup. Second, we observe that
among the miRNAs predicted by MiRdeep2 and validated
by miRdup, a large proportion (46.5%) overlap highly
conserved sequences among mammals [based on
PhastCons highly conserved elements (87)], whereas this pro-
portion drops to only 19.2% among MiRdeep2 miRNA
predictions that were rejected by miRdup. These results
suggest that the candidate miRNAs rejected by miRdup
are either non-functional, or are atypical, unannotated and
poorly conserved miRNAs. Finally, we also reanalyzed the
pool of pre-miRNAs and their mature miRNAs predicted
and published by the authors of miRdeep (6), and miRdeep2
(54). MiRdup confirmed 89% (201 on 226) and 84% (98 on
117) of the identified miRNAs, respectively.

Prediction of a miRNA position within a pre-miRNA

MiRdup can be used to predict the most likely miRNA
duplex location, i.e. the most likely miRNA in 5 prime
(5p) and 3 prime (3p), within a given pre-miRNA. Given
a pre-miRNA sequence and a trained classifier for the

Figure 3. Receiver–operating characteristic curves of classifiers trained on the complete mirBase dataset. See selected features in Table 2.

Table 4. Prediction accuracy of lineage-specific miRdup predictors (random forest with Adaboost, evaluated using 10-fold cross-validation)

Classifier Number of instances Correctly classified instances Sensitivity Specificity ACC MCC AUC

Mammals 13 918 11 415 0.868 0.772 0.82 0.642 0.897
Plants 9464 7734 0.866 0.768 0.817 0.636 0.904
Nematods 2174 1789 0.882 0.764 0.823 0.649 0.898
Arthropods 5240 4071 0.833 0.721 0.777 0.557 0.857
Fish 1530 1323 0.905 0.824 0.864 0.731 0.918
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binary decision problem, miRdup computes prediction
scores for every possible combination of miRNA length
(16–30nt) and starting position and then identifies the
pair of starting and ending positions, located within 16–
30nt of each other, for which the total evidence is highest
(see ‘Materials and Methods’ section). We finally return the
predicted miRNA and its miRNA*. Figure 4 shows an
example of the prediction made for a typical pre-miRNA,
Drosophila melanogaster’s dme-mir-10.

To estimate the accuracy of miRdup at locating
miRNAs within pre-miRNAs, we calculated the
minimum distance between the true and predicted
miRNA/miRNA*, for both the start and end positions
(Figure 5 and Supplementary Figure S1). When trained
and evaluated on data from all five lineages combined,

miRdup made perfect predictions of start and end pos-
itions in 28.7% and 20.18% of the cases, respectively,
and was within 3 nt in 68.9% and 68.3% of cases, respect-
ively. This is significantly better than MatureBayes,
miRalign and ProMir 1, the only miRNA predictors we
were able to compare with. When evaluated on the same
data set, MatureBayes yields only 18.8% and 13.3% exact
miRNA duplex start and end position predictions, while
MiRalign yields 18.8% and 7.9%, MaturePred 10.34%
and 9.14% and ProMir1 6.13% and 8.01%. The results
also indicate that �10% of the predictions are off by
>10 nt with miRdup, versus �20% for the best of the
competitors (Figure 5).
Results obtained using the appropriate lineage-specific

version of miRdup generally improve on the multilineage

Figure 4. Example of miRdup prediction on the Drosophila melanogaster dme-mir-10 pre-miRNA. The actual miRNA predicted in 3p extends from
position 48 to 71 of the pre-miRNA, and the predicted miRNA in 5p, the miRNA*, is CUACCCUGUAGAUCCGAAUUUGUU. Dark columns
show the score assigned by miRdup-arthropods to each possible starting position (summed over all possible lengths), and in gray columns are scores
of each possible ending position. MiRdup predicts that the miRNA extends from positions 47 to 70, off by one position compared with the true
miRNA.

Table 5. Accuracy of lineage-specific and non-lineage-specific miRdup predictors (rows) for the prediction of miRNAs from each lineage

(columns)

Test set jTraining set miRbase Nematods Arthropods Fish Mammals Plants

miRbase 0.806 0.818 0.807 0.852 0.808 0.790
Nematods 0.74 0.823 0.755 0.82 0.768 0.618
Arthropods 0.768 0.812 0.777 0.806 0.765 0.712
Fish 0.716 0.808 0.72 0.864 0.741 0.606
Mammals 0.793 0.834 0.766 0.846 0.820 0.655
Plants 0.700 0.662 0.644 0.681 0.645 0.817

The highest accuracy for each column is in bold. For cases where a predictor is applied to data from the lineage it is trained on, the numbers
reported are obtained by 10-fold cross-validation.
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predictor, with 25.9–34.0% (respectively 20.7–24.6%) of
start (respectively end) positions predicted exactly cor-
rectly (Supplementary Figure S1). Again, fish miRNAs
stand out as being the easiest to predict, with 51.5%
(respectively 29.6%) of start (respectively end) positions
correctly predicted.

The miRdup program

MiRdup is distributed as a java program making use of
libraries from the Weka (67) and ViennaRNA (66)
packages. The workflow is schematized in Figure 6.
MiRdup can either be trained on a user-provided dataset
of knownmiRNAs and pre-miRNAs, or can automatically
download the latest version of mirBase and be trained on
all of it or on a lineage-specific subset. For example, if
‘ruminantia’ is specified as clade of interest, the predictor

will be trained only on Bos taurus andOvis aries, which are
(currently) the only two species present in miRbase in this
clade. The set of negative examples is constructed on the fly
by randomizing the position of miRNAs on the pre-
miRNA. A MFE secondary structure is obtained for each
pre-miRNAs, and features are calculated. Finally, the
random forest predictor is trained. MiRdup can be run in
two modes. In the first, miRdup takes as input a pre-
miRNA sequence (with or without predicted secondary
structure) and a candidate miRNA position, and assigns
a score reflecting the likelihood that the candidate is a real
miRNA. In the second case, miRdup evaluates every
possible combination of miRNA position and length, and
reports the most likely pair.

Thanks to its relative simplicity, miRdup is fast. On a
computer with a single 2.93GHz CPU, the training phase

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0 1 2 3 4 5 6 7 8 9 10

Distance between predicted and actual miRNA end  

MiRdup
MatureBayes
miRalign
MaturePred
ProMiR

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0 1 2 3 4 5 6 7 8 9 10
Distance between predicted and actual miRNA start 

MiRdup
MatureBayes
mirAlign
MaturePred
ProMiR

Figure 5. Cumulative distribution of the minimum distance between the true and predicted miRNAs or miRNAs* starts (up) and ends (down), i.e.
the proportion of cases where the prediction is within x bases of the true start/end positions. Multilineage miRdup predictions are compared with
MatureBayes (57), MiRalign (61), MaturePred (63) and PromiR1 (40) for all experimentally validated pre-miRNAs from miRbase, except for
MaturePred, where our analysis was limited to only 2400 miRNAs submitted owing to web server constraints. For MatureBayes and Promir, a
small number of queries were rejected by the web server and were thus excluded from the results. We only show distances of up to 10 nt, but in some
rare cases, errors are substantially larger (up to 250 nt). Results for lineage-specific miRdup compared with MatureBayes for mammals, arthropods,
nematods, fish and plants are shown in Supplementary Figure S1.
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on the complete mirBase database requires <80min, and
the miRNA prediction phase takes �10 s for a given pre-
miRNA of 100 nt.

CONCLUSIONS

Although the structural properties of pre-miRNAs are
well characterized (88) and have largely been exploited
for their predictions (89), the sequence and structure
properties that allow Dicer to recognize the exact
position of the mature miRNA remains poorly under-
stood (90). For this reason, computational approaches
for the identification of miRNAs within pre-miRNA are
rare and relatively inaccurate. Such predictors are,
however, of great importance. First, working hand in
hand with pre-miRNA predictors, they are essential for
the de novo computational miRNA annotation of new
genomes. Second, they play an important role even for
miRNA annotation projects that have the benefit of
short-RNA sequencing data. Indeed, from our experience,
the classical approach of identifying likely miRNAs by
retaining only reads that map to a genomic regions with

strong pre-miRNA potential (as predicted by miPred (44)
or HHMMiR (47), for example) still yields tens of
thousands predictions. Considering only candidates
overlapping pre-miRNAs predicted by more than one
tool can reduce this number, but the consequences on sen-
sitivity and specificity are hard to quantify. A more
reasonable number of predictions can be obtained by
more recent tools such as miRDeep (6,54), although
even it often produced unlikely miRNA predictions.
MiRdup then offers the opportunity to discard these
likely false positives while retaining a high sensitivity.
MiRdup is a flexible, accurate, fast and user-friendly

tool for the localization of mature miRNAs in pre-
miRNA. It complements a wide array of computational
tools that aim to identify pre-miRNAs and should be used
as a posttreatment of predicted hairpins or to validate the
miRNA function of short RNA reads mapped to a refer-
ence genome. MiRdup’s speed and flexibility let it to be
trained on data from specific lineages, which allows it to
take advantage of species-specific miRNA properties.
Because it is automatically trained on the latest version
of mirBase, it remains up-to-date and can take advantage
of increasingly large and accurate sets of miRNA annota-
tions. The multilineage version of MiRdup outperforms
the only other miRNA predictor available for download,
matureBayes (62). The lineage-specific version is even
more accurate, as it is able to take advantage of features
such as the presence of a uracyl at the first position of the
vast majority of fish miRNAs, or the increased stability of
the miRNA–miRNA* duplex in plants.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Table 1 and Supplementary Figure 1.
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