
ORIGINAL RESEARCH
published: 24 May 2019

doi: 10.3389/fcimb.2019.00161

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 1 May 2019 | Volume 9 | Article 161

Edited by:

Gianni Panagiotou,

Leibniz Institute for Natural Product

Research and Infection

Biology, Germany

Reviewed by:

Thomas Dandekar,

University of Wuerzburg, Germany

Christoph Kaleta,

University of Kiel, Germany

*Correspondence:

Jonathan M. Monk

jmonk@ucsd.edu

Specialty section:

This article was submitted to

Molecular Bacterial Pathogenesis,

a section of the journal

Frontiers in Cellular and Infection

Microbiology

Received: 16 January 2019

Accepted: 29 April 2019

Published: 24 May 2019

Citation:

Norsigian CJ, Attia H, Szubin R,

Yassin AS, Palsson BØ, Aziz RK and

Monk JM (2019) Comparative

Genome-Scale Metabolic Modeling of

Metallo-Beta-Lactamase–Producing

Multidrug-Resistant Klebsiella

pneumoniae Clinical Isolates.

Front. Cell. Infect. Microbiol. 9:161.

doi: 10.3389/fcimb.2019.00161

Comparative Genome-Scale
Metabolic Modeling of
Metallo-Beta-Lactamase–Producing
Multidrug-Resistant Klebsiella
pneumoniae Clinical Isolates
Charles J. Norsigian 1, Heba Attia 2, Richard Szubin 1, Aymen S. Yassin 2,3,

Bernhard Ø. Palsson 1, Ramy K. Aziz 2,3 and Jonathan M. Monk 1*

1 Systems Biology Research Group, Department of Bioengineering, University of California, San Diego, San Diego, CA,

United States, 2Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt, 3 The

Center for Genome and Microbiome Research, Cairo University, Cairo, Egypt

The emergence and spread of metallo-beta-lactamase–producing multidrug-resistant

(MDR) Klebsiella pneumoniae is a serious public health threat, which is further

complicated by the increased prevalence of colistin resistance. The link between

antimicrobial resistance acquired by strains of Klebsiella and their unique metabolic

capabilities has not been determined. Here, we reconstruct genome-scale metabolic

models for 22 K. pneumoniae strains with various resistance profiles to different

antibiotics, including two strains exhibiting colistin resistance isolated from Cairo, Egypt.

We use the models to predict growth capabilities on 265 different sole carbon,

nitrogen, sulfur, and phosphorus sources for all 22 strains. Alternate nitrogen source

utilization of glutamate, arginine, histidine, and ethanolamine among others provided

discriminatory power for identifying resistance to amikacin, tetracycline, and gentamicin.

Thus, genome-scale model based predictions of growth capabilities on alternative

substrates may lead to construction of classification trees that are indicative of antibiotic

resistance in Klebsiella isolates.

Keywords: multi-drug resistance, MDR, Klebsiella pneumoniae, colistin, genome-scale modeling

INTRODUCTION

The emergence of metallo-beta-lactamase–producing pathogens is a serious challenge to the
treatment of clinical infections and a potential public health threat (Pitout and Laupland, 2008).
These pathogens have been identified in the popular news media as “superbugs” because they
exhibit multidrug-resistance and can cause infections resistant to all beta-lactams, including
last-line options such as carbapenems, as well as most other antibiotics except colistin and
sometimes tigecycline (Kumarasamy et al., 2010). Among multidrug-resistant (MDR) pathogens,
six bacterial species have been described as the most threatening, the ESKAPE pathogens (Rice,
2008), which includes Klebsiella pneumoniae.

K. pneumoniae is a facultative anaerobic gram-negative bacterium that causes a wide range
of clinical diseases including pneumonia, upper respiratory tract infections, wound infections,
urinary tract infections and septicemia (Broberg et al., 2014). Nosocomial infections caused by
metallo-β-lactamase–producing K. pneumoniae are associated with high rates of morbidity and
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mortality (Pitout et al., 2015). This calls for rapid identification
of bacteria carrying bla NDM−1 and implementation of strict
infection control measures.

New Delhi metallo-beta-lactamase (NDM-1)—producing K.
pneumoniae have swiftly spread worldwide since an initial
report in 2008 (Bushnell et al., 2013). Here, we examined the
genomes of four K. pneumoniae strains isolated from clinics in
Cairo, Egypt. We reconstruct genome-scale models for 2 MDR
Klebsiella pneumoniae strains (Strains SF and SK), which produce
two metallo-β-lactamases (bla NDM−1 and bla VIM−1) and are
also colistin resistant. We sequenced these two genomes with
two other genomes from strains representing different levels of
resistance: one MDR but non-colistin-resistant strain (HM) and
a fourth strain (SP) that is not as highly resistant. We then create
strain specific genome scale models for each of these four strains
as well as an additional 18 publicly available strains to analyze
differences in catabolic capabilities in these strains and investigate
if these differences can be used to classify resistance phenotypes.

RESULTS AND DISCUSSION

Comparative Genomics of 22 Klebsiella
pneumoniae Isolates With Defined AMR
Phenotypes
We used the PATRIC database (Wattam et al., 2014) to
identify complete, single-contig genome sequences that also had
experimental evidence of antimicrobial resistance. There were
18 genomes that met this criteria. We supplemented this set
with four recently sequencedK. pneumoniae strains isolated from
patients in Cairo, Egypt collected between 2012 and 2015 (Attia
et al., 2019). Three of these isolates are pan-resistant (SF, SK,
and HM) with two additionally resistant to colistin (SF and
SK). A fourth strain, “SP,” is multi-drug resistant but sensitive
to 10 tested antibiotics. This led to a total set of 22 genomes
for comparison (section Methods). We assigned sequence types
(ST) to each of the strains using PubMLST (Jolley and Maiden,
2010; Seemann, 2018). The three colistin resistant strains were
found to be part of ST101, known to be a dominant ST for
carbapenem resistant K. pneumoniae (Mammina et al., 2012).
Next we performed comparative genomics on the full set of
22 strains. We calculated core and pan-genomes for these 22
strains using PanX (Ding et al., 2018). The pan-genome consists
of all genes found in any of the strains while the core genome
consists of genes shared by all strains. The pan-genome for
these 22 strains was composed of 10,796 predicted ORFs. Of
these, 3,965 are shared amongst all of the strains, forming
a core-genome (Figure 1A). The difference between core and
pan-genomes is called the accessory genome and consists of
genes that make the individual strains unique. In this case
there are 4,026 accessory genes and 2,805 unique genes (those
found in only 1 strain). We compared the presence of different
accessory genes across the strains. Hierarchical clustering of the
accessory gene contents demonstrated stratification by sequence
type (Supplementary Figure 1 and Supplementary Table 4).
The three pan-resistant strains from ST101 (SF, SK, and HM)
clustered together based on accessory gene content. Next

we used the CARD database (Jia et al., 2017) genome for
AMR encoding processes to form a “resistome” of the strains.
In total there were 122 predicted AMR encoding genes or
mutations across all 22 strains, with 12 shared by all strains,
72 variably present across the strains and 35 unique to single
strains (Figure 1B). We found that hierarchical clustering of
AMR determinants also grouped strains by sequence type
(Figure 1C). Next we performed an in-depth analysis of the
ST101 strains.

Focused Genomic-Analysis of Four
Klebsiella pneumoniae Isolates From
Cairo, Egypt
Genomic analyses were performed to determine the genetic
similarity of the four K. pneumoniae isolates from Cairo, with the
model K. pneumoniae strain MGH78578 included as a reference
(Genbank ID: CP000647.1). A core-genome phylogenetic tree
was constructed using PanX (Ding et al., 2018) and demonstrated
that the three pan-resistant strains were most similar to each
other (Figure 2A). We included themodel-strain,K. pneumoniae
MGH78578 as a reference and this strain was most dissimilar
compared to the other resistant strains. Next, we constructed
core and pan-genomes for these five strains. The pan-genome
consists of all genes found in any of the five strains while the
core genome consists of genes shared by all five strains. The
pan genome was composed of 6,879 predicted ORFs across
all five strains with 4,336 shared amongst all of the strains,
forming a core-genome and 2,549 accessory genes. We compared
the presence of different accessory genes across the strains.
Hierarchical clustering of the accessory gene contents agreed
with the whole-genome phylogeny to show that the three pan-
resistant strains (SF, SK, and HM) are most similar while SP
and MGH are more dissimilar in terms of shared accessory
genes (Figure 2B).

We hypothesized that genetic background and gene portfolio
of individual strains may have a role in acquisition and spread of
antibiotic resistance. Thus, we identified the shared and strain-
specific genes amongst these five strains. In total, 4,336 genes
were shared amongst all five K. pneumoniae strains with 536
genes unique to strain SP, 340 genes unique to MGH and 1,330
genes unique to the three pan-resistant strains (Figure 2C). In
total the three pan-resistant strains shared 5,411 genes with
each other while another 541 were uniquely present across these
three strains (Figure 2D), see Supplementary Data Sheet 2.
More than one-third of the uniquely present genes (35%) were
predicted to have metabolic functions, potentially indicating
that nutrient niche and unique metabolic capabilities may
influence acquisition of antimicrobial resistance determinants.
Genome-scale models of metabolism have demonstrated utility
at systematically categorizing the metabolic capabilities of
strains in a species (Monk et al., 2013; Bosi et al., 2016;
Seif et al., 2018). To further investigate this hypothesis we
set out to construct genome-scale models of the five strains
as well as other publically-available strains with antimicrobial
profiling data.
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A  K. pneumoniae pan-genome

B K. pneumoniae pan-resistome

C  Cluster map of K. pneumoniae resistome
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FIGURE 1 | Comparative genomics analysis of 22 K. pneumoniae strains. (A) The calculated pan-genome of the 22 KP strains consisted of 10,999 gene families,

3,965 of which were core, 4,026 were accessory and 2,805 unique. The full clustermap of the accessory genome is available as Supplementary Figure 1. (B) A pan

“resistome” was constructed by mapping the genomes to the CARD database. A total of 12 AMR determinants were shared by all strains, 72 were strain specific and

35 were unique to individual strains. (C) Hierarchical clustering of the contents of the pan-resistome shows that KP strains group into sequence types (ST) based

solely on resistance encoding mechanisms. The gyrB variants were recorded as resistant genes based on 100% identity to resistant-conferring mutants in CARD.

Diverse Catabolic Capabilities of Multiple
Klebsiella pneumoniae Strains
We used the experimentally validated genome-scale metabolic
reconstruction, iYL1228 (Liao et al., 2011), as a platform
to investigate the metabolic differences amongst our group
of isolates. iYL12228 is a reconstruction for K. pneumoniae
MGH78578 and provided a valuable resource to link the
genetic information of other strains to defined metabolic
reactions (Methods). We first built draft models of all strains
using sequence similarity. Following that we added additional
metabolic content identified through the use of DETECT v2
(Nursimulu et al., 2018), an enzyme annotation tool. This process
allowed us to include additional metabolic processes unique to
each of the strains. Of these strains, initially 10 of the draft models
could not solve for biomass. We used GrowMatch (Kumar
and Maranas, 2009) to gapfill these networks and found that
the removal of the reactions TDPDRE encoded for by gene
KPN_02494 or KPN_02488 and TDPDRR encoded for by gene
KPN_02495 or KPN_02489 was the cause. These reactions are
directly involved in the production of DTDP-L-rhamnose, a
metabolite directly required for biomass production in iYL12228.
We hypothesized that either keeping these reactions in the
network or removing DTDP-L-rhamnose from the biomass
function would restore growth of these models. Given that the
homologous genes from strain MGH78578 were not present
in the other strains, we opted to remove DTDP-L-rhamnose
from the biomass function for the models of these strains. This

assumption is valid given that DTDP-L-rhamnose is involved
in the biosynthesis of peptidoglycan and it is likely that these
strains have variant peptidoglycan composition (Shu et al., 2009;
Pan et al., 2015). Additionally, through the gapfilling process
we identified that one strain, KP9721, was predicted to be
auxotrophic for proline and as such in the following analyses
this model was supplemented with proline in the in silico media.
Using our 22 total models derived from iYL12228 we sought
to analyze the various catabolic capabilities present across the
strains. It is worth noting that these catabolic capabilities are
predictive and could be used in conjunction with future study of
actual phenotypes. The quality of the models could be improved
in the future by validating with experimental data such as gene
essentiality or phenotypic arrays such as Biolog should that data
become available.

To interrogate each of the strain’s catabolic capabilities we

simulated for biomass production in minimal media conditions

(in silico M9 media) and alternated carbon, nitrogen, sulfur,
and phosphorus sources to simulate each strain’s ability to

grow on a variety of compounds (Figure 3). The simulations

for carbon, nitrogen, and sulfur provided some interesting
differences strain to strain whereas capabilities for various
phosphorus sources were largely conserved across the entire
group (Supplementary Figures 2, 3). For carbon sources one
apparent difference is that the KP9721 and KP12783 models lack
the ability to use maltose and any of its derivatives (maltotriose,
maltotetrose, maltohexaose, maltopentaose) whereas all the other
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FIGURE 2 | Genomic analyses of five K. pneumoniae isolates including four isolated in Cairo, Egypt (SP, SK, SF, HM). (A) Core-genome phylogenetic tree

demonstrates that three of the K. pneumoniae isolates (SK, SF, HM) are most similar to each other, with SP and the model strain MGH78578 more distantly related.

(B) Hierarchical clustering of the accessory genome of the five strains demonstrates that the three closely related KP strains also share the most genes. (C) The core

genome of all five strains is composed of 4,366 genes shared by all five strains. For a full list of gene homology information See Supplementary Data File 2. (D) The

three strains, SD, SK, and HM possess an additional 1,330 unique genes not shared by SP or MGH78579.

models can utilize these sugars. These models also are the only
two unable to catabolize glutamate as a carbon source. Further,
KP12783 uniquely cannot utilize ascorbate or lyxose. Another
model with unique loss of capabilities relative to the others
was KP5649 being unable to grow on fucose, rhamnose, and
glucarate and the only two strains unable to use glucosamine or
mannose were KP12781 andKP12773. The following compounds
are unable to be used by various small groups of strains: ribose,
mannitol, glyceraldehyde, glutamine, D-Alanyl-D-alanine, and
galacturonate. Conversely, the following compounds can be
used by only various smaller groupings of the strains: glycine,
prolinylglycine, and 2-Dehydro-3-deoxy-D-gluconate.

The model-predicted growth capabilities on nitrogen sources
were slightly less varied than for carbon. Given the predicted
auxotrophy for proline in KP9721, we omit its inability to
use the majority of other nitrogen sources in the following
summary. Both models for KP5649 and KP12779 fail to utilize

a large number of nitrogen sources (Figure 3). Models of
KP9723, 12777, KP9722, KP12778, and KP12772 all could
not make use of prolinylglycine, D-Alanyl-D-alanine, or cys-
glycine. KP9723 was additionally the only strain unable to
use arginine or agmatine. Glucosamine could not be used by
KP12781 or KP12773. Histine could not be used by KP127777.
Finally, ethanolamine could not be used by KP6974 or KP12771.
Ability to utilize alternate nitrogen sources is interesting in
light of the fact that elevated blood urea nitrogen levels are a
biomarker of K. pneumoniae pathology and associated with a
poor prognosis (Chang et al., 2000; Yasin et al., 2017). Also,
Klebsiella is the only genus in the family enterobacteriaceae
able to fix nitrogen in the atmosphere and convert it to
ammonia and amino acids using an energy intensive nitrogenase
(Dixon et al., 1977; Leisy-Azar and Ebadi, 2017), further
highlighting the importance of this element in Klebsiella lifestyle
and niche.
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FIGURE 3 | The 22 in silico models predicted relative carbon and nitrogen source utilization. By simulating in minimal media and swapping only the carbon or nitrogen

source the predicted catabolic capabilities were calculated. The resulting in silico predicted biomass objective flux for each strain on the various sources is reported and

hierarchically clustered here. Interestingly, in both the case of carbon and nitrogen source utilization the four isolates from Egypt (SP, SF, SK, HM) all cluster together.

Lastly, there were far fewer sulfur sources available to test
than carbon or nitrogen but this analysis still provided some
interesting differences amongst the strains. Chiefly, only the
models of strains isolated from Egypt (SP, HM, SF, and SK)
could utilize ethanesulfonate, isethionic acid, or sulfoacetate
as sulfur sources. Interestingly, only SP was predicted to
be capable of using methionine as a sulfur source whereas
models for SP, KP12777, KP9723, KP12778, KP12772, KP9724,
KP12781, KP12783, KP12796, and KP12771 could all useMethyl-
L-methionine. Lastly KP9722, KP12777, KP9723, KP12778,
KP12772 were all predicted to be unable to utilize glutathione
and cys-glycine.

Substrate Usage to Classify Antimicrobial
Resistance Phenotypes
After using the draft models to generate predicted catabolic
capabilities for all 22 strains we sought to see if these catabolic
capabilities were correlated with the antimicrobial resistance
phenotypes of the strains. As previously noted, strains SF
and SK are both MDR as well as colistin resistant, HM is
MDR but not colistin resistant, and SP is susceptible to a
number of drugs. The 18 strains we included from PATRIC
were selected partly on the availability of experimental AMR
profiling. We used this data from PATRIC and the results
of both disk diffusion and broth dilution methods on our
four clinical isolates (Table 1; Supplementary Tables 1, 2) to

construct the resistance profiles for which drug data existed
for all the strains (Supplementary Figure 4). Unfortunately, the
strains from PATRIC do not have conclusive profiling of colistin
resistance. It was immediately apparent that 7 of the strains
were resistant to all 16 drugs. Additionally, 7 of the drugs were
resisted by all 22 strains. Of the remaining drugs tetracycline,
amikacin, and gentamicin had the most strains either susceptible
or intermediately resistant. As such these drugs were considered
for further analysis. Interestingly, all three of these drugs target
protein synthesis and both amikacin and gentamicin are both
aminoglycosides (Jia et al., 2017). Yet, the group of strains had
varied resistance phenotypes to these same class drugs.

To determine whether model-predicted metabolic capabilities
could be linked to antibiotic resistance, we constructed
classification trees using scikit-learn (Pedregosa et al., 2011) for
tetracycline, amikacin, and gentamicin resistance based on the
relative in silico predicted biomass yields on various carbon or
nitrogen sources (Supplementary Figures 5–9). We limited our
analyses to carbon and nitrogen sources because the number of
model-predictions for these compounds greatly exceeds those for
sulfur sources. Based on simulated growth phenotypes, we sought
to determine whether model-predicted growth capabilities could
stratify strains that were resistant, intermediate, or susceptible
to a given drug. Interestingly, the trees based on nitrogen
sources were able to classify the strains at lower tree depths
than other nutrient sources (Figure 4). In particular the trees
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TABLE 1 | Antimicrobial resistance profile of the isolated K. pneumoniae strains

determined by disk diffusion.

Strain

Antibiotic

SF SK HM SP

Amikacin R R R R

Amoxicillin/clavulanic acid R R R R

Ampiciliin R R R R

Aztreonam R R R R

Cefaclor R R R R

Cefepime R R R S

Cefotaxime R R R R

Cefoxitin R R R S

Ceftazidme R R R R

Ceftriaxone R R R R

Cefuroxime sodium R R R R

Chloramphenicol R R R R

Colistin R R S S

Ertapenem R R R S

Gentamicin R R R S

Imipenem R R R R

Lomefloxacin R R R S

Meropenem R R R S

Netlimicin R R R R

Nitrofurantoin R R R S

Piperacillin R R R S

Piperacillin/tazobactam R R R R

Trimethoprim/sulfamethoxazole R R R R

Tetracycline R R R S

for tetracycline and amikacin both possessed the same right
branching architecture based on variant usage of arginine and
histidine as nitrogen sources. In both cases 6 strains that are then
classified by their usage of these two amino acids are KP9724,
KP12778, KP9723, KP12781, and KP12777 and in the case of
tetracycline also SP and KP127771.

Given this shared grouping of strains across the different
drug phenotype profiles we looked back to the draft models
to see which genes that were lost could be attributed to this
grouping. Interestingly, genes with homology to KPN_00956 and
KPN_00282 were both deleted from all of these strains and either
no other strains or only 3 other strains in the case of KPN_00282.
Both of these genes participate in the gene product rules for
over 200 transport reactions in the reconstruction, but these
reactions have other genes maintained within the gene product
rule as well. Lastly, it is interesting to note that the complete
inability to use arginine by the model for strain KP9723 as
well as the complete inability to use histidine by the model for
KP12777 in both classification schema are critical for separating
the AMR phenotypes. One limitation of this methodology is the
small sample size (Chicco, 2017) as well as the use of relative
biomass yield for the growth phenotypes. This leads to some
of the classification trees being overly deep or making branches
at very small differences in biomass flux. Further extensive
studies of Klebsiella pneumoniae with increased diversity of
strains in capabilities as well as drug resistance could provide

future valuable delineating features. Nevertheless, these initial
results are promising and demonstrate that it could be possible
to construct a robust classification schema of AMR capabilities
based on model predicted growth capabilities in the future.

CONCLUSION

Klebsiella pneumoniae continues to be a serious threat and
increasing antimicrobial resistance is exacerbating this problem
(Kaplan, 2004). We used genome scale metabolic models to
demonstrate that there exist differences in predicted catabolic
capabilities amongst a group of MDR strains. Through this
systems biology approach we also demonstrated the possibility of
constructing a classification schema for antimicrobial resistance
based on these capabilities. The robustness of this strategy could
be improved by increasing the number of strains with the
pertinent resistance phenotype data included. GEMs could be
used in the future to delineate which metabolic capabilities are
potential drivers of infection niches for K. pneumoniae.

METHODS

Construction of Draft Strain-Specific
Models
The sequences of the 22 selected strains were all downloaded
from PATRIC and re-annotated using PROKKA v.1.2 (Seemann,
2014). They were then compared based on annotated ORF amino
acid sequence similarity using NCBI bidirectional BLAST. A 0.9
threshold was used for assigning orthologs. The bidirectional
hits matrix is available within Supplementary Data File 2.
Genes with a score below 90 were deleted from the strain-
specific model. In this manner derivative draft strain-specific
models of all 22 strains were generated with the designated
orthologous genes removed from the base model iYL12228.
All 22 strain-specific models are available as json files in
Supplementary Data Sheet 1. Gene names within the model are
as per the locus tags in the original base model in the 18 strains
acquired from the PATRIC database. The models for SP, SF,
SK, HM had additional content curated through the use of the
DETECT v2 algorithm and gene names are as per each strain’s
locus tags. Further the change of DTDP-rhamnose in the biomass
equation is as described in the main text amongst the strains and
this is the only change in biomass equation amongst the strains.

In silico Growth Simulations
For the in silico growth simulations, the following minimal
media similar to M9 minimal media was used: glucose,
calcium, chloride, carbon dioxide, cobalt, copper, iron, hydrogen,
magnesium, manganese, molybdate, sodium, oxygen, ammonia,
phosphate, zinc, tungstate, and sulfate. The in silico media
used with corresponding exchange reactions and lower bounds
is available as Supplementary Table 3. From this minimal
media the following metabolites glucose, ammonia, phosphate,
and sulfate were removed to evaluate other sources of
carbon, nitrogen, phosphorus, and sulfur, respectively. This
analysis involves removing each of these compounds from
the media (setting lower bound to zero) and testing other
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FIGURE 4 | The classification tree built for the 22 strains based upon nitrogen source utilization classifying the amikacin resistance phenotypes. Interestingly, the ability

to utilize glutamate initially discriminates the majority of the resistant strains. The right branching tree architecture utilizes arginine and histidine utilization to quickly

discriminate the proper groupings of intermediate, susceptible, and resistant strains. These trees are an effort to examine the ability of differential predicted catabolic

capabilities to discriminate varying resistance phenotypes of the strains. For trees generated using carbon source utilization as well as for the resistance phenotypes

for tetracycline and gentamicin see Supplementary Figures 5–9.

compounds using flux balance analysis to determine if these
compounds can support growth. In the case of strain KP9721,
which was predicted to be auxotrophic for proline, the
media was supplemented with proline. Growth vs. no growth
determinations in all conditions were determined through
flux balance analysis on each described nutrient condition,
optimizing for the biomass function. Biomass objective flux of
greater than zero designated a metabolites capable of growth
supporting. For further information and tutorials on these
methods see the COBRApy documentation (https://cobrapy.
readthedocs.io/en/latest/).

Construction of Classification Trees
Before building the trees we filtered the carbon and nitrogen
sources to exclude the compounds that were overly similar in
in silico biomass yield across all 22 strains based on standard
deviation of the biomass objective flux across the 22 strains for

a given source. Classification trees were calculated using relative
biomass objective flux found through flux balance analysis for
each strain on the tested nutrient sources.

These catabolic capabilities were used to classify the strains
into their resistance phenotypes: resistant, intermediate, or
susceptible (Supplementary Figure 4) for a given single drug.
The decision tree classifier from sklearn was used to generate the
trees with no binarization.

Nucleotide Sequence Accession Numbers
The four isolates that were sequenced and their annotations
are deposited in NCBI as RXLW00000000, RXLX00000000,
RXLY00000000, and RXLV00000000 as well as in the PATRIC
database (http://www.patricbrc.org) under the following genome
IDs: 573.18994, 573. 19098, 573. 18993, 573. 18996 for SF,
HM, SK, SP, respectively. Additionally, the 18 previously
publicly available stains were downloaded from PATRIC and
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used in this study have the accession numbers: 573.12771,
573.12772, 573.12773, 573.12777, 573.12778, 573.12779,
573.12781, 573.12782, 573.12783, 573.12796, 573.5649, 573.6973,
573.6974,573.7362, 573.9721, 573.9722,573.9723, 573.9724.

Resistance Profiling of 4 Clinical Isolates
From Cairo, Egypt
Antimicrobial resistance profiles (Table 1) were determined by
the Kirby Bauer disk diffusion method (Bauer et al., 1966),
and their minimum inhibitory concentrations (MICs) were
determined by the broth dilution method to confirm their
resistance profile.

Identification of AMR Encoding Genes
The CARD RGI tool (Jia et al., 2017) version 3.2.0 with database
version 1.1.8 was used to identify genetic determinants of
antimicrobial resistance. All identified determinants are available
as Supplementary Table 4.

MIC Screens
Determination of MIC was performed according to CLSI
guidelines described in Amsterdam (2005) and CLSI (2014) using
sterile U shaped 96 well microtiter plates. Each antibiotic was
prepared by diluting the powder in water for injection (WFI)
as the solvent and the diluent. All antibiotics were purchased
from Sigma except Ertapenem, purchased as an Invanz vial
from Merck & Co USA. The powder of the drug equivalent to
26.1mg in case of ertapenem, 3.26mg in case of meropenem
and colistin and 105.2mg in case of ceftazidime and cefotaxime

was dissolved in 20ml WFI forming a stock solution (solution
A) of concentration 1,280µg/ml for ertapenem, 160µg/ml
meropenem and colistin and 5,120µg/ml for ceftazidime and
cefotaxime, respectively. Solution (B) of concentrations 128, 16,
and 512µg/ml was prepared by diluting 1ml of each solution
(A) with 9ml WFI. Preparation of the 2-fold dilutions A series
of 2-fold dilutions was prepared as recommended by Amsterdam
(2005) by using solution (B) from each stock solution. Inoculum
was prepared by selecting several discrete colonies, usually three
to five, subcultured in the inoculum growth broth, to avoid
single colony variance. The inoculum was cultured in Mueller
Hinton broth (MHB), the same broth medium used for the
test, incubated at 37◦C for 2–6 h until turbidity is equal or
exceed the turbidity of 0.5 McFarland, then the optical density of
the bacterial suspension was adjusted using spectrophotometer
at a wavelength of 625 nm to the O.D of 0.08–0.13 which
approximates a 0.5McFarland standard. The adjusted culture was
then diluted 1:100 times with Muller-Hinton broth (MHB), to
bring the inoculum density to the range of 105 to 106 CFU/ml.
A set of the 11 prepared antibiotic dilutions for each antibiotic
were allowed to warm at room temperature prior to use. The
wells of the 96 well microtiter plate were filled with 50 µl from
each dilution. The column number 12 was filled with 100 µl
MHB for the growth control for each isolate. Each well in the
same row was filled with 50 µl of the tested inoculum. For
each experiment, an additional row was left for negative control
by adding 100 µl of MHB to the different antibiotic dilutions.

The plates were covered with lid. Incubation of the microtiter
plate at 37◦C for 16–20 h. Microdilution trays were prepared
each day they were used and Unused thawed dilutions were
discarded and never refrozen. The plates were read visually
on a dark background. The endpoint MIC was the lowest
concentration of drug at which the tested microorganism did not
show a visible growth. The MIC values of each tested antibiotic
against the selected Klebsiella pneumoniae isolates are listed in
Supplementary Tables 1, 2. The other reported antibiotics were
measured using disc diffusion and thus do not have a reported
MIC. Instead we only report resistance and susceptibility based
on the manufacturers instructions.
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