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Abstract: Imaging is important in cancer diagnostics. It takes a long period of medical training and
clinical experience for radiologists to be able to accurately interpret diagnostic images. With the
advance of big data analysis, machine learning and AI-based devices are currently under development
and taking a role in imaging diagnostics. If an AI-based imaging device can read the image as
accurately as experienced radiologists, it may be able to help radiologists increase the accuracy of
their reading and manage their workloads. In this paper, we consider two potential study objectives of
a clinical trial to evaluate an AI-based device for breast cancer diagnosis by comparing its concordance
with human radiologists. We propose statistical design and analysis methods for each study objective.
Extensive numerical studies are conducted to show that the proposed statistical testing methods
control the type I error rate accurately and the design methods provide required sample sizes with
statistical powers close to pre-specified nominal levels. The proposed methods were successfully
used to design and analyze a real device trial.

Keywords: artificial intelligence (AI); breast cancer; clinical device trial; concordance rate; generalized
estimating equation; sample size calculation; statistical test

1. Introduction

There are different types of device trials depending on the use of device and the study
objectives. In this paper, we introduce statistical design and analysis methods for a trial on
an artificial intelligence (AI)-based device for the diagnosis of breast cancer.

Imaging technologies play a major role in the diagnosis of breast cancer. The reading
and interpretation of imaging requires intensive medical training and significant clinical
experience. With the advance of big data analysis methods, machine learning and AI-based
imaging systems are currently under active development [1]. If an AI-based imaging
device can read the image as accurately as experienced radiologists, it may be able to help
radiologists increase the accuracy of their reading, manage their workloads, or possibly
replace radiologists in remote clinics that would not have an experienced radiologist
available for consultation.

In the assessment of breast lesions, the BI-RADS reporting system and classification
are widely used [2]. This system includes categories between 1 and 5 (benign to malig-
nant) with a key diagnostic transition subdivided into categories 4a (low suspicion of
malignancy), 4b (moderate suspicion) and 4c (high suspicion, greater than 50% likelihood
but less than 95% likelihood of malignancy). Furthermore, the BI-RADS lexicon covers
radiological descriptive features that are important in diagnostic assessments, and these
vary by modality. Examples of ultrasound lexicon used in AI-based classifications is given
in Table A1. The earlier approaches to breast ultrasound technology concentrated on the
extraction of features of lesions such as size, shape, texture, and boundaries within a
clustering or classification or rule-based decision making algorithms [3–6]. More recent
developments in AI, machine learning, and deep learning systems have utilized layers of
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convolution neural network models, a variety of approaches and extensive training sets to
produce differentiated output classifications [7,8].

In this paper, we consider the requirements for a clinical device trial to evaluate
the performance of an AI-based imaging device using BI-RADS reporting system for the
diagnosis of breast cancer. Since BI-RADS reporting system does not have a gold standard,
we evaluate the performance of the device by how well its reading aligns with those of
radiologists. We propose design and analysis methods for two different types of study
objectives that can be used for such a trial. The first objective is to test if the reading of the
AI-based device concurs with those of radiologists as much as the readings concord among
radiologists. The second objective is to test if the reading of the AI-based device is more
concordant with those of experienced radiologists than with those of junior radiologists.
For each objective, we propose a statistical testing method and its sample size calculation
formula. The proposed testing methods will be used to analyze the data for each of the five
BI-RADS lexicon classification category listed in Table A1, but the sample size calculation
for a trial may be conducted only for the most important one. The performance of these
methods are evaluated using simulations.

2. Materials and Methods

We consider two types of study objectives to evaluate the performance of an AI-based
device for the diagnosis of breast cancer. For each study objective, we propose a testing
method and its sample size formula. Suppose that we have images from n subjects.

2.1. Objective 1: Is the Concordance Rate between the AI-Based Device and Radiologists as High as
That among Radiologists?

The image of each subject is read by m radiologists and the AI-based device. BI-
RADS lexicon does not have a gold standard. So, in order to validate a device with an
AI-based algorithm, we should show that the reading of the device concurs with those
with radiologists. For example, in Table A1, for BI-RADS lexicon classification, Shape, two
radiologists will be declared to be concurrent for an image if they both read oval, round or
irregular. The question is how high the concordance rate should be between the device and
the radiologists. The concordance rate among radiologists is used as a reference.

For each category of BI-RADS lexicon classifications, let pr and ps denote the concor-
dance rate among radiologists and that between radiologists and the device, respectively.
Since the latter can not be higher than the former, we specify a similarity margin δ1(> 0).
That is, we will not be interested in the AI-based device if ps ≤ pr − δ1 and will be highly
interested in it if ps = pr. So, we want to test a null hypothesis H1 : ps = pr − δ1 against
the alternative hypothesis H̄1 : ps > pr − δ1.

2.1.1. Statistical Testing Method

Suppose that there are n patients, and the image of each patient is read by the AI-based
device and m radiologists. For subject i(= 1, ..., n) and radiologist j(= 1, ..., m), let rijj′ = 1 if
radiologists j and j′ concur and = 0 otherwise, and let sij = 1 if radiologist j and the device
concur and = 0 otherwise. Note that we have pr = E(rijj′) and ps = E(sij). Since rijj′ = rij′ j
and rijj = 1 for j, j′ = 1, ..., m, the number of informative concordance scores among m
radiologists is m(m− 1)/2 for each image, the concordance rate among radiologists for
subject i is estimated by

ri =
∑m−1

j=1 ∑m
j′=j+1 rijj′

m(m− 1)/2
.

On the other hand, for subject i, the concordance rate between the device and m
radiologists is estimated by

si =
∑m

j=1 sij

m
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Using the images from n subjects, concordance rate among radiologists is estimated by

p̂r =
2

nm(m− 1)

n

∑
i=1

m−1

∑
j=1

m

∑
j′=j+1

rijj′ =
1
n

n

∑
i=1

ri

and that between the device and radiologists is estimated by

p̂s =
1

nm

n

∑
i=1

m

∑
j=1

sij =
1
n

n

∑
i=1

si

Those estimates are unbiased because

E( p̂r) = E(
2

nm(m− 1)

n

∑
i=1

m−1

∑
j=1

m

∑
j′=j+1

rijj′) =
2

nm(m− 1)
nm(m− 1)

2
pr = pr

and

E( p̂s) = E(
1

nm

n

∑
i=1

m

∑
j=1

sij) =
1

nm
nmps = ps.

Since r1, ..., rn are independent random variables with mean pr, for large n by the
central limit theorem,

√
n( p̂r − pr) =

1√
n

n

∑
i=1

(ri − pr)

is asymptotically normal with mean 0 and variance σ2
r that can be consistently estimated by

σ̂2
r =

1
n

n

∑
i=1

(ri − p̂r)
2

Similarly, s1, ..., sn are independent random variables with mean ps, so that for large n,

√
n( p̂s − ps) =

1√
n

n

∑
i=1

(si − ps)

is asymptotically normal with mean 0 and variance σ2
s that can be consistently estimated by

σ̂2
s =

1
n

n

∑
i=1

(si − p̂s)
2

Since each subject’s image is read by the device and radiologists, ri and si are correlated.
However, (si − ri + δ1, i = 1, ..., n) are independent, with mean 0 under the null hypothesis
H1. Hence, by the central limit theorem under H1,

√
n( p̂s − p̂r + δ1) =

1√
n

n

∑
i=1

(si − ri + δ1)

is asymptotically normal with mean 0 and variance σ2
1 that can be consistently estimated by

σ̂2
1 =

1
n

n

∑
i=1

(si − ri + δ1)
2

Hence, we reject the null hypothesis H1 : ps ≤ pr − δ1 if Z1 > z1−α, where

Z1 =

√
n( p̂s − p̂r + δ1)

σ̂1
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and z1−α is the 100(1− α) percentile of the standard normal distribution. Note that we use
a 1-sided test because the hypotheses are 1-sided and to avoid too large a sample size with
a small δ1.

Note that p̂r and p̂s are the generalized estimating Equation [9] (GEE) estimators of pr
and ps, respectively, using the working independent correlation. Furthermore, the robust
estimator of σ2

1 by the GEE method is given as

σ̃2
1 =

1
n

n

∑
i=1

(si − ri + p̂s − p̂r)
2

Since p̂s − p̂r is a consistent estimator of ps − pr, σ̃2
1 is asymptotically identical to σ̂2

1
under H1. Hence, Z1 can be counted as a test statistic based on the GEE method with the
working independent correlation.

2.1.2. Power and Sample Size Calculation

We calculate the sample size for the test statistic Z1 under a specific alternative hy-
pothesis H̄1 : pr = ps. An accurate sample size calculation for the statistical test requires
specification of correlation coefficients between rij1 j2 and rij′1 j′2

, between rij1 j2 and sij, and
between sij and sij′ . The dependency between rij1 j2 and rij1 j′2

is expected to be higher than
that between rij1 j2 and rij′1 j′2

for j1 6= j′1 6= j2 6= j′2 because the former pair includes the same
reader j1 while the latter pair contains four different readers. Similarly, we expect that the
dependency between rij1 j2 and sij1 is expected to be higher than that between rij1 j2 and sij′1
for j1, j2 6= j′1.

For a simplified sample size formula, we just specify ρ1 = corr(ri, si). We define
the correlation coefficients among the concordance scores ρr1 = corr(ri12, ri13), ρr2 =
corr(ri12, ri34), ρs1 = corr(ri12, si1) = corr(ri12, si2), and ρs2 = corr(ri12, si3), and ρss =
corr(si1, si2). Appendix A.1 shows that we have ρ1 = corr(ri, si) is expressed as

ρ1 =
2
m ρs1 +

m−2
m ρs2√

( 2
m(m−1) +

4(m−2)
m(m−1)ρr1 +

(m−2)(m−3)
m(m−1) ρr2)(

1
m + m−1

m ρss)

Under H̄1 : pr = ps, {(si − ri), i = 1, ..., n} are independent random variables with
mean 0, so that

√
n( p̂s − p̂r) is asymptotically normal with mean 0 and variance σ2

1 that can
be consistently estimated by s2

1 =
√

n−1
∑n

i=1(si − ri)
2. Since σ̂2

1 is asymptotically identical
to s2

1 + δ2
1 under H̄1, it converges to σ2

1 + δ2
1 . Hence, the power for a given sample size n is

1− β = P
(√n( p̂s − p̂r + δ1)

σ̂1
> z1−α|pr = ps

)
= P

(√n( p̂s − p̂r) +
√

nδ1)√
σ2

1 + δ2
1

> z1−α|pr = ps

)

= P
(√n( p̂s − p̂r)

σ1
>

z1−α

√
σ2

1 + δ2
1 −
√

nδ1

σ1
|pr = ps

)

= Φ
( z1−α

√
σ2

1 + δ2
1 −
√

nδ1

σ1

)
(1)

where Φ(.) is the survivor function of the standard normal distribution and σ2
1 is the limit

of n−1 ∑n
i=1(si − ri)

2.
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By solving the power Equation (1) with respect to n, we obtain the required sample
size for power 1− β

n =
(z1−α

√
σ2

1 + δ2
1 + z1−βσ1)

2

δ2
1

(2)

where, as shown in the Appendix A.2,

σ2
1 = var(si) + var(ri)− 2ρ1

√
var(si)var(ri) (3)

var(si) = pr(1− pr){1/m + ρss(m− 1)/m}

and

var(ri) = pr(1− pr)
( 2

m(m− 1)
+

4(m− 2)
m(m− 1)

ρr1 +
(m− 2)(m− 3)

m(m− 1)
ρr2

)
.

The process of calculating the required sample size is summarized as follows:

1. Specify (α, 1− β), expected concordance rate among radiologists pr, similarity margin
δ1 and hypothetical correlation coefficients ρr1, ρr2, ρss, ρs1 and ρs2.

2. Calculate σ2
1 using (3).

3. Obtain sample size using (2).

It may be difficult to specify the correlation coefficients ρr1, ρr2, ρss, ρs1 and ρs2. If pilot
data are available, we may estimate them from the pilot data. Otherwise, we may conduct
a two-stage trial to estimate these correlation coefficients from the first stage data and
recalculate the sample size for the whole trial based on the estimated correlation coefficients.

2.2. Objective 2: Is the AI-Based Device More Concordant with Experienced Radiologists Than
with Junior Radiologists?

As another study objective, we may want to test if the reading of the AI-based device
agrees more with those of experienced radiologists than with those of junior radiologists
for each BI-RADS lexicon classification category.

Let px and py denote the concordance rate between the AI-based device and highly
experienced radiologists and that between the AI-based device and less experienced
radiologists, respectively. We want to test the null hypothesis H2 : px = py against
the alternative hypothesis H̄2 : px > py.

2.2.1. Statistical Testing Method

Let m (= 5, say) denote the number of radiologists in each group (highly experi-
enced group and less experienced group). For subject i (= 1, ..., n) and senior radiologist
j (= 1, ..., m), let xij = 1 if the reading by senior radiologist j and that by the AI-based
device agree and =0 otherwise, and let yij = 1 if the reading by less experienced radiologist
j (= 1, ..., m) and that by the AI-based device agree and =0 otherwise. Then, we have
px = E(xij) and py = E(yij). Using the data from subject i„ px is estimated by

xi =
∑m

j=1 xij

m

and py is estimated by

yi =
∑m

j=1 yij

m
Using the whole data, we estimate px and py by

p̂x =
1

nm

n

∑
i=1

m

∑
j=1

xij =
1
n

n

∑
i=1

xi
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and

p̂y =
1

nm

n

∑
i=1

m

∑
j=1

yij =
1
n

n

∑
i=1

yi

respectively. Note that those estimates are unbiased.
For large n under H2,

√
n( p̂x − p̂y) is approximately normal with mean 0 and variance

σ2
2 that can be estimated by

σ̂2
2 =

1
n

n

∑
i=1

(xi − yi)
2

Hence, we reject H2 : px = py if |Z2| > z1−α/2, where

Z2 =

√
n( p̂x − p̂y)

σ̂2
.

Note that we use a standard 2-sided test since usually there is no small effect size issue
in this case.

2.2.2. Power and Sample Size Calculation

We calculate the sample size under a specific alternative hypothesis H̄2 : px = py + δ2.
Since each subject’s image is read by all experienced and inexperienced radiologists as well
as the device, {(xij, yij), j = 1, ..., m} are correlated.

Let ρxx = corr(xi1, xi2) denote the correlation coefficient between the concordance
score between the AI-based device and a highly experienced radiologist and the con-
cordance score between the device and another highly experienced radiologist, and
ρyy = corr(yi1, yi2) denote the correlation coefficient between the AI-based device and
a less experienced radiologist and the concordance score between the device and another
less experienced radiologist. Furthermore, let ρxy = corr(xij, yij′) for j, j′ = 1, ..., m denote
the correlation coefficient between the concordance score between the device and a highly
experienced radiologist and that between the device and a less experienced radiologist. Let
ρ2 = corr(xi, yi). As shown in Appendix A.3. ρ2 is a function of ρxx, ρyy, and ρxy.

Under H̄2 : px = py + δ2, {(xi − yi − δ2), i = 1, ..., n} are independent random
variables with mean 0, so that

√
n( p̂x − p̂y − δ2) is asymptotically normal with mean 0 and

variance σ2
2 that can be consistently estimated by s2

2 =
√

n−1
∑n

i=1(xi − yi − δ2)
2. Note that

σ̂2
2 is asymptotically identical to s2

2 + δ2
2 under H̄2, so that it converges to σ2

2 + δ2
2 . Hence,

the power for a given sample size n is

1− β = P
(√n( p̂x − p̂y)

σ̂2
> z1−α/2|px = py + δ2

)

= P
(√n( p̂x − p̂y − δ2) +

√
nδ2√

s2 + δ2
2

> z1−α/2|px = py + δ2

)

= P
(√n( p̂x − p̂y − δ2)

σ2
>

z1−α/2

√
σ2

2 + δ2
2 −
√

nδ2

σ2
|px = py + δ2

)

= Φ
( z1−α/2

√
σ2

2 + δ2
2 −
√

nδ2

σ2

)
(4)

since
√

n( p̂x − p̂y − δ2)/σ2 is N(0, 1) under H̄2, where σ2
2 is the limit of n−1 ∑n

i=1(xi − yi −
δ2)

2 under H̄2.
By solving (4) with respect to n, we obtain the required sample size for power 1− β

n =
(z1−α/2

√
σ2

2 + δ2
2 + z1−βσ2)

2

δ2
2

(5)
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Appendix A.4 shows that

σ2
2 = var(xi) + var(yi)− 2ρ2

√
var(xi)var(yi) (6)

where
var(xi) = px(1− px)(

1
m

+
m− 1

m
ρxx)

and
var(yi) = (px − δ2)(1− px + δ2)(

1
m

+
m− 1

m
ρyy)

under H̄2.
The process of calculating the required sample size is summarized as follows:

1. Specify (α, 1 − β), expected concordance rate between the AI-based device and a
highly experienced radiologist px, clinically meaningful difference in concordance
rates δ2 and correlation coefficients ρxx, ρyy and ρxy.

2. Calculate σ2
2 using (6).

3. Obtain the required sample size using (5).

It will be difficult to specify the correlation coefficients ρxx, ρyy and ρxy. If pilot data are
available, we may estimate them from the pilot data. Otherwise, we may use a two-stage
design to estimate these correlation coefficients from the first stage data and calculate the
sample size for the whole trial based on the estimated correlation coefficients.

3. Numerical Studies and Results

Note that our test statistics and sample size formulas are derived based on large
sample approximations. We want to conduct simulation studies to evaluate their finite
sample performance.

We consider the first type of study objective to test if the concordance rate between
an AI-based device and radiologists is as high as that among radiologists. Suppose that
each subject’s image is read by the AI-based device and m = 10 radiologists. We set
α = 0.05, 1− β = 0.8 or 0.9, pr = 0.3, 0.5 or 0.7, δ1 = 0.05 or 0.1 and ρ1 = 0.1, 0.3, 0.5,
or 0.7. Assuming ρs1 = ρs2 + 0.1, ρr1 = ρr2 + 0.1, ρr1 = ρss = ρs1 + 0.1, we calculate the
correlation coefficients for a given ρ = corr(ri, si). That is, we obtain (ρs1, ρs2, ρss, ρr1, ρr2) =
(0.101, 0.001, 0.201, 0.201, 0.101), (0.16, 0.06, 0.26, 0.26, 0.16), (0.26, 0.16, 0.36, 0.36, 0.26) and
(0.48, 0.38, 0.58, 0.58, 0.48) for ρ1 = 0.1, 0.3, 0.5, and 0.7, respectively.

For each design setting, we calculate the required sample size n using our proposed
formula (2) and generate 10,000 simulation data sets of size n under the design setting and
H1 or H̄1. Then, we apply the statistical testing using Z1 to each simulation data set, and
compute the empirical type I error (α̂) and power (1− β̂) by the proportion of samples that
reject H1 among the 10,000 samples simulated under H1 : ps = pr − δ1 and H̄1 : ps = pr,
respectively. The correlated concordance (binary) data are generated by first generating
multivariate normal data and then dichotomizing them with corresponding proportion
level [10].

Table 1 reports the sample size n, empirical type I error rate α̂, and power 1 − β̂
under each design setting. We observe that the required sample size increases in 1− β and
decreases in δ1 and ρ1. With other design parameters fixed, we have the same sample sizes
for pr = 0.3 and pr = 0.7. We have this result because, from (2), the sample size depends on
pr only through pr(1− pr). Since the empirical type I errors are very close to the nominal
α = 0.05 overall, our test statistic Z1 controls the type I error rate accurately. On the other
hand, the empirical powers are close to the corresponding nominal level 1− β = 0.8 or 0.9
overall, so that we conclude that our sample size formula is accurate too.
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Now we conduct simulations for the second type of study objective to test if the AI-
based device is more concordant with experienced radiologists than with junior radiologists.
We assume that each subject’s image is read by m = 5 experienced radiologists and
m = 5 junior radiologists. We set α = 0.05, 1 − β = 0.8 or 0.9, px = 0.3, 0.5, or 0.7,
δ2 = 0.05 or 0.1, and ρ2 = 0.1, 0.3, 0.5, or 0.7. Assuming ρxx = ρyy = ρxy + 0.1, we
solve the corresponding correlation coefficients for given ρ2 = corr(xi, yi). So, we have
(ρxx, ρyy, ρxy) = (0.13, 0.13, 0.03), (0.21, 0.21, 0.11), (0.33, 0.33, 0.23), and (0.55, 0.55, 0.45) for
ρ2 = 0.1, 0.3, 0.5, and 0.7, respectively. For each design setting, we calculate sample size n
using (5), and generate 10,000 samples of size n under the design setting and H2 or H̄2. We
apply the test statistic Z2 to each sample, and calculate the empirical type I error rate and
power (α̂, 1− β̂) under H2 : px = py and H̄2 : px = py + δ0, respectively.

Table 2 summarizes the required sample size n, and empirical type I error rate and
power, (α̂, 1− β̂), under each design setting. We observe that the required sample size
increases in 1− β and decreases in δ2 and ρ2. Since the empirical type I errors are very close
to the nominal α = 0.05 overall, our test statistic Z2 controls the type I error accurately.
On the other hand, the empirical powers are close to the corresponding nominal level
1− β = 0.8 or 0.9 overall, so that we conclude that our sample size formula is accurate too.

Table 1. Sample size (empirical type I error rate, empirical power), n(α̂, 1− β̂), under various design
settings of (pr, δ1, ρ1, 1− β) for the first type of study objective.

pr δ1 ρ1 1 − β = 0.8 1 − β = 0.9

0.3 0.05 0.1 210(0.044, 0.808) 290(0.051, 0.910)
0.3 206(0.048, 0.812) 285(0.047, 0.903)
0.5 200(0.049, 0.805) 275(0.049, 0.910)
0.7 186(0.054, 0.811) 256(0.056, 0.903)

0.1 0.1 56(0.041, 0.829) 76(0.045, 0.915)
0.3 55(0.047, 0.823) 75(0.042, 0.914)
0.5 53(0.048, 0.822) 73(0.052, 0.921)
0.7 50(0.061, 0.822) 68(0.060, 0.913)

0.5 0.05 0.1 249(0.047, 0.804) 344(0.048, 0.904)
0.3 245(0.051, 0.808) 338(0.053, 0.901)
0.5 237(0.045, 0.812) 327(0.050, 0.907)
0.7 220(0.053, 0.798) 304(0.050, 0.904)

0.1 0.1 66(0.052, 0.815) 90(0.048, 0.911)
0.3 65(0.049, 0.824) 88(0.046, 0.914)
0.5 63(0.051, 0.831) 86(0.048, 0.912)
0.7 58(0.054, 0.813) 80(0.054, 0.909)

0.7 0.05 0.1 210(0.052, 0.804) 290(0.054, 0.902)
0.3 206(0.050, 0.800) 285(0.048, 0.906)
0.5 200(0.052, 0.802) 275(0.051, 0.906)
0.7 186(0.055, 0.806) 256(0.049, 0.899)

0.1 0.1 56(0.055, 0.821) 76(0.054, 0.909)
0.3 55(0.055, 0.816) 75(0.049, 0.904)
0.5 53(0.052, 0.814) 73(0.054, 0.911)
0.7 50(0.060, 0.821) 68(0.058, 0.912)
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Table 2. Sample size (empirical type I error rate, empirical power), n(α̂, 1− β̂), under various design
settings of (px, δ2, ρ2, 1− β) for the second type of study objective.

px δ2 ρ2 1 − β = 0.8 1 − β = 0.9

0.3 0.05 0.1 348(0.052, 0.810) 465(0.052, 0.898)
0.3 328(0.050, 0.812) 438(0.048, 0.894)
0.5 298(0.049, 0.807) 397(0.047, 0.900)
0.7 245(0.053, 0.807) 327(0.048, 0.907)

0.1 0.1 86(0.054, 0.816) 113(0.050, 0.905)
0.3 81(0.053, 0.820) 107(0.047, 0.912)
0.5 74(0.047, 0.825) 98(0.047, 0.914)
0.7 63(0.053, 0.844) 83(0.048, 0.934)

0.5 0.05 0.1 434(0.050, 0.798) 580(0.048, 0.902)
0.3 409(0.050, 0.810) 546(0.049, 0.904)
0.5 370(0.049, 0.806) 495(0.052, 0.905)
0.7 304(0.054, 0.802) 406(0.050, 0.905)

0.1 0.1 111(0.053, 0.816) 148(0.053, 0.909)
0.3 105(0.047, 0.814) 140(0.051, 0.909)
0.5 96(0.050, 0.811) 127(0.052, 0.911)
0.7 79(0.052, 0.829) 105(0.050, 0.913)

0.7 0.05 0.1 382(0.051, 0.803) 511(0.052, 0.900)
0.3 360(0.052, 0.797) 481(0.048, 0.901)
0.5 327(0.046, 0.804) 436(0.055, 0.902)
0.7 269(0.047, 0.811) 359(0.053, 0.909)

0.1 0.1 103(0.050, 0.815) 136(0.049, 0.914)
0.3 97(0.054, 0.817) 129(0.049, 0.912)
0.5 89(0.050, 0.821) 117(0.050, 0.917)
0.7 74(0.048, 0.840) 98(0.045, 0.925)

4. Discussion and Conclusions

Existing papers on comparing correlated concordance rates mainly focus on comparing
two (or more) competitive diagnosis methods using their concordance rates with a gold
standard on multiple sites [11]. In this paper, there is no gold standard and we compare
the concordance rate between an AI-based diagnostic device and human radiologists and
that among radiologists. We also compare the concordance rate between an AI-based
diagnostic device and highly experienced radiologists and that between AI-based device
and less experienced radiologists. In our design setting, each study subject has single site
but is rated by the AI-based device and multiple human radiologists. We extend existing
methods to perform design and analysis in this new setting.

We provide design and analysis plan for two types of study objectives to perform
different comparisons of concordance between the AI-based diagnostic device and human
radiologists. For each type of study objective, we propose a test statistic using GEE method
with independent working correlation to account for the dependency in the observations
from the device and the radiologists for each study subject, and derive its sample size
formula based on large sample theory. Through extensive simulations, we show that the
test statistics control the type I error accurately and the sample size formulas estimate
sample sizes with powers close to the specified ones accounting for the dependency of
images read by radiologists and device.

Since each subject’s image is read by the device and many radiologists, the concor-
dance scores have complicated dependency structure, while the test statistics do not require
specification of the multiple correlation coefficients by using the GEE method, the sample
size formulas require specification of these correlation coefficients. Since it is difficult to
accurately specify the correlation coefficients, we propose to conduct a two-stage device
trial to estimate these correlation coefficients from the first stage data and recalculate the
required sample size for the whole trial based on the estimated correlation coefficients.

We use concordance rate as a measure of agreement among multiple raters. Cohen’s
kappa is another measure of agreement that is popularly used, e.g., Qureshi et al. [12].
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Unlike concordance rate, however, it is not clear how similar two kappa values should
be to conclude similarity of two different groups of raters. The proposed methods were
successfully used by O’Connell et al. [8] to design and analyze a device trial.
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Appendix A

Table A1. Examples of ultrasound lexicon.

Ground Truth Lesion Type

Shape Oval
Round

Irregular
Margin Circumscribed

Indistinct
Angular

Microlobulated
Spiculated

Orientation Parallel
Not parallel

Echo pattern Anechoic
Hypoechoic

Complex cystic and solid
Isoechoic

Hyperechoic
Heterogeneous

Posterior features No features
Enhancement

Shadowing
Combined pattern

Appendix A.1. Derivation of ρ1

Since ri = {m(m− 1)/2}−1 ∑m−1
j=1 ∑m

j′=j+1 rijj′ and si = m−1 ∑m
j=1 sij, we have

ρ1 = corr(ri, si) =
cov(ri, si)√

var(ri)var(si)

Here

cov(ri, si) = cov(
∑m−1

j=1 ∑m
j′=j+1 rijj′

m(m− 1)/2
,

∑m
j=1 sij

m
) =

2
m2(m− 1)

cov(
m−1

∑
j=1

m

∑
j′=j+1

rijj′ ,
m

∑
j=1

sij)

=
2

m2(m− 1)

{
m(m− 1)cov(rij1 j2 , sij1) +

m(m− 1)(m− 2)
2

cov(rij1 j2 , sij′1
)
}

=
2
m

cov(ri12, si1) +
m− 2

m
cov(ri12, si3)

var(ri) =
4

m2(m− 1)2 var(
m−1

∑
j=1

m

∑
j′=j+1

rijj′)
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=
4

m2(m− 1)2

{m(m− 1)
2

var(rij1 j2) + m(m− 1)(m− 2)cov(rij1 j2 , rij1 j′2
)

+
m(m− 1)(m− 2)(m− 3)

4
cov(rij1 j2 , rij′1 j′2

)
}

=
2

m(m− 1)
var(ri12) +

4(m− 2)
m(m− 1)

cov(ri12, ri13) +
(m− 2)(m− 3)

m(m− 1)
cov(ri12, ri34)

and
var(si) =

1
m2 {mvar(si1) + m(m− 1)cov(si1, si2)}

=
1
m

var(si1) +
m− 1

m
cov(si1, si2)

Hence,

ρ1 =
2
m cov(ri12, si1) +

m−2
m cov(ri12, si3)√

{ 2
m(m−1)var(ri12) +

4(m−2)
m(m−1)cov(ri12, ri13) +

(m−2)(m−3)
m(m−1) cov(ri12, ri34)}

∗ 1√
{ 1

m var(si1) +
m−1

m cov(si1, si2)}

=
2
m ρs1 +

m−2
m ρs2√

{ 2
m(m−1) +

4(m−2)
m(m−1)ρr1 +

(m−2)(m−3)
m(m−1) ρr2}( 1

m + m−1
m ρss)

Appendix A.2. The Limit of σ̂2
1 under H̄1

The limit of σ̂2
1 = n−1 ∑n

i=1(si − ri)
2 is its expected value σ2

1 = E(si − ri)
2. Since

E(si − ri) = ps − pr = 0 under H̄1 : pr = ps, E(si − ri)
2 = var(si − ri) = var(si) +

var(ri)− 2ρ1
√

var(si)var(ri) where ρ1 = corr(ri, si),

var(si) =
1

m2 var(
m

∑
j=1

sij) =
1

m2 {mvar(sij) + m(m− 1)cov(sij, sij′)}

=
1
m

var(sij) +
m− 1

m
ρssvar(sij) = ps(1− ps)(

1
m

+
m− 1

m
ρss)

and

var(ri) = var(
1

m(m− 1)/2

m−1

∑
j1=1

m

∑
j2=j+1

rij1 j2)

=
{ 1

m(m− 1)/2

}2{m(m− 1)
2

var(ri12) + m(m− 1)(m− 2)cov(ri12, ri13)

+
m(m− 1)(m− 2)(m− 3)

4
cov(ri12, ri34)

}
= (

2
m(m− 1)

var(ri12) +
4(m− 2)
m(m− 1)

ρr1var(ri12) +
(m− 2)(m− 3)

m(m− 1)
ρr2var(ri12))

= pr(1− pr)
{ 2

m(m− 1)
+

4(m− 2)
m(m− 1)

ρr1 +
(m− 2)(m− 3)

m(m− 1)
ρr2

}
since sij ∼ Bernoulli(ps) and rij1 j2 ∼ Bernoulli(pr).
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Appendix A.3. Derivation of ρ2

Since xi = m−1 ∑m
j=1 xij and yi = m−1 ∑m

j=1 yij,

ρ2 = corr(xi, yi) =
cov(xi, yi)√

var(xi)var(yi)

Here,

cov(xi, yi) = cov
(∑m

j=1 xij

m
,

∑m
j=1 yij

m
)
= cov(xij, yij)

var(xi) =
1
m

var(xi1) +
m− 1

m
cov(xi1, xi2)

and, similarly,

var(yi) =
1
m

var(yi1) +
m− 1

m
cov(yi1, yi2)

Hence,

ρ2 =
cov(xi1, yi1)√

{ 1
m var(xi1) +

m−1
m cov(xi1, xi2)}{ 1

m var(yi1) +
m−1

m cov(yi1, yi2)}

=
ρxy√

( 1
m + m−1

m ρxx)(
1
m + m−1

m ρyy)

Appendix A.4. The Limit of σ̂2
2 under H̄2

The limit of σ̂2
2 = n−1 ∑n

i=1(xi − yi − δ2)
2 is σ2

2 = E(xi − yi − δ2)
2. Since E(xi − yi −

δ2) = px − py − δ2 = 0 under H̄2 : px = py + δ0, E(xi − yi − δ2)
2 = var(xi − yi − δ2) =

var(xi − yi) = var(xi) + var(yi)− 2ρ2
√

var(xi)var(yi). Here, ρ2 = corr(xi, yi),

var(xi) =
1

m2 {mvar(xi1) + m(m− 1)cov(xi1, xi2)}

=
var(xi1)

m
+

m− 1
m

ρxxvar(xi1)) = px(1− px)
( 1

m
+

m− 1
m

ρxx

)
and, similarly,

var(yi) = py(1− py)
( 1

m
+

m− 1
m

ρyy

)
= (px − δ0)(1− px + δ0)

( 1
m

+
m− 1

m
ρyy

)
since xij ∼ Bernoulli(px), yij ∼ Bernoulli(py).
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