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Abstract: Background: Anticancer drugs often have strong toxicity against tumours and normal
cells. Some natural products demonstrate high tumour specificity. We have previously reported
the cytotoxic activity and tumour specificity of various chemical compounds. In this study,
we constructed a database of previously reported compound data and predictive models to screen a
new anticancer drug. Methods: We collected compound data from our previous studies and built a
database for analysis. Using this database, we constructed models that could predict cytotoxicity and
tumour specificity using random forest method. The prediction performance was evaluated using an
external validation set. Results: A total of 494 compounds were collected, and these activities and
chemical structure data were merged as database for analysis. The structure-toxicity relationship
prediction model showed higher prediction accuracy than the tumour selectivity prediction model.
Descriptors with high contribution differed for tumour and normal cells. Conclusions: Further
study is required to construct a tumour selective toxicity prediction model with higher predictive
accuracy. Such a model is expected to contribute to the screening of candidate compounds for new
anticancer drugs.

Keywords: quantitative structure-activity relationship; machine learning; random forest; natural
products; tumour-specificity

1. Introduction

Various anticancer drugs are used to treat oral cancer; however, most of these drugs also affect
normal cells. Damage to normal cell induces several adverse effects, one of these is oral mucositis (OM).
OM of patients who receiving cancer therapy makes difficult to eat and to deprive volition of treatment.
OM is an inflammation induced by various factors such as trauma, viruses and bacterial infections,
genetic factors, stress, vitamin deficiency, and chemotherapy [1,2]. The mechanism of detail is still not
well known; however, toxicity to normal cells is one of the causes. In addition, many anticancer drugs
are toxic to normal cells and have low selectivity for tumour cells. For these reasons, anticancer drugs
which have low toxicity on normal cells are urgently needed.

Compounds which are highly tumour-specific exist in natural products. Previously, we reported
cytotoxic activity against human oral squamous cell carcinoma (OSCC) cell lines and human oral
normal cells using a variety of natural and synthesized organic compounds with chromone and
azulene, which are present in various natural products, as the mother nucleus [3]. We have recently
reported that many anticancer drugs induce keratinocyte toxicity by inducing apoptosis [4]. However,
very few reports have been published [5] about the exploration of new synthetic substances that show
low keratinocyte toxicity except of our studies (Table 1).
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Table 1. Urgency of manufacturing new anticancer drugs with low keratinocyte toxicity (data obtained
from SciFinder® [5] on 5 February 2019)

Search Terms
Number of

Total Reports
(A)

Number of
Our Reports

(B)
% (B/A) × 100

OSCC 8951 (100) 141 1.6
OSCC + Anticancer Drug 335 (3.70) 60 17.9
OSCC + Anticancer Drug + Tumour-Specificity 50 (0.56) 40 80.0
OSCC + Anticancer Drug + Tumour-Specificity +
Newly Synthesized 2 (0.02) 2 100.0

OSCC + Anticancer Drug + Keratinocyte Toxicity 5 (0.06) 4 80.0
OSCC + anticancer drug + QSAR 27 (0.30) 25 92.6
OSCC + Anticancer Drug + QSAR+ Newly
Synthesized 3 (0.03) 3 100.0

Based on the notion that similar structures have similar activity, the relationship between chemical
structure and activity is referred to as the structure-activity relationship (SAR). Currently, using
information about chemical structure which called “descriptor” that is structural, physicochemical
and quantum chemical variety of characteristics, data were calculated and used for relation analysis.
Conventionally, multiple regression analysis, which is a standard statistical approach, has been
employed to analyse the relationship between the characteristic amount and activity of such drugs.
Recently, machine-learning methods have been applied to such analyses due to their high prediction
performance, and the quantitative structure activity relationship (QSAR) model is used to screen lead
compounds in drug discovery research [6–8].

We have also studied the properties of compounds relative to cytotoxicity activity using QSAR
analysis of compound and cytotoxic activity reported in the literature [3]. However, we could not
employ high performance analysis methods due to the limited number of compounds evaluated in
each study.

Thus, in this study, we gathered compound data from our previous reports and developed a
database with a sufficient number of compounds to facilitate the use of a more advanced prediction
method than single regression analysis. We attempted to construct a prediction model to search for
compounds with high cytotoxic activity and tumour specificity score, using the collected data of
cytotoxic activity of various compounds against tumour and normal cells.

To construct the prediction model, random forest (RF; one of the machine learning method) [9,10],
was adopted, expecting the collection of sufficient numbers of compounds for QSAR analysis.

2. Materials and Methods

2.1. Data Collection and Preparation

We collected our original articles published up to May 2018 (with the exception of literature
reviews), and compound and cytotoxicity data were extracted from the collected articles. All OSCC
and normal human oral cells were incubated at 2 × 103/96-microwell and incubated for 48 h to
produce near confluent cells (approximately half of the plate covered by cells) so that cells can further
grow. Cells were then treated with various conditions of samples for 48 h. Controls contains the same
concentration of DMSO, and subtracted from the experimental values to correct for DMSO cytotoxicity.
Relative viable cell numbers were determined by MTT method. The conditions of cytotoxic assays
were the same for all experiments we have done in our previous publications [11–49].

Cytotoxicity data were used as a ratio of mean 50% cytotoxic concentration (CC50) against OSCC
cell lines (HSC-2, HSC-3, and HSC-4) and human oral normal cells (human gingival fibroblast, HGF;
human pulp cells, HPC; human periodontal ligament fibroblast, and HPLF), and these CC50 were
converted to −logCC50 (pCC50), which is a negative common logarithm.
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The tumour cell selective toxic index (selectivity index; SI) was defined as the ratio of the mean
CC50 of OSCC cell lines to the mean CC50 of the human oral normal cells, and the SI was calculated for
all individual compounds.

2.2. Chemical Structure Data Acquisition and Descriptor Calculation

The collected compounds were drawn using MarvinSketch 18.10.0 (ChemAxon, Budapest,
Hungary) [50] and then converted to SMILES that is a form of a line notation based on graph theory,
to obtain numerical data from the chemical structure.

The compound data were dealt with using the integrated computational chemistry system
Molecular Operating Environment (MOE) version 2018.0101 (Chemical Computing Group Inc., Quebec,
Canada) [51] as follows; salts were removed, structure optimization was calculated, and load partial
charges were obtained. The structural data were converted to a 3D format by MOE using “Rebuild 3D”
and structural optimization was realized by force field calculation (amber-10: EHT).

From this compound data, we calculated 2D and 3D descriptors using MOE and Dragon
(version 7.0.2, Kode srl., Pisa, Italy) [52], respectively. Descriptors were treated independently by the
software. Standard deviations were calculated with each descriptor; in cases where the value was zero,
the descriptor was excluded. These descriptor data calculated by MOE and Dragon were merged for
each compound.

2.3. Preparation of Data Table

The cytotoxic activity and descriptor data were merged to a data table for analysis. The compounds
in this data table were checked for duplication by using SMILES. Compounds that had one SMILES to
several cytotoxic activity data from different articles adopted the mean pCC50.

2.4. Construction of Prediction Models by RF

The data table was randomly split (2:1 ratio) into a training set and an external validation set [53].
Eight structure-toxicity relationship prediction models were constructed by RF using the training

set. The response variables of eight prediction models were three pCC50 against each OSCC cell line,
three pCC50 against each human oral normal cell, the mean pCC50 against OSCC cell lines (mean
tumour cell), and the mean pCC50 against human oral normal cells (i.e., the mean normal cell).

In the same manner, a tumour cell selective toxicity prediction model in which the response variable
was the SI was constructed by using RF. Construction of prediction models by RF was performed
“Bootstrap Forest” [54] in statistical software JMP® Pro. 13.1.0 (SAS Institute Inc., Cary, NC, USA) [55].

To construct the prediction model, changing parameter settings and largest coefficient of
determination prediction model that was selected. Figure 1 shows the procedures from Sections 2.1–2.4.
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3. Results

3.1. Data Collection

We obtained 498 compounds from 39 articles [11–49]. After eliminating duplicate compounds
by SMILES, 494 compounds were analysed. Table 2 shows the articles and number of extracted
compounds. These 494 compounds belong to the compound groups developed from various natural
products, having skeletons shown in Table 2. SMILES data of these compounds are provided in
Supplementary Materials (Table S1).

Table 2. Number of compounds and basic skeleton extracted from articles.

No. Number of Compounds Basic Skeleton Ref.

1 9 Isoflavones and Isoflavanones [9]

2 3 Three β-Diketones [10]

3 6 Styrylchromones [11]

4 3 Nocobactins NA-a, NA-b and Their Ferric Complexes [12]

5 5 Betulinic Acid and Its Derivatives [13]

6 2 Berberines [14]

7 20 Coumarin and Its Derivatives [15]

8 1 Mitomycin C, Bleomycin and Peplomycin [16]

9 13 4-Trifluoromethylimidazole Derivatives [17]

10 15 Phenoxazine Derivatives [18]
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Table 2. Cont.

No. Number of Compounds Basic Skeleton Ref.

11 7 Vitamin K2 Derivatives [19]

12 2 4-Trifluoromethylimidazoles [20]

13 10 Phenoxazines [21]

14 18 Vitamin K2 Derivatives and Prenylalcohols [22]

15 10 3-Formylchromone Derivatives [23]

16 12 5-Trifluoromethyloxazole Derivatives [24]

17 19 1,2,3,4-Tetrahydroisoquinoline Derivatives [25]

18 19 1,2,3,4Tetrahydroisoquinoline Derivatives [26]

19 12 Dihydroimidazoles [27]

20 24 Tropolones [28]

21 24 Trihaloacetylazulenes [29]

22 22 Trihaloacetylazulene Derivatives [30]

23 10 Licorice Flavonoids [31]

24 4 1,2,3,4-Tetrahydroisoquinoline Derivatives [32]

25 19 2-Aminotropones [33]

26 12 Phenylpropanoid Amides [34]

27 12 Piperic Acid Amides [35]

28 15 3-Styrylchromones [36]

29 16 3-Styryl-2H-chromenes [37]

30 18 Oleoylamides [38]

31 17 3-Benzylidenechromanones [39]

32 18 Licorice Root Extracts [40]

33 15 Chalcones [41]

34 11 Piperic Acid Esters [42]

35 17 Aurones [43]

36 24 2-Azolylchromones [44]

37 10 Cinnamic Acid Phenetyl Esters [45]

38 10 Azulene Amide Derivatives [46]

39 10 Alkylaminoguaiazulenes [47]

Descriptors were calculated from each software MOE and Dragon, subsequently excluded in case
of the value is constant. After cleaning, 3750 descriptors were remained and used for analyses (319
descriptors calculated by MOE and 3431 descriptors calculated by Dragon).

Figure 2a shows applicability domain (AD). AD is the range of molecular properties or structures
for which the model is considered to be applicable [56]. This scatter plot shows the result of principal
component analysis using descriptors. The horizontal axis is the first principal component, and the
vertical axis is the second principal component. Training set and test set compounds distribute as
well balanced.

Moreover, to indicate detailed properties of these compounds, scatter plot of molecular weight
(MW) and octanol-water partitioning coefficient (logP) is shown in Figure 2b. These compounds
showed characteristic distribution of MW from 114.2 to 1125.8 (median 297.9); and logP from −1.53 to
13.9 (median 3.46).
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Figure 2. Chemical space of 494 compounds. (a) Applicability domain (AD) of 494 compounds.
Scatter plot of principal component analysis using descriptors. The horizontal axis is the first principal
component, and the vertical axis is the second principal component. These percentage are eigenvalue
that represent a partition of the total variation in the multivariate sample. Each dot represents a
compound; black circle is the training set and red square is the external validation set. (b) The horizontal
axis is molecular weight (MW) and the vertical axis is octanol-water partitioning coefficient (logP).
Here, each dot represents a compound; black is the training set and red is the external validation set.

3.2. Construction of Prediction Models by RF

Several prediction models were built by parameter turning. Here, the model that demonstrated the
largest value was selected. The prediction accuracy and parameters of each model are shown in Table 3.
These models were evaluated by using parameters as follows; R2, root-mean-square error (RMSE), out of
bag (OOB) RMSE, maximum absolute value of the residue, mean absolute error (MAE). The OOB RMSE
is computed as the square root of the sum of squared errors divided by the number of OOB observations.
OOB observations are training observations that are not used to construct a tree in RF. MAE is a mean of
error at a model which the value is the closer to zero indicates the model is the higher accuracy.

Table 3. Parameters of each model by random forest

Parameters
Tumour Cells Normal Cells

SI
HSC-2 HSC-3 HSC-4 Mean HGF HPC HPLF Mean

Number of Tree 100 300 100 100 100 100 100 100 300

Number of Term 952 1000 952 952 952 952 952 952 1000

Number of Maximum
Split at Tree 100 1000 2000 2000 2000 2000 2000 2000 2000

Minimum Node Size 3 5 5 5 5 5 3 5 5

Seed Value 29 36 44 77 93 91 730 9045 124

Number of Tree 23 8 21 20 9 4 34 12 8

Number of Term at
a Split 1000 1000 952 952 952 952 952 952 1000

R 2 (Training Set) 0.904 0.847 0.868 0.876 0.862 0.815 0.908 0.858 0.817

R2 (External
Validation Set)

0.564 0.568 0.631 0.563 0.554 0.659 0.515 0.576 0.404
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Table 3. Cont.

Parameters
Tumour Cells Normal Cells

SI
HSC-2 HSC-3 HSC-4 Mean HGF HPC HPLF Mean

RMSE (External
Validation Set) 0.480 0.496 0.496 0.473 0.435 0.372 0.442 0.397 0.340

OOB RMSE 0.808 0.778 0.742 0.760 0.593 0.587 0.618 0.573 0.579

Maximum Absolute
Value of the Residue 2.052 1.875 1.424 1.408 1.347 1.758 1.331 1.582 1.188

Mean Absolute Error 0.236 0.255 0.232 0.216 0.216 0.199 0.240 0.198 0.191

Figure 3 shows scatter plots of each RF model obtained using the training and external validation
sets, the measured pCC50, the predicted pCC50, the predicted SI, and the observed SI.Medicines 2019, 6, x FOR PEER REVIEW 7 of 13 

 

 
Figure 3. Scatter plot of training set and external validation set. In scatter plots of tumour and normal 
cell, the horizontal axis is the predicted pCC50, and the vertical axis is the observed pCC50 of tumour 
and normal cell. In scatter plot of SI, the horizontal axis is the predicted SI, and the vertical axis is the 
observed SI. Each dot represents a compound; black circle is the training set and red square is the 
external validation set. 

The model that demonstrated the greatest R2 value with the external validation set was the 
normal cell HPC model (R2 ＝ 0.659, RMSE ＝ 0.372), and the SI model (R2 ＝ 0.404, RMSE ＝ 0.340) 
demonstrated the smallest R2 value. 

3.3. Large Contribution Descriptor for Prediction Model 

Table 4 shows the top five contributing descriptors for the RF prediction model. Importance of 
descriptor were evaluated “LogWorth” in JMP® Pro software. “LogWorth” is calculated as negative 
common logarithm of p-value. This p-value is calculated in a complex manner that takes into account 
the number of different ways splits can occur. This calculation is very fair compared to the unadjusted 
p-value [57]. In the structure-toxicity relationship prediction model, most descriptors were classified 
into groups representing the topological shape. Note that descriptors meaning lipophilicity were 
observed in the tumour cell model, and electric charge descriptors were observed in the normal cell 
model. Topological or 3D shape descriptors were selected in the tumour cell selective toxicity 
prediction model.  

Table 4. Top five contributing descriptors for random forest prediction model. 

Cell Type Descriptor Meaning 

Tumour Cells HSC-2 
vsurf_D7 Lipophilicity 

vsurf_D2 Lipophilicity 

HSC-2 HSC-3 HSC-4 mean

Tumor cell

tra
in

in
g

te
st

tra
in

in
g

te
st

HGF HPC HPLF mean

Normal cell

tra
in

in
g

te
st

SI

Figure 3. Scatter plot of training set and external validation set. In scatter plots of tumour and normal
cell, the horizontal axis is the predicted pCC50, and the vertical axis is the observed pCC50 of tumour
and normal cell. In scatter plot of SI, the horizontal axis is the predicted SI, and the vertical axis is
the observed SI. Each dot represents a compound; black circle is the training set and red square is the
external validation set.

The model that demonstrated the greatest R2 value with the external validation set was the normal
cell HPC model (R2 = 0.659, RMSE = 0.372), and the SI model (R2 = 0.404, RMSE = 0.340) demonstrated
the smallest R2 value.
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3.3. Large Contribution Descriptor for Prediction Model

Table 4 shows the top five contributing descriptors for the RF prediction model. Importance of
descriptor were evaluated “LogWorth” in JMP® Pro software. “LogWorth” is calculated as negative
common logarithm of p-value. This p-value is calculated in a complex manner that takes into account
the number of different ways splits can occur. This calculation is very fair compared to the unadjusted
p-value [57]. In the structure-toxicity relationship prediction model, most descriptors were classified into
groups representing the topological shape. Note that descriptors meaning lipophilicity were observed
in the tumour cell model, and electric charge descriptors were observed in the normal cell model.
Topological or 3D shape descriptors were selected in the tumour cell selective toxicity prediction model.

Table 4. Top five contributing descriptors for random forest prediction model.

Cell Type Descriptor Meaning

Tumour Cells

HSC-2

vsurf_D7 Lipophilicity

vsurf_D2 Lipophilicity

GCUT_SMR_0 Topological shape

CATS2D_07_LL Lipophilicity

SpMin2_Bh(e) Topological shape and electric state

HSC-3

SssNH Topological shape and electric state

b_max1len Topological shape

Mor13s 3D shape and electric state

Mor15s 3D shape and electric state

F01[C-C] Topological shape

HSC-4

SpMax_L Topological shape

SpAD_EA(dm) Topological shape and dipole moment

ATSC2s Topological shape and electric state

vsurf_D7 Lipophilicity

ATSC5s Topological shape and electric state

Mean

logP(o/w) Lipophilicity

vsurf_D2 Lipophilicity

vsurf_D6 Lipophilicity

P_VSA_ppp_L Topological shape and lipophilicity

SssNH Topological shape and electric state

Normal Cells

HGF

GCUT_SLOGP_0 Topological shape

F10[C-N] Topological shape

SssNH Topological shape and electric state

SpMin2_Bh(s) Topological shape

GCUT_SMR_0 Topological shape

HPC

VE1_B(p) Topological shape and polarizability

b_max1len Topological shape

CATS3D_10_PL 3D shape and electric state

h_pKb Topological shape and electric state

SpMin1_Bh(p) Topological shape and polarizability
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Table 4. Cont.

Cell Type Descriptor Meaning

Normal Cells

HPLF

P_VSA_e_3 Topological shape and electric state

GCUT_SLOGP_0 Topological shape

F10[C-N] Topological shape

SssNH Topological shape and electric state

h_pavgQ Topological shape and electric state

Mean

h_pstrain Topological shape and electric state

h_pavgQ Topological shape and electric state

b_max1len Topological shape

SssNH Topological shape and electric state

F10[C-N] Topological shape

SI

TDB08p 3D shape and polarizability

F06[C-N] Topological shape

PEOE_VSA+1 Topological shape and electric state

R5u+ 3D shape and size

RDF035m 3D shape and size

4. Discussion

From our previous articles, 494 compounds and activity data were obtained. As reported in
previous studies, compounds with higher tumour specificity than existing anticancer drugs are
present among these 494 compounds. For example, in a study of 3-Styryl-2H-chromenes, several
compounds showed higher tumour specificity than doxorubicin (at most approximately 4.8 times
higher specificity) [39].

In this study, we constructed a database of seed compounds for anticancer drugs, including a
sufficient number of compounds for analysis.

Regarding cell type, the structure-toxicity relationship prediction models demonstrated the maximum
R2 value for cytotoxic activity against normal cells. If toxicity against normal cells can be predicted
accurately, it is hoped that such prediction models can be applied to the estimation of side effects caused
by cytotoxicity against normal cells, such as OM, hematotoxicity alopecia and so on. In contrast, with
the training set, the R2 values were greater than 0.9. In addition, the R2 values of all structure-toxicity
relationship prediction models obtained with the external validation set were greater 0.5.

We consider that the structure responsible for lipophilicity or a combination of lipophilicity and
another characteristic descriptors may contribute to cytotoxic activity prediction because lipophilicity
was tend to observed in the tumour cell models and not in the normal cell models. Relationship
of between lipophilicity and cytotoxicity against tumour cell might be considered that penetration
mechanism of compounds into tumour cell is one of the reason, however, further study is needed.

We expect that these findings will be useful relative to examining prediction models in future.
In construct to structure-toxicity relationship prediction model, the R2 results of the tumour cell
selective toxicity prediction models were less than 0.5.

In light of these results, further study is required to construct a tumour cell selective toxicity
prediction model. With the RF method, the meaning of the top five contributing descriptors tended to
differ from the structure-toxicity relationship and tumour cell selective toxicity prediction models.

These results indicate that tumour cell selective toxicity prediction is difficult to realize using the
methods employed in the cytotoxic activity prediction model.

Thus, further study involving other methods, parameter tuning, and so on is required to construct
a tumour cell selective toxicity prediction model with high prediction accuracy. Superior anticancer
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drugs require both strong cytotoxicity against tumour cells and selectivity to tumour cells, therefore
cytotoxic activity prediction model is needed.

In this study, we constructed prediction models that can estimate cytotoxicity and tumour selective
toxicity based on cytotoxic activity data derived from various compounds. The RF machine learning
method constructed models with higher prediction accuracy.

In future, using our findings as reference, we would like to construct a high-performance
prediction model that can be used to search for candidate compounds for a new anticancer drug.

5. Conclusions

In this study, we constructed a database of different compounds with structure and cytotoxic
activity data derived from various compounds reported in previous studies. With this database,
cytotoxicity and tumour cell selective toxicity prediction models were constructed by RF method.
It was found that the structure-toxicity relationship prediction model tended to demonstrate greater
R2 values.

In future, we expect that collecting addition compound data and investigating various model
construction methods will help realize a prediction model with good prediction accuracy, which would
facilitate the search for candidate compounds for anticancer drugs.

Supplementary Materials: The following are available online at http://www.mdpi.com/2305-6320/6/2/45/s1,
Table S1: SMILES of 494 compounds.
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Abbreviations

HGF Human gingival fibroblast
HPC Human pulp cell
HPLF Human periodontal fibroblast
Log P Octanol-water partitioning coefficient
MOE Molecular Operating Environment
OM Oral mucositis
OOB Out-of-bag
OSCC Oral squamous cell carcinoma
pCC50 −logCC50, a negative common logarithm
QASR Quantitative structure-activity relationship
R2 Coefficient of determination
RF Random forest
RMSE Root-mean-square error
SAR Structure-activity relationship
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