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Abstract: Accurate smartphone-based outdoor localization systems in deep urban canyons are in-
creasingly needed for various IoT applications. As smart cities have developed, building information
modeling (BIM) has become widely available. This article, for the first time, presents a semantic
Visual Positioning System (VPS) for accurate and robust position estimation in urban canyons where
the global navigation satellite system (GNSS) tends to fail. In the offline stage, a material segmented
BIM is used to generate segmented images. In the online stage, an image is taken with a smartphone
camera that provides textual information about the surrounding environment. The approach utilizes
computer vision algorithms to segment between the different types of material class identified in
the smartphone image. A semantic VPS method is then used to match the segmented generated
images with the segmented smartphone image. Each generated image contains position information
in terms of latitude, longitude, altitude, yaw, pitch, and roll. The candidate with the maximum
likelihood is regarded as the precise position of the user. The positioning result achieved an accuracy
of 2.0 m among high-rise buildings on a street, 5.5 m in a dense foliage environment, and 15.7 m
in an alleyway. This represents an improvement in positioning of 45% compared to the current
state-of-the-art method. The estimation of yaw achieved accuracy of 2.3◦, an eight-fold improvement
compared to the smartphone IMU.

Keywords: localization; navigation; smartphone; VPS; urban canyons; pedestrian; GNSS; BIM; 3D
building models

1. Introduction

Urban localization is essential to the development of numerous IoT applications, such
as the digital management of navigation, augmented reality, and commercial related ser-
vices [1], and is an indispensable part of daily life due to its widespread application [2]. For
indoor areas, Wi-Fi based localization has become extremely popular and many researchers
are focused on this area [3–5]. However, the use of Wi-Fi in urban areas is still highly
challenging, and positioning is limited to an accuracy of tens of meters, even in strong
signal conditions [6]. As indicated in [7], the calibration of Wi-Fi fingerprinting databases
and the density of Wi-Fi beacons in urban areas pose a large number of challenges. As a
result, Wi-Fi is mostly suitable for indoor positioning. In the context of outdoor pedestrian
localization, the application of the global navigation satellite system (GNSS) is key to
providing accurate positioning and timing services in open field environments. Unfor-
tunately, significant improvement is needed in the positioning performance of GNSS in
urban areas due to signal blockages and reflections caused by tall buildings and dense
foliage [8]. In these environments, most signals are non-line-of-sight (NLOS), which can
severely degrade the localization accuracy [9]. Hence, they cause large estimation errors if
they are either treated as line-of-sight (LOS) or not used properly [10]. Therefore, efforts
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have been devoted to developing accurate urban positioning systems in recent years. A
review of state-of-the-art localization was published in 2018 [11]. Each of these technolo-
gies has its own advantages and limitations. However, some of these solutions face other
challenges, such as mobility, accuracy, cost, and portability. A pedestrian self-localization
system should be sufficiently accurate and efficient to provide positioning information [12].
Currently available personal smartphones are equipped with various embedded sensors,
such as a gyroscope, accelerometer, and vision sensors. These sensors can be used for
urban localization, and also satisfy the requirements of being inexpensive, easy to deploy,
and user friendly.

With the increase in the development of smart cities, 3D city models have been devel-
oped rapidly and become widely available [13]. An idea known as GNSS shadow matching
was proposed to improve urban positioning [14]. It first classifies the received satellite
visibility by the received signal strength and then scans the predicted satellite visibility in
the vicinity of the ground truth position. The position is then estimated by matching the
satellite visibilities. Another method is the ray-tracing-based 3D Mapping Aided (3DMA)
GNSS algorithms that cooperate with the pseudo-range has been proposed [15]. The
integration of shadow matching and range-based 3DMA GNSS is proposed in [16]. The
performance of this approach in multipath mitigation and NLOS exclusion depends on the
accuracy of the 3D building models [17]. In recent years, interest has increased in inferring
positions using 3DMA and vision-integrated methods. The motivation is that these are
complementary methods, which in combination can provide rich scenery information.
This is largely because high-performance modern smartphones provide cameras, and
computing platform for storage, data processing, and fusion, which can be easily exploited.
The general idea behind most of these approaches is to find the closest image to a given
query picture in a database of position-tagged images (three-dimensional position and
three-dimensional rotation, adding up to six degrees of freedom [DOF]).

Research has demonstrated that it is possible to obtain precise positioning by match-
ing between a camera image and a database of images. One popular approach uses
sky-pointing fisheye camera equipment to detect obstacles and buildings in the local envi-
ronment [18]. When used in conjunction with image processing algorithms, this approach
allows the matching of the building boundary skyplot (skymask) to obtain a position
and heading.

To date, several studies have examined the use of smartphone images to estimate the
position of the user. Google’s recently developed feature-based visual positioning system
(VPS) identifies edges within the smartphone image and matches these with edges captured
from pre-surveyed images in their map database [19]. The position-tagged edges are stored
in a searchable index and are updated over time by the users. Another area of study focuses
on semantic information, such as identifying static location-tagged objects (doors, tables,
etc.) in smartphone images for indoor positioning [20]; however, reference objects are often
limited in outdoor environments. Thus, other researchers have studied the use of skyline
or building boundaries to match with smartphone images [21–24]. This provides a mean
positional error of 4.5 m and rotational error of 2–5◦ in feature-rich environments [21].

Although both methods are suitable in urban areas where GNSS signals are often
blocked by high-rise buildings, the former requires features extracted from pre-surveyed
images for precise localization, suffers from image quality dependency, and requires
frequent updates using the cloud-sourced data supplied by users. By comparison, the
latter suffers from obscured or non-distinctive skylines, which are prominent in highly
urbanized areas where dynamic objects dominate the environment. Thus, detection based
solely on the edges and the skyline may not be sufficient for practical use and precise
positioning. From the perspective of pedestrian navigation, in addition to the identification
of features and the skyline, humans also locate themselves based on visual landmarks that
consist of different semantic information, for which each semantic has a material of its
own. These high-level semantics are a new source of positioning information that does
not require additional sensors, and many modern smartphones are already equipped with
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high-performance processors that can identify these semantics. These models are steadily
improving in accuracy, and currently obtain accuracy of about 85% in city landscapes [25].

Therefore, inspired by existing methods, our proposed solution applies the semantic
VPS by utilizing different types of materials that are widely seen and continuously dis-
tributed in urban scenes. The proposed method offers several major advantages over the
existing methods.

• First, we take advantage of building materials as visual aids for precise self-localization,
overcoming inaccuracies due to a non-distinctive or obscured skyline, which are com-
mon in urban environments.

• Second, the semantic VPS uses building information modeling (BIM), which is widely
available in smart cities, due to its existing use in construction, thus eliminating the
need for pre-surveyed images. Hence, it is highly scalable and low cost.

• Third, unlike storing feature data as 3D point clouds in a searchable index, the seman-
tics of materials are stored as the properties of the objects in the BIM, enabling simple
and accurate updates to be undertaken.

• Finally, the proposed method identifies and considers dynamic objects in its scoring
system, which have usually been neglected in previous studies.

Thus, this study comprises interdisciplinary research that integrates the knowledge
of BIM, geodesy, image processing, and navigation. We believe this interdisciplinary
research demonstrates an excellent solution to provide seamless positioning for many
future IoT applications.

The remainder of this paper is organized as follows. Section 2 explains the overview
of the proposed semantic VPS approach. Section 3 describes the candidate image gen-
eration, material identification, and image matching in detail. Section 4 describes the
experimentation process and the improvement of the proposed algorithm is verified with
existing advanced positioning methods. Section 5 presents the concluding remarks and
future work.

2. Overview of the Proposed Method

An overview of the proposed semantic VPS method is shown in Figure 1. The method
is divided into two main stages: an offline process and an online process.
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Figure 1. Flowchart of the proposed semantic VPS based on segmented smartphone images and segmented generated images.

In the offline process, the building models are segmented into different colors based on
the material, which ensures a perfect representation of the materials in the BIM (Section 3.1).
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The segmented city model is used to generate cubic projections at each position (Section 3.2),
which are then converted into equirectangular projection images (Section 3.3) for later
comparison. By storing the images in an offline database within the smartphone, we
can derive a memory-effective representation of accurate reference images suitable for
smartphone-based data storage.

Based on the generated images, we propose a semantic VPS method for smartphone-
based urban localization. In the online process, the user captures an image with their
smartphone (Section 3.4), with the initial position estimated by the smartphone GNSS
receiver and IMU sensors. Then, candidates (hypothesized positions) are spread across
a search grid based on the initial position (Section 3.5). The smartphone image is then
segmented based on the identified types of materials (Section 3.6). The segmented smart-
phone image is transformed into the equirectangular projection image (Section 3.4) to
be matched with the candidate images using multiple metrics to calculate the similarity
scores (Section 3.7). The scores of each method are combined to calculate the likelihood of
each candidate (Section 3.8). The chosen position is determined by the candidate with the
maximum likelihood among all the candidates (Section 3.9). The details of the proposed
method are described in the following section.

3. Proposed Method in Detail
3.1. Textured and Segmented BIM

The city model used in this research was provided by the Surveying and Mapping
Office, Lands Department, Hong Kong [26]. It consists of only buildings and infrastructure;
foliage and dynamic objects are not represented in the models. Each building model
consists of a level of detail (LOD) 1–3, stored in Autodesk Revit Format. In BIM, each object
in the model has its own corresponding object name.

Because each object in the building model already contains a corresponding name,
a color can be assigned for the material the name represents, which can then be used to
efficiently simulate a segmented BIM, as shown in Figure 1, and allows fast scalability of a
BIM map. In this research, we used six classes to test the feasibility of the proposed method.
Each class has its own respective RGB color: Sky (black), Concrete (blue), Glass (green),
Metal (orange), Foliage (yellow), Others (light blue).

The city model uses the 3D Cartesian meter coordinate system on a plane to determine
the positioning coordinates. Therefore, it was necessary to convert the measured GNSS
positioning information in (latitude and longitude) to the 3D Cartesian coordinates. Thus,
we transformed between the WGS84 Geographic coordinates and Hong Kong 1980 Grid
coordinates using the equations described by the Surveying and Mapping Office, Lands
Department, Hong Kong [27].

3.2. Cubic Projection Generation

Each projection and its respective coordinate systems require careful clarification.
Cubic projection is a method of environment mapping that utilizes the six faces of a cube
in a 3D Cartesian coordinate system. The environment is projected onto the sides of a cube
and stored as six squares. The cube map is generated by first rendering the scene of a
position six times, each from a viewpoint, with the views defined by a 90 degree angle of
view frustum representing each cube face shown in Figure 1.

Six 90◦ view frustum square images were captured within Blender with a virtual
camera at each defined position to map a cubic projection. The defined positions store the
latitude, longitude, and altitude. Equation (1) denotes the generation process:

p = [lat, lon, alt]
Img3DM_seg

cubic, p = C_P(3DM_seg, p)
(1)
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where p is the three-dimensional position, 3DM_seg is the segmented building model, and
C_P is the function to capture the six images. The cubic projection at a defined position is
denoted as Img3DM_seg

cubic, p .

3.3. Equirectangular Projection Generation

To meet the real-time and low power consumption demands in pedestrian posi-
tioning, the BIM pre-computed images and smartphone images are compared in the 2D
equirectangular projection frame. This is because equirectangular projection allows a full
spherical view of its surroundings, as shown in Figure 1. Hence, at each position, only one
equirectangular image is stored.

Equation (2) shows the transformation from the cubic projection into the equirectangu-
lar projection at a given position, which requires the conversion from Cartesian coordinates
to spherical coordinates:

Img3DM_seg
ERP, p = ER_P

(
Img3DM_seg

cubic, p

)
(2)

where ER_P is the function to convert the cubic projection into the equirectangular projec-
tion described in [28]. The equirectangular projection at a defined position is denoted as
Img3DM_seg

ERP, p .
As for the cubic projection, the defined equirectangular projection positions store the

latitude, longitude, and altitude. The format of the generated segmented equirectangular
images can be described as:

Img3DM_seg
ERP, p = SI

(
ψp, θp

)
SI ∈

{
Sky (0), Concrete (1), Glass (2),
Metal (3), Foliage (4), Others (5)

} (3)

where ψp, θp are the 2D pixel coordinates of the pixel inside the image generated based
on the position p. Because the image is equirectangular, each set of pixel coordinates is
denoted in rotational elements because it also corresponds to the yaw and pitch. SI is the
function that assigns each pixel an indexed number to represent a material class. Each
image stores its corresponding position. Figure 1 shows an example of an equirectangular
image based on a defined position. The generated images are pre-computed and stored in
the smartphone as indexed images to reduce storage size, and used in the online phase for
image matching.

3.4. Smartphone Image Acquistion and Format

Because the smartphone image is analyzed according to the urban scene, the com-
parison is likely to perform well when there is a richer and more diverse urban scene.
Therefore, the widest available angle lens is the preferred choice because it is more suitable
to capture greater information of the surrounding urban scene in the image. A conven-
tional smartphone camera with a 120◦ diagonal field of view, 4:3 aspect ratio, resolution of
[1000, 750] pixels was used to capture the images shown in Figure 1.

The smartphone image is first segmented as described in Section 3.8. Then, to match
with the candidate images in the equirectangular projection frame, the smartphone image is
transformed to the equirectangular projection based on the smartphone intrinsic parameters
and the IMU sensor measurement. The intrinsic parameters can be identified in the image
EXIF metadata and a lookup database of the smartphone camera sensors.

r = [ψ, θ, ϕ]
Imgcam_seg

ERP,r = ER_P(Imgcam_seg, r)
(4)
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where r is the three-dimensional rotation estimated by the IMU sensor. The format of the
smartphone segmented equirectangular images can be described as:

Imgcam_seg
ERP,r = SI(ψ, θ)

SI ∈
{

Sky (0), Concrete (1), Glass (2),
Metal (3), Foliage (4), Others (5)

}
(5)

where ψ, θ are the 2D pixel coordinates of the pixel inside the image.
As shown in Figure 1, only the transformed area in the smartphone equirectangular

image is used to compare against the candidate images; the “black” area is ignored. Images
captured at the same position in different angles are therefore be transformed at their
respective area in the equirectangular image.

3.5. Candidate Position Distribution

Candidate positions are distributed around the initial estimated position. The initial
rough estimation of the position is calculated by the smartphone GNSS receiver and IMU
when capturing an image with the smartphone. The candidate latitudes and longitudes are
distributed around the initial position in a 40 m radius with 1 m resolution. The candidate
altitude remains the same as that measured by the smartphone due to its already high
accuracy. The candidate rotation is distributed around the initial rotation with 30◦ yaw, 3◦

pitch, and 3◦ roll, with 1◦ separation. The following distribution values are calibrated by
finding the maximum possible error when comparing the smartphone estimated rotation
with their ground truth. The positions are then reduced to the specific candidate poses
shown in (6):

x = {p, r}
X = {x0 · · · xs}

(6)

where x is the state (position) containing the 3D position and 3D rotation. s is the index of
the positions outside of the buildings, which is generated offline and saved in a database.
Candidate position xj is extracted from the database X, where xj ∈ X, and the subscript j is
the index of the candidate positions. The corresponding image for each candidate position
is denoted as Img3DM_seg

ERP, pj
. The distributed candidate equirectangular images are then used

to compare against the smartphone equirectangular images, Imgcam_seg
ERP, rj

.

3.6. Hand Labelled Material Segmentation

The captured smartphone images were labelled manually with the Image Labeler
application in MATLAB. In the future, however, we plan to utilize a deep learning neural
network to automatically identify the material. This is discussed in further detail in
Section 5. The smartphone image is then hand labelled to output the ideally segmented
smartphone image.

Imgcam_seg = H_L(Imgcam_raw) (7)

where H_L is the function to manually segment the smartphone image.

3.7. Material Matching

In the online stage, the candidate images are compared to the smartphone image. The
matching algorithm calculates the score of each candidate image. The target function aims
to identify the candidate image with the largest similarity with respect to the semantic
information of the materials. A typical approach is to use the region and contours of each
material class in the candidate image to compare with the corresponding material class in
the smartphone image. Because the candidate images generated from the BIM do not have
foliage and dynamic objects, any “foliage” and “other” classes identified in the smartphone
image are excluded from the similarity calculation.
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3.7.1. Dice Metric

We used the Sørensen–Dice coefficient metric to compare the region of two material
segmented images [29]. Equation (8) shows the calculation of the similarity index for each
material class:

simdi
class

(
Imgcam_seg

ERP, rj
, Img3DM_seg

ERP, pj

)
=

∣∣∣Img3DM_seg
ERP, pj

(class) ∩ Imgcam_seg
ERP, rj

(class)
∣∣∣

0.5
(

N3DM_seg
class,ERP, pj

+ Ncam_seg
class,ERP, rj

) (8)

where class is the index that represents a material, and simdi
class

(
Imgcam_seg

ERP, rj
, Img3DM_seg

ERP, pj

)
is the similarity index of the smartphone image and the candidate image for a material
class. A measure to consider is the ratio of the detected region compared to the total image
size. A smaller matched region should have lower weighting, whereas a larger matched
region should have higher weighting. Therefore, the similarity of each segmented material
needs to be weighted according to the number of pixels it occupies in the candidate image
to calculate the score of each class, represented in (9):

N3DM_seg
class,ERP, pj

=
∣∣∣Img3DM_seg

ERP, pj
(class)

∣∣∣
scoredi

class
(
xj
)
= simdi

class

(
Imgcam_seg

ERP, rj
, Img3DM_seg

ERP, pj

)
·
(

N3DM_seg
class,ERP, pj

/Ntotal

) (9)

where N3DM_seg
class,ERP, pj

is the pixel region of a material class in the candidate image, and

Ntotal is the total number of class pixels in the image. The dice score of a class is denoted
as scoredi

class
(
xj
)
. Finally, the score for each material is combined to obtain the score of the

candidate, as shown in (10):

scoredi(xj
)
= ∑

class
scoredi

class
(
xj
)

(10)

3.7.2. Jaccard Metric

The Jaccard coefficient metric is similar to the Dice coefficient metric, but instead
satisfies the triangle inequality and measures the intersection over the union of the labelled
region [30]. We also used the Jaccard coefficient metric to compare the region of two
material segmented images. Equation (11) demonstrates the calculation of the similarity
index for each material class:

simja
class

(
Imgcam_seg

ERP, rj
, Img3DM_seg

ERP, pj

)
=

∣∣∣Img3DM_seg
ERP, pj

(class) ∩ Imgcam_seg
ERP, rj

(class)
∣∣∣∣∣∣Img3DM_seg

ERP, pj
(class) ∪ Imgcam_seg

ERP, rj
(class)

∣∣∣ (11)

where simja
class

(
Imgcam_seg

ERP, rj
, Img3DM_seg

ERP, pj

)
is the similarity index of the smartphone image

and the candidate image for a material class. As for the former metric, the similarity for
each segmented material needs to be weighted according to the number of pixels it occupies
in the candidate image to calculate the score of each class, as represented in (12):

scoreja
class

(
xj
)
= simja

class

(
Imgcam_seg

ERP, rj
, Img3DM_seg

ERP, pj

)
·
(

N3DM_seg
class,ERP, pj

/Ntotal

)
(12)

The score of a class is denoted as scoreja
class

(
xj
)
. Finally, the score for each material is

combined to obtain the score for each candidate shown in (13).

scoreja(xj
)
= ∑

class
scoreja

class
(
xj
)

(13)
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3.7.3. Boundary F1 Metric

The contour quality significantly contributes to the perceived segmentation quality.
The benefit of the Boundary F1 (BF) metric is that it evaluates the accuracy of the segmenta-
tion boundaries [31], which are not captured by the Dice and Jaccard metrics because they
are regional-based metrics.

Let us call Bcam_seg
ERP, rj

(class) the boundary of the class of Imgcam_seg
ERP, rj

(class), and similarly

B3DM_seg
ERP, pj

(class) the boundary of the class of Img3DM_seg
ERP, pj

. For a distance threshold of

5 pixels, the metric disregards the content of the segmentation beyond the threshold
distance of 5 pixels under which boundaries are matched. The precision for a class is
defined as:

Pclass
(
xj
)
=

1∣∣∣B3DM_seg
ERP, pj

∣∣∣ ∑
b∈B3DM_seg

ERP, pj
(class)

Jd
(

b, Bcam_seg
ERP, rj

(class)
)
< 5K (14)

The recall for a class is defined as:

Rclass
(
xj
)
=

1∣∣∣Bcam_seg
ERP, rj

∣∣∣ ∑
b∈Bcam_seg

ERP, rj
(class)

Jd
(

b, B3DM_seg
ERP, pj

(class)
)
< 5K (15)

where 〚〛represents the Iverson bracket notation, and JsK = 1 if JsK = true and 0 otherwise,
and d() denotes the Euclidean distance measured in pixels. The Boundary F1 measure for
a class is given by:

scoreb f
class

(
xj
)
=

2·Pclass
(
xj
)
·Rclass

(
xj
)

Rclass
(
xj
)
+ Pclass

(
xj
) (16)

The BF score of a class is denoted as scoreb f
class

(
xj
)
. Finally, the score for each material

is combined by averaging the score over all classes present in the candidate image to obtain
the total score for each candidate, as shown in (17):

scoreb f (xj
)
=

1
n_class ∑

class
scoreb f

class
(
xj
)

(17)

where n_class is the total number of classes; in this research, we used six classes.

3.8. Combined Material Matching

We considered the score of each method (Dice, Jaccard, BF) for the 9 tested images
described in Section 4 to calibrate their respective CDF based on a Gaussian distribution.
The scores of each method are used to calculate the corresponding probability value in
their respective distributions as shown in Table 1:

prob∗
(
xj
)
=

1
σ∗·
√

2π
·

score∗(xj)∫
−∞

e−
1
2 (

x−µ∗
σ∗ )

2

dx (18)

where ∗ is the variable that is dependent on the method, σ is the standard deviation, and µ
is the mean of the CDF.

Table 1. Parameters of the Gaussian distribution.

Method Standard Deviation (σ) Mean (µ)

Dice 0.1813 0.6686
Jaccard 0.1567 0.5399

BF 0.1387 0.4275
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The combined probability becomes the likelihood of each candidate:

likelihood
(
xj
)
= probdi(xj

)
·probja(xj

)
·probb f (xj

)
(19)

3.9. Position Solution

A higher priority is given to the candidate image with a higher likelihood. In theory,
the candidate image at the ground truth should have the maximum likelihood. Thus, the
candidate with the maximum likelihood is selected as the chosen candidate, as indicated
in (20):

^
x = argmax

xj

(
likelihood

(
xj
))

(20)

where arg max
xj

is a function that filters the highest total score, and
^
x is the estimated

candidate pose with the highest likelihood. The chosen candidate position stores the
latitude, longitude, altitude, yaw, pitch, and roll.

4. Experimental Results
4.1. Image and Test Location Setting

In this study, the experimental locations were selected within the Tsim Sha Tsui and
Hung Hom areas of Hong Kong, as shown in Table 2. Three locations were selected in
challenging deep urban canyons surrounded by tall buildings where GNSS signals are
heavily reflected and blocked. Three images were taken at each of the selected locations
using a generic smartphone camera (Samsung Galaxy Note 20 Ultra 5G smartphone with an
ultra-wide 13mm 12-MP f/2.2 lens) and a tripod. The experimental ground truth positions
were determined based on Google Earth and nearby identifiable landmarks, such as a
labelled corner on the ground. Based on the experience of previous research [18,32], the
ground truth uncertainty of latitude and longitude was ±1m and yaw was ±2◦. The pitch
and roll angles were measured using the XPRO geared head, Manfrotto, with±1◦ uncertainty.

The experimental images were chosen with the following skyline categorizations:
distinctive, symmetrical, insufficient, obscured, and concealed. Categorizations were
based on the difficulties experienced by current 3DMA GNSS and vision-based positioning
methods. The smartphone was used to capture the images and to record the low-cost GNSS
position and IMU rotation. The GNSS receiver within the smartphone was a Broadcom
BCM47755. The IMU was a LSM6DSO MEMS and was designed by STMicroelectronics.
Images were taken at each location with different combinations of scenic features to
demonstrate the proposed semantic VPS method. The locations were chosen to test the
following environments: dense foliage (Loc. 1), street (Loc. 2), and alleyway (Loc. 3).

4.2. Positioning Results Using Ideal Segmentation

The positioning quality of the proposed method was analyzed based on the ideal
manual segmentation of the smartphone image. The experimental results were then post-
processed and compared to the ground truth and different positioning algorithms as shown
in Table 3, including:

1. Proposed semantic VPS (Combination of Dice, Jaccard and BF Metrics)
2. Proposed semantic VPS (Dice only)
3. Proposed semantic VPS (Jaccard only)
4. Proposed semantic VPS (BF only)
5. Skyline Matching: Matching using sky and building class only [21].
6. 3DMA: Integrated solution by 3DMA GNSS algorithm on shadow matching, skymask

3DMA and likelihood based ranging GNSS [33].
7. WLS: Weighted Least Squares [34].
8. NMEA: Low-cost GNSS solution by Galaxy S20 Ultra, Broadcom BCM47755.
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Table 2. Locations and images tested with the proposed semantic VPS method.

Loc. Experimental Images

1

The Hong Kong Polytechnic University, Hung Hom

Overview 1.1 1.2 1.3
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Loc. 1 is in an urban environment with dense foliage, which contains multiple
non-distinctive medium-rise buildings. The results show the positioning accuracy of
the proposed semantic VPS improves upon the existing advanced positioning methods.
An error of approximately 5.56 m from the smartphone ground truth suggests that the
semantic VPS can be used as a positioning method in foliage dense environments. Utilizing
additional material information from buildings, this approach increases the performance of
skyline matching by three-fold. The inability of skyline matching was due to the presence
of foliage obscuring the skyline. Without an exposed skyline, a correct match cannot be
obtained and the positioning error may be increased. 3DMA was shown to correct the
positioning to a higher degree, ranking behind the proposed method. The positioning
errors of WLS and NMEA were likely because of the diffraction of the GNSS signals passing
under the foliage with the combination of high-rise buildings.

As shown in the heatmap in Table 4, the proposed method using the Dice and Jaccard
metrics have very large positioning errors, possibly due to the lack of distinctive materials
captured in the smartphone image. The tested location is surrounded by buildings of the
same shape, size, and material. Therefore, it is a very challenging environment for the
proposed method because the candidate images share a common material distribution. It
can be seen in this situation that using the BF achieves a higher positioning accuracy than
the Dice and Jaccard metrics, because it calculates the material contour rather than the
material region. Thus, with the combination of the three metrics, this foliage dense envi-
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ronment proved suitable for the proposed method, which successfully utilized materials as
information for matching.

Table 3. Positioning performance comparison of the proposed semantic VPS and other advanced
positioning algorithms.

Loc.
Deviation from Ground Truth Error. Unit: Meter.

Semantic VPS (Combined) Skyline Matching 3DMA WLS NMEA

1.1 7.07 22.92

7.96 17.66 36.24
1.2 4.34 22.62

1.3 5.28 7.14

1. Avg. 5.56 17.56

2.1 0.66 14.80

6.87 23.29 7.94
2.2 1.83 1.58

2.3 3.43 2.89

2. Avg. 1.97 6.42

3.1 29.89 13.57

18.80 46.58 18.89
3.2 6.61 25.53

3.3 10.53 24.80

3. Avg. 15.68 21.30

All Avg. 7.74 15.09 11.21 29.18 21.02

Loc. 2 is in a common street urban environment with high-rise buildings. The results
show that the positioning accuracy of the proposed method improves the positioning
accuracy to around two meters. In an environment where skyline matching should perform
the best, the proposed method also improves skyline matching by more than three-fold.
The matching of the diverse materials distributed in the scene, in addition to the distinctive
skyline, significantly improved the positioning accuracy. 3DMA lagged slightly behind
skyline matching, whereas WLS increased the positioning error. It should be noted that
the estimated positioning error for the NMEA is around 8 m, which is significantly less
than that of Loc. 1. This is likely due to the relative open area along the street, as shown in
Table 2.

The heatmap results shown in Table 4 demonstrate that the metrics complement each
other when combined. As shown in Loc. 2.1, in a scene with diverse materials, the Dice and
Jaccard metrics have a higher positioning accuracy and achieve a higher likelihood than BF.
Therefore, the combination of the three metrics supports regional-based similarities.

Loc. 3 is clearly the most challenging urban environment for the 3DMA GNSS and
vision-based positioning methods due to the close and compact high-rise buildings and
visually symmetrical features. It can be seen that all methods suffer in this environment,
and most noticeably WLS. The results show that the positioning error of the proposed
method is nearly 16 m and can be improved significantly. Nonetheless, it should be noted
that this is a 35% improvement in positioning compared to skyline matching. Due to the
lack of a distinctive skyline, skyline matching can potentially increase the positioning error
if matched with the wrong image, as demonstrated at this position. 3DMA lags behind the
proposed method and, as demonstrated, only the proposed method and 3DMA slightly
improved the positioning accuracy.
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Table 4. Heatmap of the likelihood of candidate images compared to the smartphone image based on the proposed semantic
VPS method.

Loc.

Sensors 2021, 21, x FOR PEER REVIEW 12 of 18 
 

 

The poor results can be explained by two conditions required for accurate position-
ing. Firstly, the images ideally should have no segmentation error. This error is not con-
sidered in the positioning results, because we are assessing the ideal image segmentation. 
Instead, we analyzed the segmentation error in relation to the positioning error in Section 
4.4. Secondly, ideally there should be no discrepancies between the smartphone image and 
the candidate image at ground truth. Loc. 3 suffers from the latter as shown in Table 5. 

This error is shown in the positioning results of Loc. 3, where many candidates share 
a common similarity and color. Thus, it is important to ensure the BIM is constantly up-
dated to reflect reality. 

Table 4. Heatmap of the likelihood of candidate images compared to the smartphone image based on the proposed se-
mantic VPS method. 

  

Loc. 

 

 

1 1.1 1.2 1.3 

  

2 2.1 2.2 2.3 

  

3 3.1 3.2 3.3 

  

Sensors 2021, 21, x FOR PEER REVIEW 12 of 18 
 

 

The poor results can be explained by two conditions required for accurate position-
ing. Firstly, the images ideally should have no segmentation error. This error is not con-
sidered in the positioning results, because we are assessing the ideal image segmentation. 
Instead, we analyzed the segmentation error in relation to the positioning error in Section 
4.4. Secondly, ideally there should be no discrepancies between the smartphone image and 
the candidate image at ground truth. Loc. 3 suffers from the latter as shown in Table 5. 

This error is shown in the positioning results of Loc. 3, where many candidates share 
a common similarity and color. Thus, it is important to ensure the BIM is constantly up-
dated to reflect reality. 

Table 4. Heatmap of the likelihood of candidate images compared to the smartphone image based on the proposed se-
mantic VPS method. 

  

Loc. 

 

 

1 1.1 1.2 1.3 

  

2 2.1 2.2 2.3 

  

3 3.1 3.2 3.3 

  

1
1.1 1.2 1.3

Sensors 2021, 21, x FOR PEER REVIEW 12 of 18 
 

 

The poor results can be explained by two conditions required for accurate position-
ing. Firstly, the images ideally should have no segmentation error. This error is not con-
sidered in the positioning results, because we are assessing the ideal image segmentation. 
Instead, we analyzed the segmentation error in relation to the positioning error in Section 
4.4. Secondly, ideally there should be no discrepancies between the smartphone image and 
the candidate image at ground truth. Loc. 3 suffers from the latter as shown in Table 5. 

This error is shown in the positioning results of Loc. 3, where many candidates share 
a common similarity and color. Thus, it is important to ensure the BIM is constantly up-
dated to reflect reality. 

Table 4. Heatmap of the likelihood of candidate images compared to the smartphone image based on the proposed se-
mantic VPS method. 

  

Loc. 

 

 

1 1.1 1.2 1.3 

  

2 2.1 2.2 2.3 

  

3 3.1 3.2 3.3 

  

2
2.1 2.2 2.3

Sensors 2021, 21, x FOR PEER REVIEW 12 of 18 
 

 

The poor results can be explained by two conditions required for accurate position-
ing. Firstly, the images ideally should have no segmentation error. This error is not con-
sidered in the positioning results, because we are assessing the ideal image segmentation. 
Instead, we analyzed the segmentation error in relation to the positioning error in Section 
4.4. Secondly, ideally there should be no discrepancies between the smartphone image and 
the candidate image at ground truth. Loc. 3 suffers from the latter as shown in Table 5. 

This error is shown in the positioning results of Loc. 3, where many candidates share 
a common similarity and color. Thus, it is important to ensure the BIM is constantly up-
dated to reflect reality. 

Table 4. Heatmap of the likelihood of candidate images compared to the smartphone image based on the proposed se-
mantic VPS method. 

  

Loc. 

 

 

1 1.1 1.2 1.3 

  

2 2.1 2.2 2.3 

  

3 3.1 3.2 3.3 

  

3
3.1 3.2 3.3

Sensors 2021, 21, x FOR PEER REVIEW 12 of 18 
 

 

The poor results can be explained by two conditions required for accurate position-
ing. Firstly, the images ideally should have no segmentation error. This error is not con-
sidered in the positioning results, because we are assessing the ideal image segmentation. 
Instead, we analyzed the segmentation error in relation to the positioning error in Section 
4.4. Secondly, ideally there should be no discrepancies between the smartphone image and 
the candidate image at ground truth. Loc. 3 suffers from the latter as shown in Table 5. 

This error is shown in the positioning results of Loc. 3, where many candidates share 
a common similarity and color. Thus, it is important to ensure the BIM is constantly up-
dated to reflect reality. 

Table 4. Heatmap of the likelihood of candidate images compared to the smartphone image based on the proposed se-
mantic VPS method. 

  

Loc. 

 

 

1 1.1 1.2 1.3 

  

2 2.1 2.2 2.3 

  

3 3.1 3.2 3.3 

  

The poor results can be explained by two conditions required for accurate positioning.
Firstly, the images ideally should have no segmentation error. This error is not considered
in the positioning results, because we are assessing the ideal image segmentation. Instead,
we analyzed the segmentation error in relation to the positioning error in Section 4.4.
Secondly, ideally there should be no discrepancies between the smartphone image and the
candidate image at ground truth. Loc. 3 suffers from the latter as shown in Table 5.

Table 5. Discrepancy between reality and BIM.

Reality BIM
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This error is shown in the positioning results of Loc. 3, where many candidates share a
common similarity and color. Thus, it is important to ensure the BIM is constantly updated
to reflect reality.

4.3. Rotational Results Using Ideal Segmenatation

The three-dimensional rotational performance of the proposed method was analyzed
based on the ideal smartphone image segmentation, then compared to the smartphone
IMU as shown in Table 6.

Table 6. Heatmap of the likelihood of candidate images compared to the smartphone image based
on the proposed semantic VPS method.

Loc.

Deviation from Ground Truth. Unit: Degrees.

Semantic VPS Smartphone IMU

ψ θ ϕ ψ θ ϕ

1.1 −4 0 −1 −27 −2.0 1.0

1.2 3 2 −2 7 0.5 −0.5

1.3 3 2 -1 18 −0.5 0.5

1. Avg. 3.3 1.3 1.3 17.3 1.0 0.6

2.1 5 1 −2 11 0.5 −1.0

2.2 −3 −1 0 18 2.0 0.0

2.3 1 2 −2 19 −2.0 0.5

2. Avg. 3 1.3 1.3 16 1.5 0.5

3.1 2 2 −2 31 1.0 −1.5

3.2 0 1 0 28 0.5 −0.2

3.3 0 −2 −2 27 −0.5 −0.2

3. Avg. 0.6 1.7 1.3 28.6 0.6 1.8

All Avg. 2.3 1.4 1.3 20.6 1.0 1.0

The results show that, in an urban environment with features, the materials of build-
ings can be used to estimate the rotation. The yaw, pitch, and roll have an accuracy of 2.3,
1.4 and 1.3 degrees, respectively. However, the smartphone IMU pitch and roll estimation
is already very accurate compared to the proposed method, and thus the proposed method
only degrades the estimation. Instead, the proposed method succeeds at predicting the yaw
accurately, within an average of 2.3 degrees. Hence, the proposed method can be considered
an accurate approach to estimate the heading of the user in an urban environment.

Therefore, it is suggested that the proposed method should use the already accurate
altitude, pitch, and roll for position, and the yaw estimation. Eliminating the estimation of
three dimensions will significantly reduce computational load because fewer candidate
images are used for matching.

4.4. Segmentation Accuracy vs. Localization Results

To test the effect of the semantic segmentation accuracy on the localization results,
we considered the two conditions required for accurate positioning. Ideally, there should
be no segmentation error and no discrepancies between the smartphone image and the
candidate image at the ground truth. We can therefore further classify these two types
of errors: contour-based error and regional-based error. In our experiments, we tested
whether discrepancies can contribute heavily to the positioning accuracy, as shown in
Table 4, where the smartphone image differs from the candidate image at the ground
truth. Therefore, we can consider this as a regional-based error because the entire region
differs between the images. We should also consider the contour-based error, which is
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not demonstrated in our experiments, but is reflected in a realistic output of a semantic
segmentation neural network where the boundaries of a region are shifted. Contour error
can be problematic for boundary related metrics, such as the BF metric, which focus on
the evaluation along the object edges. Correctly identifying these edges is very important,
because any shift in alignment can lead to a mismatch with another candidate image. Thus,
we considered the candidate images at the ground truth to be the ideal images, because
there are no regional-based or contour-based errors. We purposely mislabeled the ideal
images by adding the two types of noise to model the amount of segmentation accuracy.

To model the two types of errors, we performed a Monte Carlo simulation. We
elastically distorted the ideal image randomly to generate over 1000 distorted images
described in [35], each with a distinctive regional-based and contour-based error. We
then compared the distorted image with the ideal image using two metrics, the combined
Dice and Jaccard metric for regional-based error, and the BF metric for the contour-based
error. We then used our proposed method to obtain a positioning error by comparing the
positioning solution of the distorted image with the ground truth position. Figure 2 shows
the candidate image with the contour mislabeled using the elastic distortion algorithm.
Figure 3 shows the characteristics of position error in the presence of segmentation error.
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proposed semantic-based VPS.

The results show a good positioning accuracy at lower levels of segmentation error. It
can be seen the positioning error in the 0 to 20% segmentation error range is approximately
0–5 m. However, the proposed method begins to suffer when incorrect segmentation
reaches more than 20% for contour-based errors and 25% for regional-based errors. This is
followed by a deteriorating positioning performance, where the positioning error increases
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to 10–20 m. At 40% contour- and regional-based errors, the matching algorithm fails to
perform accurately, increasing the risk of greater positioning error. It can be seen at this
segmentation error range, the distorted image matches with random incorrect candidate
images; thus, the positioning error spreads across a wide region.

The Monte Carlo simulation results demonstrate the importance of a correct contour-
based and regional-based segmentation and suggests that, to successfully utilize the pro-
posed method with a high positioning accuracy, a semantic segmentation neural network
with no less than 80% segmentation accuracy is preferred. The results also suggest disabling
the proposed method when the smartphone image is matched with a candidate image with
a segmentation difference of more than 20–25%. In such situations, relying on other ad-
vanced positioning techniques such as 3DMA would likely yield better positioning results.

4.5. Discussion on Validity and Limitation

The proposed method presented in this research permits self-localization based on
material that is widely distributed among urban scenes. Provided that the smartphone
image segmentation is ideal, experiments show that our approach outperforms the posi-
tioning performance of the current state-of-the-art methods by 45% and improves the yaw
performance by eight-fold compared to smartphone IMU sensors.

The pitch and roll estimated by the proposed method, however, achieves a lower
performance by half a degree compared to the smartphone IMU sensors. Hence, it is
suggested that the proposed method uses the already accurate pitch and roll estimated by
the smartphone IMU sensors. The elimination of altitude, pitch, and yaw estimation will
significantly reduce computational load because fewer images are used for matching.

Another limitation is due to inaccurate segmentation. As demonstrated in this research,
the BIM was out of date, leading to discrepancies between the smartphone image and
images at the ground truth. It was shown that when the segmentation error is greater than
20–25%, the positioning performance deteriorates significantly. Therefore, it is necessary to
frequently update the utilized 3D city model.

5. Conclusion and Future Work
5.1. Conclusions

This paper proposes a semantic VPS solution for position (six-DOF) estimation by
introducing materials as a source of information. In short, the semantic information of
materials is extracted from the smartphone image and compared to the BIM generated
images. Multiple image matching metrics were tested to accurately identify the position of
the generated image that is closest to the smartphone image.

Existing 3DMA vision-integrated approaches for urban positioning use either edge
features or skylines for positioning. This study proposed a method that extends these
paradigms to formulate the positioning as a semantic-based problem using material as
the semantic information. Our experiments demonstrate that it is possible to outperform
existing GNSS and advanced GNSS positioning methods in urban canyons. The advantages
of the semantic VPS method are numerous:

• The formulation of positioning as a semantic-based problem enables us to apply the ex-
isting wide variety of advanced optimization/shape matching metrics to the problem.

• Materials are diverse, distinctive, and widely distributed; hence, the semantic infor-
mation in an image can be easily recognized.

• The utilization of building materials for positioning eliminates the need for skyline
and building boundary reliance.

• Foliage and dynamic objects are considered for positioning.
• The semantics of buildings stored as vector maps can be simply and accurately up-

dated and labeled.

Based on the results presented in this paper, we conclude the proposed method improves
on the latitude, longitude, and heading estimation of existing advanced positioning methods.
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5.2. Future Work

Several potential future developments are suggested.

• Research has shown it is possible to identify a wide variety of materials in images in
the indoor environment [36]. Therefore, it is suggested to develop and train a deep
learning neural network to identify materials in smartphone images in the outdoor
environment for real-time use. Improvement in the deep learning neural network
may also aid automatic segmentation of 3D building models, reducing the offline
preparation time.

• By adding the common building material classes and dynamic objects to aid differen-
tiation (including concrete, stone, glass, metal, wood, bricks, pedestrians, cars, etc.),
given a large and high-quality dataset, the proposed method can be adapted to a
variety of different uses.

• It is possible to provide computation of depth based on the BIM and the virtual camera,
which can then be stored as additional information in the generated images. This
depth information can allow precise AR after image matching.

• To maximize all available visual information, the semantic VPS can also make use of
objects in addition to materials, or the combination of a semantic VPS and a feature-
based VPS, to yield better positioning performance.

• To reduce storage and computational load, the images can be stored as contour
coordinates rather than pixels.

• The semantic VPS may also be further improved by extending the functionality to
work in different weather, time, and brightness conditions.

• One difficulty encountered in this experiment was the discrepancy between reality and
the BIM; hence, it is suggested to use a crowdsourcing map to continuously update
the model.

• For dynamic positioning, a multiresolution framework can be used, where the search
starts from a big and sparse grid and is then successively refined on smaller and
denser grids. Thus, the position of the chosen candidate is used to refine a smaller
search area.

The average time taken to estimate a single point position in a 40 m radius is 10 s,
which can be reduced to within 2 s by refining to a smaller search area (5 m) during
dynamic positioning.
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