Supplementary Information

Manipulation of Nonlinear Optical Responses in Layered Ferroelectric Niobium Oxide Dihalides

This PDF file includes:

Supplementary Fig. 1: Metal-to-insulator phase transition.

Supplementary Fig. 2: Band structures for NbOCl₂ with different layer thicknesses.

Supplementary Fig. 3: Symmetry selection rules for bulk and monolayer NbOCl₂.

Supplementary Fig. 4: Five independent shift current susceptibility components in monolayer NbOCl₂.

Supplementary Fig. 5: Band structures for monolayer NbOCl₂ under different uniaxial strains.

Supplementary Fig. 6: The (0, k, l) reflections of NbOCl₂ obtained by single crystal X-ray diffraction.

Supplementary Fig. 7: The (0, k, l) reflections of NbOI₂ obtained by single crystal X-ray diffraction.

Supplementary Fig. 8: Normalized SHG intensity of single-crystal NbOCl₂ as a function of temperature.

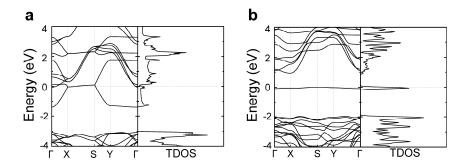
Supplementary Fig. 9: Total density of states (TDOS) of the bulk NbOCl₂ under different pressures (*left* panel) and temperatures (*right* panel).

Supplementary Fig. 10: Nonlinear optical responses for monolayer NbO X_2 (X = Cl, Br, I).

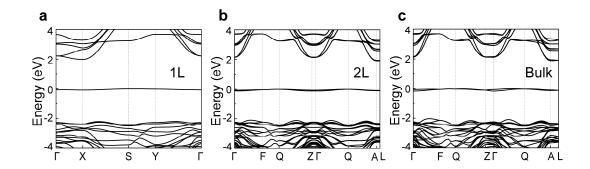
Supplementary Fig. 11: Band structures with scissor operators for NbO X_2 (X = Cl, Br, I).

Supplementary Fig. 12: SHG Responses in NbOBr₂.

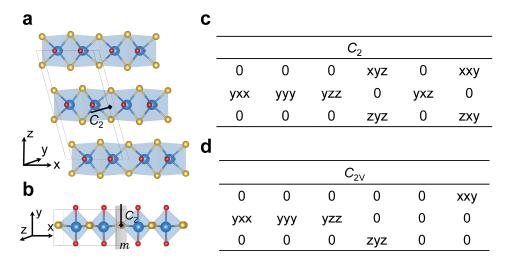
Supplementary Fig. 13: SHG Responses in NbOI₂.

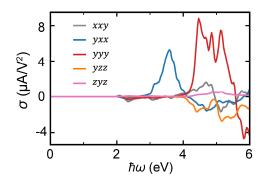

Supplementary Fig. 14: Convergence tests on the density of k-grid for NLO responses.

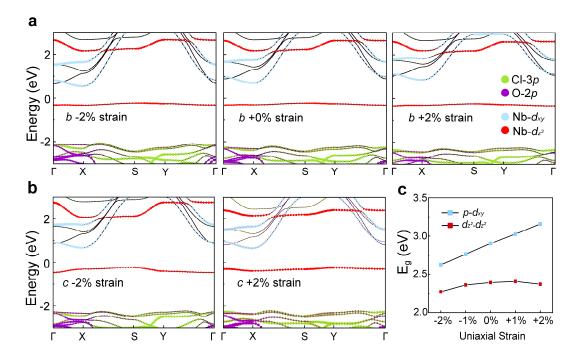
Supplementary Fig. 15: XRD of the synthesized single crystal NbOI₂.


Supplementary Note 1: Symmetry selection rules in bulk and monolayer NbOCl₂.

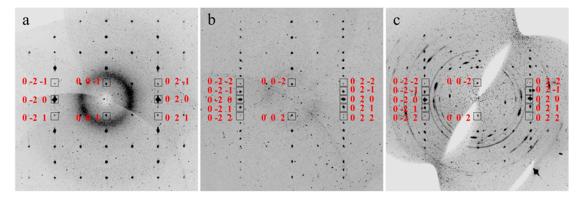
Supplementary Note 2: Expand of the generalized derivative of the dipole matrix element by using sum rule.


Supplementary Tables 1-21: Structure information of bulk NbOCl₂ and NbOI₂ by using single-crystal X-ray diffraction analysis.


Supplementary Fig. 1 | **Metal-to-insulator phase transition.** a Band structure and total density of states (DOS) of monolayer NbOCl₂ without Peierls distortion, showing a metallic feature. **b** Same as **a** but for monolayer NbOCl₂ with the Peierls distortion formed by Nb atoms, showing an insulating feature. Fermi level is set to zero.

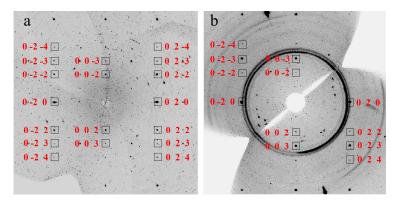

Supplementary Fig. 2 | Band structures for NbOCl₂ with different layer thicknesses. a-c HSE-calculated band structures for monolayer NbOCl₂, bilayer NbOCl₂ and bulk NbOCl₂, which have the indirect bandgaps of \sim 1.98 eV, \sim 1.91 eV and \sim 1.88 eV, respectively. Similar bandgaps indicate the weak interlayer coupling in NbOCl₂. Fermi level is set to zero.

Supplementary Fig. 3 | Symmetry selection rules for bulk and monolayer NbOCl₂. a, b Crystal structures of bulk and monolayer NbOCl₂, respectively. Here, x, y, z represents the cartesian axes. Here, C_2 implies 2-fold rotation operation and m is mirror plane. c, d The SHG susceptibility tensor $\chi^{(2)}(2\omega; \omega, \omega)$ of monoclinic C_2 point group and orthorhombic C_{2v} point group.

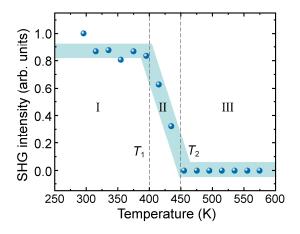

Supplementary Fig. 4 \mid Five independent shift current susceptibility components in monolayer NbOCl₂.

Supplementary Fig. 5 | Band structures for monolayer NbOCl₂ under different uniaxial strains.

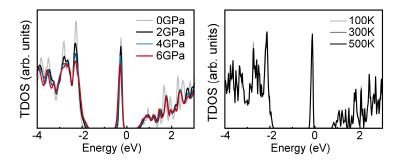
a Orbital-projected band structures via applying -2%, 0, and 2% uniaxial strain along b direction. **b** Band structures via applying -2% and 2% uniaxial strain along c direction. Fermi level is set to zero. **c** Energy bandgap as a function of uniaxial strain. Here, blue dots represent the energy gap between Cl p orbital and Nb d_{xy} orbital under the strain along b direction, and red dots represent the energy gap between two flat Nb d_{z2} orbitals under the strain along c direction.


The strain along b direction mainly changes the length of Nb-O bond and further influences the energy level repulsion between conduction band contributed by Nb atoms and valance bands contributed by anion. Differently, the strain along c direction changes the strength of Peierls distortion and only changes the dispersion of Nb d_{z2} orbitals. Therefore, as shown in \mathbf{c} , the energy gap between two Nb d_{z2} states is insensitive to the in-plane strain. However, the energy gap between p and d states increases when the strain along d direction changes from -2 % to 2 %.

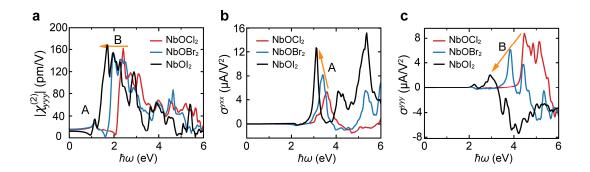
Supplementary Fig. 6 | The (0, k, l) reflections of NbOCl₂ obtained by single crystal X-ray diffraction. a Diffraction patterns collected at ambient condition. b Diffraction patterns collected at 500 K. c Diffraction patterns collected at 500 K.

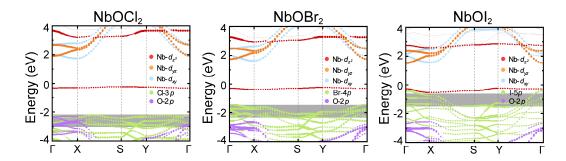

Bragg diffraction patterns in (0, k, l) are marked by their corresponding indices. Under high temperature or pressure, additional reflections along the $(0, \pm 2, l)$ lines appear (Supplementary Fig. 6b and 6c), *i.e.*, the miller indices (0, k, l) regarded to the structure at ambient condition is transformed to (0, k, 2l) under high temperature or pressure. Thus, the unit cell will be doubled along c axis when increasing temperature or applying pressure, which is consistent with the unique AFE phase reported here because the $\uparrow \uparrow \downarrow \downarrow$ polarization arrangement just requires the doubled unit cell along c axis of the FE phase.

The detailed structural information can be obtained by fitting results on the original diffraction pattern (see Method section in the main text). At the ambient condition, we list two possible unit cells with different Z values which are defined as numbers of formulas per unit cell (Supplementary Table 1). NbOCl₂ prefers the structure with Z=4 instead of Z=8 (Z=4: R=0.034, wR=0.077; Z=8: R=0.057, wR=0.109) after performing the structural refinements, with weak reflections caused by structural distortion, which is consistent with the structure reported in previous literature [1,2]. Under high temperature or high pressure, however, the extra reflections suggest the doubled Z value of the crystal structures, implying the structural phase transitions of NbOCl₂. As shown in Supplementary Tables 2 and 17, the fitting results after performing the structural refinements show that the structures under high temperature (500 K, R=0.078, wR=0.160) or pressure (5.7 GPa, R=0.089, wR=0.227) prefer Z=8.

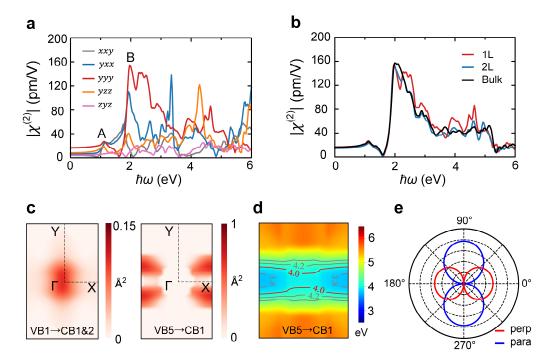


Supplementary Fig. 7 | The (0, k, l) reflections of NbOI₂ obtained by single crystal X-ray diffraction. a Diffraction patterns collected at ambient condition. b Diffraction patterns collected at 10.7 GPa.

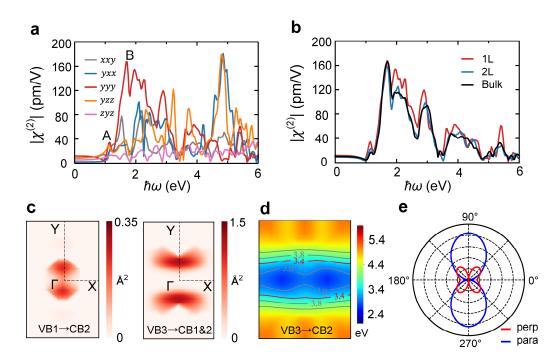

NbOI₂ share the same symmetry at ambient condition like NbOCl₂, but some weak reflections, e.g. $(0, \pm 2, \pm 1)$, are barely seen in Supplementary Fig. 7a. Some important structural information caused by the inconspicuous changes in diffraction patterns, e.g., the changes of the reflection intensity of (0, 0, 3), can only be refined by fitting results on the original diffraction pattern. The fitting results under 10.7 GPa (Supplementary Tables 7 and 12) support a change from a non-centrosymmetric structure with C2 space group to a centrosymmetric structure with C2/m space group, which is also consistent with the SHG measurements (see Fig. 4e in main text).


Supplementary Fig. 8 | Normalized SHG intensity of single-crystal NbOCl₂ as a function of temperature. The SHG intensity also undergoes three similar stages like under pressure, i.e., from FE phase (stage I) to FE-AFE mixing phase (stage II) and to AFE phase (stage III). The normalized SHG intensity starts to decrease at T_1 ~400 K and eventually reaches zero at T_2 ~450 K.

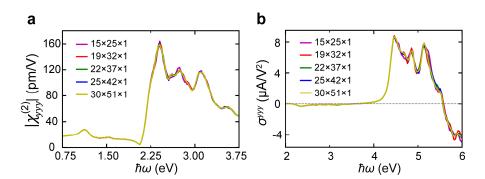
Supplementary Fig. 9 | Total density of states (TDOS) of the bulk NbOCl₂ under different pressures (*left* panel) and temperatures (*right* panel). The change of crystal lattice caused by pressure and temperature brings about similar TDOS with moving band edge slightly, implying that SHG spectra will change continuously or regularly under pressure and temperature. However, in the SHG measurement, the response keeps an average level under low pressure and diminish dramatically to zero over a certain pressure as shown in Fig. 4d. Hence, the speculation, SHG intensity diminish dramatically due to the shift of the edge for different temperature or pressure, could be ruled out.

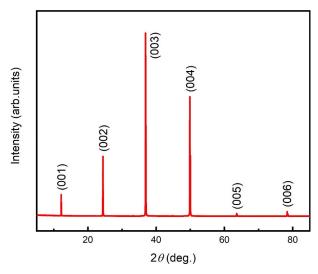


Supplementary Fig. 10 | Nonlinear optical responses for monolayer NbO X_2 (X = Cl, Br, I). a Calculated SHG susceptibility $\left|\chi_{yyy}^{(2)}\right|$ as a function of incident photon energy. **b-c** Frequency-dependent shift current susceptibility tensors σ^{yxx} and σ^{yyy} . For NbO X_2 , SHG strengths for peak B are less changed for different X. However, the peaks of σ show different changes for different susceptibility tensor components with varying X from Cl to I.



Supplementary Fig. 11 | Band structures with scissor operators for NbO X_2 (X = Cl, Br, I).


Fermi level is set to zero. The grey shadows show the orbitals which contribute the SHG peaks of three materials. The double-photons resonance in NbOI₂ and NbOBr₂ comes from $Xp \rightarrow \text{Nb } d$, while O p orbitals also contribute in NbOCl₂ ($Xp + Op \rightarrow \text{Nb } d$).


Supplementary Fig. 12 | **SHG Responses in NbOBr₂. a** Calculated nonlinear susceptibility $|\chi_{abc}^{(2)}|$ of monolayer NbOBr₂ as a function of incident photon energy. **b** SHG response for monolayer, bilayer, and bulk NbOBr₂. **c** k-resolved absorption strength, $r_{mn}^y r_{nm}^y (\mathring{A}^2)$, occurred near A and B peaks in SHG spectrum. Here, VB_n (CB_n) labels the nth valance (conduction) band starting from the top valance (bottom conduction) band. **d** Contour plot of energy difference of specified two bands. **e** Angle-resolved SHG polarization. Here, the photon energy of the incident light is set to be 1.96 eV, and the red (blue) curve represents the response with the direction perpendicular (parallel) to the polarization of incident light.

Supplementary Fig. 13 | SHG Responses in NbOI₂. a Calculated nonlinear susceptibility $|\chi_{abc}^{(2)}|$ of monolayer NbOI₂ as a function of incident photon energy. b SHG response for monolayer, bilayer, and bulk NbOI₂. c k-resolved absorption strength, $r_{mn}^y r_{nm}^y$ (Ų), occurred near A and B peaks in SHG spectrum. Here, VB_n (CB_n) labels the nth valance (conduction) band starting from the top valance (bottom conduction) band. d Contour plot of energy difference of specified two bands. e Angle-resolved SHG polarization. Here, the photon energy of the incident light is set to be 1.69 eV, and the red (blue) curve represents the response with the direction perpendicular (parallel) to the polarization of incident light.

Supplementary Fig. 14 | Convergence tests on the density of k-grid for NLO responses. a Convergence test for the SHG susceptibility $\left|\chi_{yyy}^{(2)}\right|$ of monolayer NbOCl₂. **b** Convergence test for the shift current susceptibility σ^{yyy} of monolayer NbOCl₂.

Supplementary Fig. 15 \mid XRD of the synthesized single crystal NbOI2.

Supplementary Note 1. Symmetry selection rules in bulk and monolayer NbOCl₂.

Monoclinic C_2 symmetry and orthorhombic C_{2v} symmetry have partially uniform symmetry selection rules due to the double rotational symmetry. To see this point clearly, we plot the crystal structures of bulk NbOCl₂ and monolayer NbOCl₂ in Supplementary Fig. 3, where the corresponding coordinate systems are displayed. The second-order susceptibility tensor $\chi_{abc}^{(2)}$ (a, b, c) represents cartesian coordinates) has 27 components. The spatial symmetry causes $\chi_{abc}^{(2)} = T_{aar}T_{bbr}T_{ccr}\chi_{arbrcr}^{(2)}$, where T is transformation matrix, and the right side of above equation satisfies the Einstein's summation rule. For the monoclinic C_2 symmetry, there is a double rotational symmetry about y axis whose transformation matrix can be expressed as

$$T = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

When the left side of above equation walk through all elements, we can list 27 equations. Considering intrinsic permutation symmetry, there is a non-zero component distribution of 3×6 matrix shown in Supplementary Fig. 3c. On the other hand, for the orthorhombic C_{2v} symmetry, there is an additional mirror symmetry about the yOz plane which satisfies

$$T = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

which eliminates three components: xyz, yxz, and zxy, resulting in the 3×6 matrix shown in Supplementary Fig. 3d. Comparing Supplementary Fig. 3c and Supplementary Fig. 3d, it can be found that some non-zero components of the second-order susceptibility tensor are all surviving.

Due to the extremely weak interlayer interaction of NbOCl₂, stacking multiple layers have similar optical response as monolayer (see Fig. 2f in the main text). Therefore, the SHG simulations performed on monolayer NbOCl₂ are comparable to monoclinic bulk NbOCl₂.

Supplementary Note 2. Expand of the generalized derivative of the dipole matrix element by using sum rule.

The generalized derivative of the dipole matrix element was expressed as in geometric form,

$$r_{nm;b}^{a}(\mathbf{k}) \equiv \frac{\partial r_{nm}^{a}(\mathbf{k})}{\partial k^{b}} - i[\xi_{nn}^{b}(\mathbf{k}) - \xi_{mm}^{b}(\mathbf{k})]r_{nm}^{a}(\mathbf{k}). \tag{1}$$

Here, a, b indicate Cartesian components, $\xi^a_{nm} = i \int d\mathbf{x} u^*_n(\mathbf{k},\mathbf{x}) \frac{\partial}{\partial k^a} u_m(\mathbf{k},\mathbf{x})$, which is called Berry connection when n=m, and $r^a_{nm}(\mathbf{k}) \equiv \xi^a_{nm}(\mathbf{k})$ ($n \neq m$) is non-Abelian Berry connection. Equation (1) could be expanded in detail by using the commutation relation $[r^a, p^b] = i\hbar \delta^{ab}$. We start from the commutation with Bloch states $|n\mathbf{k}\rangle$ labeled by a band index n and crystal momentum \mathbf{k} ,

$$\langle n\mathbf{k} | [r^{a}, p^{b}] | m\mathbf{k} \rangle = \langle n\mathbf{k} | [r_{i}^{a}, p^{b}] | m\mathbf{k} \rangle + \langle n\mathbf{k} | [r_{e}^{a}, p^{b}] | m\mathbf{k} \rangle$$

$$= i\hbar \delta^{ab} \delta_{nm} \delta \left(\mathbf{k} - \mathbf{k} \right).$$
(2)

When $n \neq m$, the intraband part can be expressed as

$$\langle n\mathbf{k} | [r_i^a, p^b] | m\mathbf{k} \rangle = i\delta \left(\mathbf{k} - \mathbf{k}' \right) (p_{nm}^b)_{;k^a} = i\delta \left(\mathbf{k} - \mathbf{k}' \right) (im\omega_{nm}r_{nm}^b)_{;k^a}$$
$$= -m\delta \left(\mathbf{k} - \mathbf{k}' \right) \omega_{nm} (r_{nm}^b)_{;k^a} - m\delta \left(\mathbf{k} - \mathbf{k}' \right) r_{nm}^b \Delta_{nm}^a, \tag{3}$$

which use a relation involving intraband position operator \mathbf{r}_i and simple operator S,

$$\langle n\mathbf{k} | [\mathbf{r}_i, \mathbf{S}] | m\mathbf{k}' \rangle = i\delta (\mathbf{k} - \mathbf{k}') (\mathbf{S}_{nm})_{;\mathbf{k}}, (\mathbf{S}_{nm})_{;\mathbf{k}} \equiv \frac{\partial \mathbf{S}_{nm}}{\partial \mathbf{k}} - i\mathbf{S}_{nm} (\boldsymbol{\xi}_{nn} - \boldsymbol{\xi}_{mm}).$$

The simple operator S is defined as one whose Bloch state matrix elements involve only $\delta(\mathbf{k} - \mathbf{k}')$,

i.e.,
$$\langle n\mathbf{k} | \mathbf{S} | m\mathbf{k}' \rangle = \delta (\mathbf{k} - \mathbf{k}') \mathbf{S}_{nm}$$
.

The interband part can be expanded by inserting normalized complete basis,

$$\langle n\mathbf{k} | [r_e^a, p^b] | m\mathbf{k}' \rangle = \sum_{l,\mathbf{k}_t} \langle n\mathbf{k} | r_e^a | l\mathbf{k}_t \rangle \langle l\mathbf{k}_t | p^b | m\mathbf{k}' \rangle - \langle n\mathbf{k} | p^b | l\mathbf{k}_t \rangle \langle l\mathbf{k}_t | r_e^a | m\mathbf{k}' \rangle$$

$$= \sum_{l,\mathbf{k}_t} (1 - \delta_{nl}) \, \delta(\mathbf{k} - \mathbf{k}_t) \xi_{nl}^a \cdot p_{lm}^b \delta\left(\mathbf{k}_t - \mathbf{k}'\right)$$

$$- \sum_{l,\mathbf{k}_t} p_{nl}^b \delta(\mathbf{k} - \mathbf{k}_t) \cdot (1 - \delta_{lm}) \, \delta\left(\mathbf{k}_t - \mathbf{k}'\right) \xi_{lm}^a$$

$$= \sum_{l,l \neq m \neq n} \delta\left(\mathbf{k} - \mathbf{k}'\right) \left(\xi_{nl}^a \cdot p_{lm}^b - \xi_{lm}^a \cdot p_{nl}^b\right)$$

$$+ \delta\left(\mathbf{k} - \mathbf{k}'\right) \left(\xi_{nm}^a \cdot p_{mm}^b - \xi_{nm}^a \cdot p_{nn}^b\right)$$

$$= m\delta\left(\mathbf{k} - \mathbf{k}'\right) \left(r_{nm}^a \Delta_{mn}^b + i \sum_{l,l \neq m \neq n} \left(\omega_{lm} r_{nl}^a r_{lm}^b - \omega_{nl} r_{lm}^a r_{nl}^b\right) \right).$$

$$(4)$$

Here, $\mathbf{p}_{nm} = im\mathbf{r}_{nm}\omega_{nm}$, ω_{nm} is the energy difference of the n^{th} band and m^{th} band. By using equation (1): $\left\langle n\mathbf{k} \middle| [r_i^a, p^b] \middle| m\mathbf{k}' \right\rangle + \left\langle n\mathbf{k} \middle| [r_e^a, p^b] \middle| m\mathbf{k}' \right\rangle = 0$ again, we can obtain

$$m\delta\left(\mathbf{k}-\mathbf{k}'\right)\omega_{nm}(r_{nm}^{b})_{;k^{a}}-m\delta\left(\mathbf{k}-\mathbf{k}'\right)r_{nm}^{b}\Delta_{mn}^{a}$$

$$=m\delta\left(\mathbf{k}-\mathbf{k}'\right)\left(r_{nm}^{a}\Delta_{mn}^{b}+i\sum_{l,l\neq m\neq n}\left(\omega_{lm}r_{nl}^{a}r_{lm}^{b}-\omega_{nl}r_{lm}^{a}r_{nl}^{b}\right)\right). \tag{5}$$

By sorting it, the expansion of the generalized derivative of matrix elements shows as

$$(r_{nm}^b)_{;k^a} = \frac{r_{nm}^a \Delta_{mn}^b + r_{nm}^b \Delta_{mn}^a}{\omega_{nm}} + \frac{i}{\omega_{nm}} \sum_{l} \left(\omega_{lm} r_{nl}^a r_{lm}^b - \omega_{nl} r_{lm}^a r_{nl}^b \right), \tag{6}$$

which is interpreted as a "sum rule". Here, $\Delta_{mn} = \frac{p_{mm} - p_{nn}}{m} = \frac{\partial \omega_{mn}}{\partial k}$, represents the difference of group velocity of electrons.

Supplementary Table 1. Experimental crystallographic data for $NbOCl_2$ at ambient conditions obtained by single-crystal X-ray diffraction.

	NbOCl ₂ , Z=4	NbOCl ₂ , Z=8
Chemical formula	NbOCl ₂	NbOCl ₂
$M_{ m r}$	179.81	179.81
Crystal system, space group	Monoclinic, C2	Monoclinic, C2
a, b, c (Å)	12.8412(15), 3.9025(4), 6.7148(9)	12.8452(17), 3.9028(4), 13.4311(19)
α , β , γ (°)	90, 105.830(5), 90	90, 105.846(5), 90
$V(Å^3)$	323.74(7)	647.74(14)
Z	4	8
Density (Mg/m ³)	3.689	3.688
Wavelength (Å)	0.71073	0.71073
$\mu (\text{mm}^{-1})$	5.089	5.087
Absorption correction	Multi-scan	Multi-scan
T_{\min}, T_{\max}	0.62, 0.85	0.60, 0.85
No. of measured, independent and observed reflections	575, 575, 544	1028, 1028, 677
$R_{ m int}$	0.036	0.104
$ heta_{ ext{max}}$ (°)	31.00	29.57
Refinement on	F^2	F^2
$R[F^2>2\sigma(F^2)], wR(F^2), S$	0.034, 0.77, 1.10	0.057, 0.109, 1.16
Data / restraints / parameters	575/ 1/ 37	1028/ 1/ 73
Weighting scheme	$w=1/[\sigma^2(F_o^2)+(0.021P)^2+6.255$ P], where $P=(F_o^2+2F_c^2)/3$	$w=1/[\sigma^2(F_o^2)+(0.036P)^2+25.2$ 72P], where $P=(F_o^2+2F_c^2)/3$
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (\text{e Å-3})$	2.22, -1.66	3.33, -3.08

Supplementary Table 2. Experimental structure refinement of NbOCl₂ at 5.7 GPa.

Empirical formula	NbOCl ₂
Formula weight	179.81
Temperature	296 K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	C2/c
Unit cell dimensions	a = 11.699(7) Å, α = 90.00° b = 3.8277(6) Å, β = 106.83(3)° c = 13.157(3) Å, γ = 90.00°
Volume	$563.3(4) \text{ Å}^3$
Z	8
Density (calculated)	4.236 g/cm^3
Absorption coefficient	5.84 mm ⁻¹
F(000)	664
Crystal size	$0.035 \times 0.034 \times 0.023 \text{ mm}^3$
θ range for data collection	3.2 to 25.3°
Index ranges	-6<=h<=6, -4<=k<=4, -14<=l<=14
Reflections collected	749
Independent reflections	147 [R(int) = 0.042]
Coverage of independent reflections	28.4%
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	147 / 24 / 37
Goodness-of-fit	1.24
Final R indices [>2σ(I)]	$R_{obs} = 0.089, wR_{obs} = 0.227$
R indices [all data]	$R_{all} = 0.096, wR_{all} = 0.242$
Largest diff. peak and hole	1.69 and -1.24 e·Å ⁻³

$$\begin{split} R &= \Sigma ||F_o| - |F_c|| \ / \ \Sigma |F_o|, \ wR = \ \{ \Sigma [w(|F_o|^2 - |F_c|^2)^2] \ / \ \Sigma [w(|F_o|^4)] \}^{1/2} \ and \ calc \\ w &= 1/[\sigma^2 (Fo^2) + (0.0503P)^2 + 0.0000P] \ where \ P = (Fo^2 + 2Fc^2)/3 \end{split}$$

Supplementary Table 3. Experimental atomic coordinates and equivalent isotropic atomic displacement parameters (\mathring{A}^2) of NbOCl₂ at 5.7 GPa.

Label	X	у	Z	Occupancy	${\rm U_{eq}}^*$
Nb1	0.5003 (6)	0.9513 (7)	0.6381 (3)	1	0.026 (4)
O1	0.498 (5)	0.486 (6)	0.6348 (17)	1	0.024 (7)
C11	0.677 (3)	0.994(2)	0.7971 (9)	1	0.037 (5)
C12	0.345 (2)	0.001(2)	0.4610 (8)	1	0.032 (5)

 $^{^*}U_{\text{eq}}$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Supplementary Table 4. Experimental anisotropic atomic displacement parameters (\mathring{A}^2) of NbOCl₂ at 5.7 GPa.

Label	U_{11}	U_{22}	U ₃₃	U_{12}	U_{13}	U_{23}
Nb1	0.048 (12)	0.010(2)	0.026 (4)	0.0001 (16)	0.019 (6)	-0.0037 (9)
O1	0.026 (15)	0.017 (7)	0.028 (10)	0.004 (9)	0.005 (10)	-0.001 (5)
C11	0.040 (13)	0.060(4)	0.012 (7)	-0.007 (7)	0.008(8)	0.000(3)
C12	0.036 (14)	0.053 (4)	0.005 (6)	-0.007 (6)	0.003(8)	-0.005 (3)

The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11} + ... + 2hkb^*c^*U_{23}]$.

Supplementary Table 5. Experimental bond lengths (Å) of NbOCl₂ at 5.7 GPa.

Label	Distances	Label	Distances
Nb1—O1	1.78 (2)	Nb1—Cl2	2.515 (18)
Nb1—O1 ⁱ	2.05 (2)	Nb1—Cl2 ⁱⁱⁱ	2.53 (2)
Nb1—Cl1 ⁱⁱ	2.47 (3)	Nb1—Nb1 ⁱⁱ	2.947 (6)
Nb1—Cl1	2.48 (3)		

Symmetry codes: (i) x, y-1, z; (ii) -x+1, y, -z+3/2; (iii) -x+1, -y, -z+1; (iv) x, y+1, z.

Supplementary Table 6. Experimental bond angles (°) of NbOCl₂ at 5.7 GPa.

Label	Angles	Label	Angles
O1—Nb1—O1 ⁱ	175 (3)	Cl1 ⁱⁱ —Nb1—Cl2 ⁱⁱⁱ	167.0 (7)
O1—Nb1—Cl1 ⁱⁱ	92.8 (17)	Cl1—Nb1—Cl2 ⁱⁱⁱ	84.3 (12)
O1 ⁱ —Nb1—Cl1 ⁱⁱ	85.7 (14)	Cl2—Nb1—Cl2 ⁱⁱⁱ	86.4 (12)
O1—Nb1—Cl1	96.2 (16)	O1—Nb1—Nb1 ⁱⁱ	91.6 (9)
O1 ⁱ —Nb1—Cl1	88.8 (15)	O1 ⁱ —Nb1—Nb1 ⁱⁱ	91.4 (8)
Cl1 ⁱⁱ —Nb1—Cl1	105.3 (13)	Cl1 ⁱⁱ —Nb1—Nb1 ⁱⁱ	53.0 (7)
O1—Nb1—Cl2	91.1 (15)	Cl1—Nb1—Nb1 ⁱⁱ	52.7 (7)
O1 ⁱ —Nb1—Cl2	84.0 (14)	Cl2—Nb1—Nb1 ⁱⁱ	136.0 (7)
Cl1 ⁱⁱ —Nb1—Cl2	83.0 (11)	Cl2 ⁱⁱⁱ —Nb1—Nb1 ⁱⁱ	137.0 (9)
C11—Nb1—C12	168.6 (6)	Nb1 ⁱⁱ —Cl1—Nb1	74.3 (12)
O1—Nb1—C12 ⁱⁱⁱ	94.9 (14)	Nb1—Cl2—Nb1 ⁱⁱⁱ	93.6 (12)
O1 ⁱ —Nb1—Cl2 ⁱⁱⁱ	85.7 (13)	Nb1—O1—Nb1 ^{iv}	175 (3)

Symmetry codes: (i) x, y-1, z; (ii) -x+1, y, -z+3/2; (iii) -x+1, -y, -z+1; (iv) x, y+1, z.

Supplementary Table 7. Experimental structure refinement of NbOI2 at ambient condition.

Empirical formula	NbOI ₂
Formula weight	362.71
Temperature	296(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	C2
Unit cell dimensions	a = 15.113(3) Å $\alpha = 90^{\circ}$ b = 3.9389(8) Å $\beta = 103.845(5)^{\circ}$ c = 7.5284(16) Å $\gamma = 90^{\circ}$
Volume	435.13(16) Å ³
Z	
Density (calculated)	5.537 Mg/m ³
Absorption coefficient	16.751 mm ⁻¹
F(000)	620
Crystal size	$0.040 \times 0.035 \times 0.032 \text{ mm}^3$
θ range for data collection	2.78 to 25.66°
Index ranges	-18<=h<=18, -4<=k<=4, -9<=l<=9
Reflections collected	1971
Independent reflections	797 [R(int) = 0.0358]
Coverage of independent reflections	98.8 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	797 / 7 / 38
Goodness-of-fit	1.094
Final R indices [>2σ(I)]	$R_1 = 0.0727, wR_2 = 0.1380$
R indices [all data]	$R_1 = 0.0899$, $wR_2 = 0.1512$
Largest diff. peak and hole	4.680 and -4.540 e·Å ⁻³

$$\begin{split} R &= \Sigma ||F_o| - |F_c|| \ / \ \Sigma |F_o|, \ wR = \ \{ \Sigma [w(|F_o|^2 - |F_c|^2)^2] \ / \ \Sigma [w(|F_o|^4)] \}^{1/2} \ \text{and calc} \\ w &= 1/[\sigma^2(Fo^2) + 146.4739P] \ \text{where} \ P = (Fo^2 + 2Fc^2)/3 \end{split}$$

Supplementary Table 8. Experimental atomic coordinates and equivalent isotropic atomic displacement parameters (\mathring{A}^2) of NbOI₂ at ambient condition.

Label	X	у	Z	Occupancy	Site	${\rm U_{eq}}^*$
I001	0.6499 (2)	0.2350 (10)	0.0713 (5)	1	4c	0.0282 (8)
1002	0.6335 (2)	0.2326 (9)	0.5605 (5)	1	4c	0.0286 (8)
Nb03	0.5005(3)	0.2852 (8)	0.2215 (9)	1	4c	0.0384 (14)
O004	0.500(2)	0.751 (11)	0.221 (4)	1	4c	0.037 (8)

 $[\]mbox{*}U_{\mbox{\scriptsize eq}}$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Supplementary Table 9. Experimental anisotropic atomic displacement parameters (\mathring{A}^2) of NbOI2 at ambient condition.

Label	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
I001	0.0483 (18)	0.0131 (14)	0.0274 (16)	0.001 (2)	0.0175 (15)	-0.001 (2)
1002	0.0534 (19)	0.0135 (15)	0.0176 (14)	0.003(3)	0.0057 (15)	-0.001 (2)
Nb03	0.0193 (18)	0.007(2)	0.086 (4)	0.003(2)	0.007(3)	0.004(3)
O004	0.027 (14)	0.023 (14)	0.06(2)	0.01(2)	0.002 (16)	0.01(2)

The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11} + ... + 2hka^*b^*U_{12}]$.

Supplementary Table 10. Experimental bond lengths (Å) of NbOI2 at ambient condition.

Label	Distances	Label	Distances
I001—Nb03	2.764 (6)	Nb03—O004	1.83 (5)
$I001$ — $Nb03^i$	2.769 (7)	Nb03— $O004$ ⁱⁱⁱ	2.11 (5)
I002—Nb03	2.854 (7)	$Nb03$ — $Nb03^i$	3.331 (14)
I002—Nb03 ⁱⁱ	2.903 (7)		

Symmetry codes: (i) -x+1, y, -z; (ii) -x+1, y, -z+1; (iii) x, y-1, z; (iv) x, y+1, z.

Supplementary Table 11. Experimental bond angles (°) of NbOI₂ at ambient condition.

Label	Angles	Label	Angles
Nb03—I001—Nb03 ⁱ	74.0 (2)	O004—Nb03—I002 ⁱⁱ	93.8 (11)
Nb03—I002—Nb03 ⁱⁱ	93.6 (2)	$O004^{iii}$ — $Nb03$ — $I002^{ii}$	85.7 (9)
O004—Nb03—O004 ⁱⁱⁱ	179.2 (19)	$I001$ — $Nb03$ — $I002^{ii}$	167.1 (2)
O004—Nb03—I001	94.4 (11)	$I001^{i}$ —Nb03— $I002^{ii}$	83.93 (16)
O004 ⁱⁱⁱ —Nb03—I001	86.2 (9)	I002—Nb03—I002 ⁱⁱ	85.8 (2)
O004—Nb03—I001 ⁱ	93.7 (10)	$O004$ — $Nb03$ — $Nb03^{i}$	90.0 (11)
$O004^{iii}$ — $Nb03$ — $I001^{i}$	85.6 (9)	$O004^{\mathrm{iii}}\!\!-\!\!Nb03\!-\!\!Nb03^{\mathrm{i}}$	90.0 (9)
$I001$ — $Nb03$ — $I001^{i}$	105.4 (2)	$I001$ — $Nb03$ — $Nb03^{i}$	53.05 (17)
O004—Nb03—I002	94.5 (10)	$I001^{i}$ —Nb03—Nb03 i	52.93 (19)
O004 ⁱⁱⁱ —Nb03—I002	86.1 (9)	$I002 -\!\!-\! Nb03 -\!\!-\! Nb03^i$	136.8 (3)
I001—Nb03—I002	83.73 (16)	$I002^{ii}$ —Nb03—Nb03 ⁱ	136.9 (3)
I001 ⁱ —Nb03—I002	167.2 (2)	$Nb03$ — $O004$ — $Nb03^{iv}$	179.2 (19)

Symmetry codes: (i) -x+1, y, -z; (ii) -x+1, y, -z+1; (iii) x, y-1, z; (iv) x, y+1, z.

Supplementary Table 12. Experimental structure refinement of $NbOI_2$ at $10.7\ GPa$.

Empirical formula	NbOI ₂
Formula weight	362.71
Temperature	296.15(10) K
Wavelength	0.56087 Å
Crystal system	Monoclinic
Space group	C2/m
Unit cell dimensions	a = 13.27(7) Å $\alpha = 90^{\circ}$ b = 3.7721(11) Å $\beta = 105.6(3)^{\circ}$ c = 7.222(6) Å $\gamma = 90^{\circ}$
Volume	348.1(19) Å ³
Z	4
Density (calculated)	6.921 Mg/m^3
Absorption coefficient	19.742 mm ⁻¹
F(000)	620
Crystal size	0.033 x 0.032 x 0.028 mm ³
θ range for data collection	2.310 to 21.204°
Index ranges	-7<=h<=6, -4<=k<=4, -9<=l<=9
Reflections collected Independent reflections	570 124 [R(int) = 0.0851]
Coverage of independent reflections	29.8 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	124 / 24 / 26
Goodness-of-fit	1.098
Final R indices [>2σ(I)]	$R_1 = 0.0937, wR_2 = 0.2260$
R indices [all data]	$R_1 = 0.1040, wR_2 = 0.2397$
Largest diff. peak and hole	4.592 and -2.755 e·Å ⁻³

 $R = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|, \ wR = \{ \Sigma [w(|F_o|^2 - |F_c|^2)^2] / \Sigma [w(|F_o|^4)] \}^{1/2} \ and \ calc \ w = 1/[\sigma^2(Fo^2) + (0.2P)^2] \ where \ P = (Fo^2 + 2Fc^2)/3$

Supplementary Table 13. Atomic coordinates and equivalent isotropic atomic displacement parameters (\mathring{A}^2) of NbOI₂ at 10.7 GPa.

Label	X	y	Z	Occupancy	Site	${U_{eq}}^*$
I001	0.3550 (10)	1.000000	0.9348 (6)	1	4i	0.012 (3)
I002	0.3260 (10)	1.000000	0.4010 (10)	1	4i	0.012(3)
Nb03	0.4964 (13)	1.000000	0.7093 (10)	1	4i	0.010(2)
O004	0.498 (10)	0.500000	0.723 (7)	1	4i	0.030 (18)

 $^{^{*}}U_{eq}$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Supplementary Table 14. Anisotropic atomic displacement parameters (\mathring{A}^2) of NbOI₂ at 10.7 GPa.

Label	U_{11}	U_{22}	U ₃₃	U_{12}	U_{13}	U ₂₃
I001	0.014 (9)	0.005 (2)	0.015 (3)	0.000	-0.002 (4)	0.000
I002	0.013 (9)	0.003(2)	0.018(2)	0.000	0.000(4)	0.000
Nb03	0.010(3)	0.006(2)	0.014(2)	0.000	0.002(2)	0.000
O004	0.03 (4)	0.02(2)	0.05(2)	0.000	0.03(3)	0.000

The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11} + ... + 2hka^*b^*U_{12}]$.

Supplementary Table 15. Bond lengths (Å) of NbOI₂ at 10.7 GPa.

Label	Distances	Label	Distances
I001—Nb03i	2.788 (15)	Nb03—Nb03ii	3.050 (10)
I001—Nb03	2.795 (18)	Nb03—O004iii	1.889 (2)
I002—Nb03ii	2.68 (2)	Nb03	1.889 (2)
I002—Nb03	2.714 (18)		

Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) -x+1, -y+2, -z+1; (iii) x, y+1, z; (iv) x, y-1, z.

Supplementary Table 16. Bond angles (°) of NbOI2 at 10.7 GPa.

	Ü (,		
Label	Angles	Label	Angles
Nb03 ⁱ —I001—Nb03	96.8 (6)	$O004^{iii}$ — $Nb03$ — $I001^{i}$	87 (3)
Nb03 ⁱⁱ —I002—Nb03	68.8 (4)	O004 ⁱⁱⁱ —Nb03—I001	88 (3)
I001 ⁱ —Nb03—I001	83.2 (6)	$O004$ — $Nb03$ — $I001^{i}$	87 (3)
$I001$ — $Nb03$ — $Nb03^{ii}$	141.5 (10)	O004—Nb03—I001	88 (3)
$I001^{i}$ — $Nb03$ — $Nb03^{ii}$	135.3 (9)	$O004^{\mathrm{iii}}$ —Nb03—I 002^{ii}	91 (3)
$I002$ — $Nb03$ — $I001^{i}$	169.6 (5)	O004—Nb03—I002	92 (3)
I002—Nb03—I001	86.4 (7)	O004—Nb03—I002 ⁱⁱ	91 (3)
I002 ⁱⁱ —Nb03—I001	162.5 (7)	O004 ⁱⁱⁱ —Nb03—I002	92 (3)
$I002^{ii}$ —Nb03— $I001^{i}$	79.2 (6)	O004— $Nb03$ — $Nb03$ ⁱⁱ	92.9 (13)
I002 ⁱⁱ —Nb03—I002	111.2 (4)	$O004^{iii}$ —Nb03—Nb03 ⁱⁱ	92.9 (13)
I002— $Nb03$ — $Nb03$ ⁱⁱ	55.1 (6)	O004 ⁱⁱⁱ —Nb03—O004	174 (3)
$I002^{ii} -\!\!\!\!\!- Nb03 -\!\!\!\!\!- Nb03^{ii}$	56.1 (5)	$Nb03^{iv}$ — $O004$ — $Nb03$	174 (3)

Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) -x+1, -y+2, -z+1; (iii) x, y+1, z; (iv) x, y-1, z.

Supplementary Table 17. Experimental structure refinement of NbOCl₂ at 500 K.

Empirical formula	NbOCl ₂
Formula weight	179.81
Temperature	500 K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	C2/c
Unit cell dimensions	a = 12.9128(15) Å, α = 90.00° b = 3.8993(5) Å, β = 105.295(5)° c = 13.4507(17) Å, γ = 90.00°
Volume Z	653.27(14) Å ³
_	8
Density (calculated)	3.656 g/cm ³ 5.04 mm ⁻¹
Absorption coefficient	
F(000)	664
Crystal size	0.040 x 0.034 x 0.033 mm ³
θ range for data collection	3.1 to 27.9°
Index ranges	-16<=h<=16, -5<=k<=5, -17<=l<=17
Reflections collected	2493
Independent reflections	772 [R(int) = 0.058]
Coverage of independent reflections	99.0%
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	772 / 0 / 37
Goodness-of-fit	1.159
Final R indices [>2σ(I)]	$R_{obs} = 0.078, wR_{obs} = 0.160$
R indices [all data]	$R_{all} = 0.103, wR_{all} = 0.171$
Largest diff. peak and hole	1.834 and -2.217 e·Å-3

$$\begin{split} R &= \Sigma ||F_o| - |F_c|| \ / \ \Sigma |F_o|, \ wR = \{ \Sigma [w(|F_o|^2 - |F_c|^2)^2] \ / \ \Sigma [w(|F_o|^4)] \}^{1/2} \ and \ calc \\ w &= 1/[\sigma^2(Fo^2) + (0.0725P)^2 + 26.6676P] \ where \ P = (Fo^2 + 2Fc^2)/3 \end{split}$$

Supplementary Table 18. Experimental atomic coordinates and equivalent isotropic atomic displacement parameters (\mathring{A}^2) of NbOCl₂ at 500 K.

Label	X	у	Z	Occupancy	${ m U_{eq}}^*$
Nb1	0.49955 (8)	0.0561 (3)	0.36095 (9)	1	0.0192 (4)
О3	0.4984 (7)	0.513 (2)	0.3631 (7)	1	0.024(2)
Cl1	0.6346 (3)	-0.0006 (9)	0.5334(2)	1	0.0283 (8)
C12	0.3459 (3)	0.0076 (9)	0.2107 (2)	1	0.0287 (8)

 $^{^*}U_{\text{eq}}$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Supplementary Table 19. Experimental anisotropic atomic displacement parameters (\mathring{A}^2) of NbOCl₂ at 500 K.

Label	U ₁₁	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Nb1	0.0279 (6)	0.0110 (6)	0.0196 (6)	0.0004 (5)	0.0077 (4)	0.0001 (5)
О3	0.041 (5)	0.009(5)	0.028 (5)	0.003 (4)	0.018 (4)	0.005 (5)
C11	0.0304 (16)	0.034(2)	0.0201 (15)	0.0001 (13)	0.0061 (12)	0.0018 (15)
C12	0.0290 (15)	0.033(2)	0.0252 (16)	-0.0009 (13)	0.0099 (13)	-0.0007 (15)

The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11} + ... + 2hkb^*c^*U_{23}]$.

Supplementary Table 20. Experimental bond lengths (Å) of NbOCl₂ at 500 K.

Label	Distances	Label	Distances
Nb1—O3	1.781 (8)	Nb1—Cl1	2.517 (3)
Nb1—O3i	2.119 (8)	Nb1—Cl1 ⁱⁱⁱ	2.522 (3)
Nb1—Cl2	2.438 (3)	Nb1—Nb1 ⁱⁱ	2.988 (2)
Nb1—Cl2 ⁱⁱ	2.441 (3)		

Symmetry codes: (i) x, y-1, z; (ii) -x+1, y, -z+1/2; (iii) -x+1, -y, -z+1; (iv) x, y+1, z.

Supplementary Table 21. Experimental bond angles (°) of NbOCl₂ at 500 K.

Label	Angles	Label	Angles
O3—Nb1—O3 ⁱ	177.9 (5)	Cl2—Nb1—Cl1 ⁱⁱⁱ	86.04 (11)
O3—Nb1—Cl2	94.8 (3)	Cl2 ⁱⁱ —Nb1—Cl1 ⁱⁱⁱ	165.86 (12)
O3 ⁱ —Nb1—Cl2	85.8 (3)	Cl1—Nb1—Cl1 ⁱⁱⁱ	83.39 (11)
O3—Nb1—Cl2 ⁱⁱ	95.5 (3)	O3—Nb1—Nb1 ⁱⁱ	91.1 (3)
O3 ⁱ —Nb1—Cl2 ⁱⁱ	86.4 (2)	$O3^{i}$ — $Nb1$ — $Nb1^{ii}$	90.9 (2)
Cl2—Nb1—Cl2 ⁱⁱ	103.77 (11)	Cl2—Nb1—Nb1 ⁱⁱ	52.29 (8)
O3—Nb1—Cl1	94.6 (3)	Cl2 ⁱⁱ —Nb1—Nb1 ⁱⁱ	52.18 (8)
O3 ⁱ —Nb1—C11	84.5 (3)	Cl1—Nb1—Nb1 ⁱⁱ	137.42 (10)
Cl2—Nb1—Cl1	166.34 (12)	Cl1 ⁱⁱⁱ —Nb1—Nb1 ⁱⁱ	138.32 (9)
Cl2 ⁱⁱ —Nb1—Cl1	85.26 (11)	Nb1—Cl1—Nb1 ⁱⁱⁱ	96.61 (11)
O3—Nb1—Cl1 ⁱⁱⁱ	93.8 (3)	Nb1—Cl2—Nb1 ⁱⁱ	75.52 (11)
O3i—Nb1—Cl1iii	84.2 (2)	Nb1—O3—Nb1 ^{iv}	177.9 (5)

Symmetry codes: (i) x, y-1, z; (ii) -x+1, y, -z+1/2; (iii) -x+1, -y, -z+1; (iv) x, y+1, z.

References

[1] Schäfer H, Schnering H G. Metall-Metall-Bindungen bei niederen Halogeniden, Oxyden und Oxydhalogeniden schwerer Übergangsmetalle Thermochemische und strukturelle Prinzipien. Angewandte Chemie 1964, 76, 833-849.

[2] Guo, Q.; Qi, X.-Z.; Zhang, L.; Gao, M.; Hu, S.; Zhou, W.; Zang, W.; Zhao, X.; Wang, J.; Yan, B.; Xu, M.; Wu, Y.-K.; Eda, G.; Xiao, Z.; Yang, S. A.; Gou, H.; Feng, Y. P.; Guo, G.-C.; Zhou, W.; Ren, X.-F.; Qiu, C.-W.; Pennycook, S. J.; Wee, A. T. S. Ultrathin quantum light source with van der Waals NbOCl₂ crystal. Nature 2023, 613, 53–59.