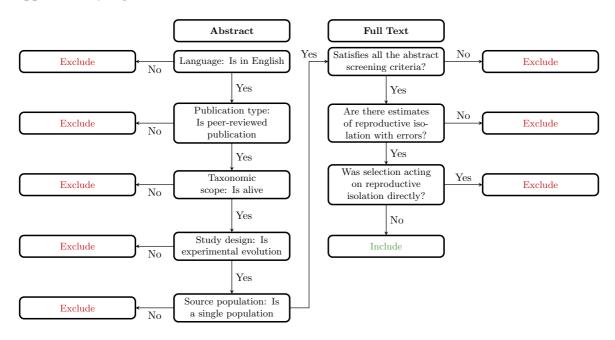
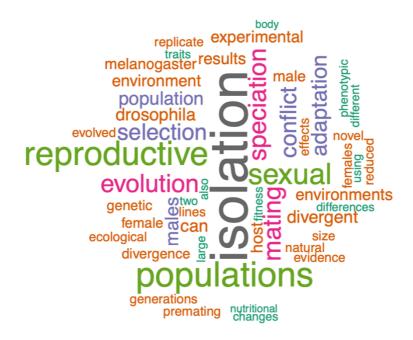
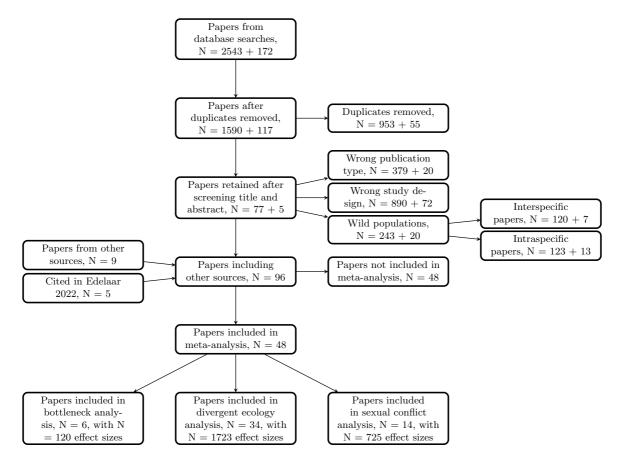
nature ecology & evolution

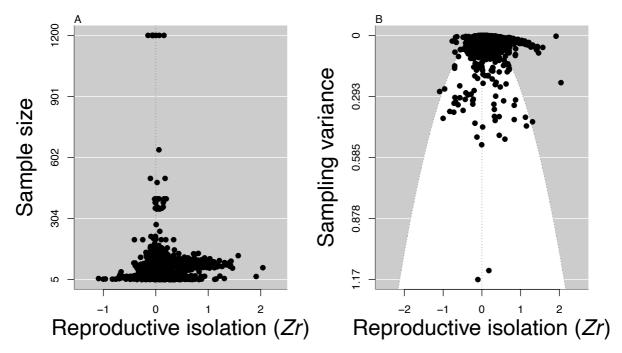

Supplementary information

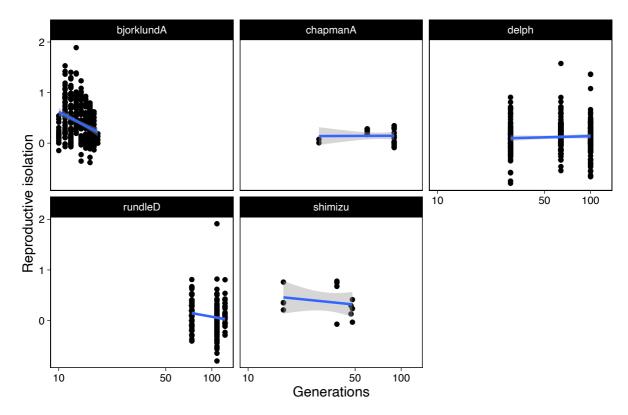
https://doi.org/10.1038/s41559-025-02687-7


Meta-analysis reveals that phenotypic plasticity and divergent selection promote reproductive isolation during incipient speciation

In the format provided by the authors and unedited


Supplementary Figures 1–5


Supplementary Figure 1 | Decision tree for title and abstract screening, and full text screening.


Supplementary Figure 2 | Word cloud formed from the title and abstracts of the 15 benchmarking papers (Supplementary Table 1). This guided our construction of search strings.

Supplementary Figure 3 | **PRISMA flow chart.** The two numbers in each block are from the two searches (the first in March 2021 at Lund University and the other in June 2023 at Bangor University. This manuscript covers only the results extracted from the middle block at the bottom "*Papers included in the divergent ecology analysis*". The blocks either side are included for completeness.

Supplementary Figure 4 | **Meta-analytic funnel plots.** The relationship between reproductive isolation and sample size (A) and reproductive isolation and sampling variance (B). Both plots show significant bias with skew to the right.

Supplementary Figure 5 | **Studies that have estimated reproductive isolation in the same populations in more than one generation.** Lines of best fit with standard errors as the grey shaded area are shown to illustrate the overall patterns of reproductive isolation over time for each study as they are estimated without any reference to the covariance between populations used more than once to produce reproductive isolation estimates, or without reference to precision of the data. The papers that contributed data to each panel are: bjorklundA^{100,101}; chapmanA^{89,95}; delph³¹; rundleD⁶¹; and shimizu⁹³.

Supplementary Tables 1–5

Supplementary Table 1 | List of benchmarking papers used for our meta-analysis search. All papers were found in our literature search.

Authors	Year	Paper title	Journal	
Rice	1996	Sexually antagonistic male adaptation triggered by experimental arrest of female evolution	<i>Nature</i> 381, 232	
Galiana et al.	1996	Postmating isolation analysis in founder- flush experimental populations of <i>Drosophila pseudoobscura</i>	Evolution 50, 941	
Rundle	2003	Divergent environments and population bottlenecks fail to generate premating isolation in <i>Drosophila pseudoobscura</i>	Evolution 57, 2557	
Martin & Hosken	2003	The evolution of reproductive isolation through sexual conflict	<i>Nature</i> 423, 979	
Wigby & Chapman	2006	No evidence that experimental manipulation of sexual conflict drives premating reproductive isolation in <i>Drosophila melanogaster</i>	J. Evol. Biol. 19, 1033	
Dettman et al.	2007	Incipient speciation by divergent adaptation and antagonistic epistasis in yeast	<i>Nature</i> 447, 585	
Hosken et al.	2009	Sexual conflict and reproductive isolation in flies	Biology Letters 5, 697	
Kwan & Rundle	2010	Adaptation to desiccation fails to generate pre- and post-mating isolation in replicate <i>Drosophila melanogaster</i> laboratory populations	Evolution 64, 710	
Ghosh & Joshi	2012	Evolution of reproductive isolation as a by- product of divergent life-history evolution in laboratory populations of <i>Drosophila</i> melanogaster	Ecology & Evolution 2, 3214	
Matute	2013	The role of founder effects on the evolution of reproductive isolation	J. Evol. Biol. 26, 2299	
Arbuthnott et al.	2014	The ecology of sexual conflict: ecologically dependent parallel evolution of male harm and female resistance in <i>Drosophila melanogaster</i>	Ecology Letters 17, 221	
Stojkovic et al.	2014	Host-shift effects on mating behaviour and incipient pre-mating isolation in seed beetle	Behavioural Ecology 25, 553	
Castillo et al.	2015	Experimental evolution: assortative mating and sexual selection, independent of local adaptation, lead to reproductive isolation in the nematode <i>Caenorhabditis remanei</i>	Evolution 69, 3141	
Villa et al.	2019	Rapid experimental evolution of reproductive isolation from a single natural population	PNAS 116, 13440	
Nash et al.	2019	Mate choice and gene expression signatures associated with nutritional adaptation in the medfly (<i>Ceratitis capitata</i>)	Scientific Reports 9, 1	

Supplementary Table 2 | Databases covered by Web of Science at the two universities where searches were performed. The Scopus search only searched the Scopus database.

Institution	Databases covered by Web of Science				
Lund University	Web of Science Core collection, BIOSIS Previews, CABI,				
	Conference Proceedings, Emerging Sources Citation Index, FSTA,				
	Korean Journal Database, MEDLINE, Russian Citation Index,				
	SciELO Citation Index, Zoological Record				
Bangor University	Web of Science Core Collection, Biological Abstracts, BIOSIS				
	Previews, Zoological Record, Current Contents Connect				

Supplementary Table 3 | The list of papers included in the divergent selection dataset, with details of the species used, the selection imposed, when (in generations) reproductive isolation was estimated, and the amount of data each has contributed to the dataset. Two pairs of papers (indicated with the † and ‡ symbols) estimate reproductive isolation on the same populations. Full references numbers refer to the main reference list of the paper.

Paper	Species	Source of selection	Generations	Number of effect sizes
Arbuthnott et al.82	Drosophila melanogaster	Diet (ethanol or cadmium)	219	56
Barerra et al. ⁶⁷	Drosophila melanogaster	Diet (cornstarch-yeast and heat shock or cornmeal and NaCl at constant temperature)	74, 108, 122	448
Belkina et al. ⁸³	Drosophila melanogaster	Diet (standard or starch or high salt)	58, 103	17
Bérénos et al.84	Tribolium castaneum	Parasite (coevolution with <i>Nosema whitei</i> or no parasite)	16	2
Boake et al.85	Drosophila melanogaster	Pesticide (DDT)	1100	1
Bordas et al.86	Gallus gallus	Artificial selection on residual feed consumption	16	3
Castillo et al. ³¹	Caenorhabditis remanei	Diet (Escherichia coli or Bacillus subtilis)	30, 64, 100	331
Dargent et al.87	Poecilia reticulata	Ponds with or without predators	8, 12	6
Dettman et al.88	Saccharomyces cerevisiae	Diet (high salinity or low glucose)	500	18
Dettman et al. ⁸⁹	Neurospora crassa	Diet/temperature (high salinity and high temperature or low salinity and low temperature)	1362, 1589	4
Easty et al. ⁹⁰	Poecilia reticulata	Ponds with or without predators	13, 26	2
Falk et al. ⁹¹	Tribolium castaneum	Diet (wheat or corn flour)	43	5
Fry ⁹²	Tetranychus urticae	Diet (host plant: tomato or bean)	10	1
Fry ²⁵	Drosophila melanogaster	Diet (ethanol or regular)	120	6
Ghosh & Joshi ⁹³	Drosophila melanogaster	Development time (fast or normal)	300	9
Kwan & Rundle ⁹⁴	Drosophila melanogaster	Diet (access to food and water)	57	2
Leftwich et al. ⁹⁵ †	Ceratitis capitata	Diet (starch or complex carbohydrates)	29	2
Magalhães et al. 96	Tetranychus urticae	Diet (host plant: cucumber, pepper or tomato)	25	211
Maklakov et al. ⁹⁷	Callosobruchus maculatus	Age at reproduction (young or old)	15, 18	4
Meffert & Regan98	Musca domestica	Artificial selection on courtship traits	8	16
Miyatake & Shimizu ⁹⁹	Zeugodacus cucurbitae	Development time (fast or slow)	17, 38, 47, 48	13
Mooers et al. 100	Drosophila melanogaster	Diet (regular or low pH)	21	51
Nash et al. 101†	Ceratitis capitata	Diet (sucrose or starch)	60, 90	18
Rice ¹⁰²	Drosophila melanogaster	Female coevolution to males or not	40	2
Robinson et al. ¹⁰³	Drosophila melanogaster	Age at reproduction (young or old)	1500	30
Rodrigues et al. ¹⁰⁴	Tetranychus urticae	Female coevolution with <i>Wolbachia</i> -infected or uninfected males	12	48

Rova & Björklund ¹⁰⁵	Callosobruchus maculatus	Diet (blacked-eyed beans or mung beans)	9	2
Rova & Björklund ¹⁰⁶ ‡	Callosobruchus maculatus	Diet (blacked-eyed beans or mung beans)	10	19
Rova & Björklund ¹⁰⁷ ‡	Callosobruchus maculatus	Diet (blacked-eyed beans or mung beans)	11, 12, 13, 14,	308
			15, 16, 17	
Rundle ³²	Drosophila pseudoobscura	Diet and temperature (banana at 21 or cornmeal at 25)	15	58
Shenoi et al. ⁷²	Drosophila melanogaster	High or low larval density	118	8
Stojković et al. 108	Acanthoscelides obtectus	Age at reproduction (young or old)	155, 222	12
Stojković et al. ⁷³	Acanthoscelides obtectus	Diet (host plant: bean or chick-pea)	10	8
Villa et al. 109	Columbicola columbae	Pigeon host (giant runt or feral pigeon)	60	2

Supplementary Table 4 | Results from publication bias and heterogeneity analyses performed using two statistical packages on the dataset without including any covariates.

		Model Parameters		Heterogeneity (%)			
	R package	int	slope	I ² species	I ² _{phylogeny}	I ² research	I ² residual
Egger's	MCMCglmm	0.086	0.094 (p = 0.06)	1	1	10	88
	metafor	0.071	0.820 (p < 0.001)	0	0	18	81
Time-lag	MCMCglmm	-0.764	0.001 (p = 0.84)	2	1	10	87
	metafor	0.165	-0.136 (p = 0.99)	0	0	0	0
Heterogeneity	MCMCglmm	0.103	-	2	1	7	90
	metafor	0.083	-	0	0	18	81

Supplementary Table 5 | **Results of the main model from "metafor".** Table of coefficients for the main model, including the interaction between the barrier type and whether a common garden generation was used. Tests used were two-sided.

	estimate	se	t-value	p-value	95% CIs
Intercept	-0.058	0.071	-0.818	0.445	[-0.232, 0.116]
Between treatments	0.072	0.014	5.024	< 0.001	[0.044, 0.101]
Pre-mating barrier	0.173	0.041	4.279	< 0.001	[0.094, 0.252]
Common garden present	0.023	0.062	0.377	0.707	[-0.098, -0.145]
Number of generations	-0.000	0.000	-0.216	0.829	[-0.001, 0.001]
Population-level data	0.052	0.043	1.196	0.232	[-0.033, 0.137]
Backtransformed	-0.025	0.044	-0.555	0.579	[-0.112, 0.062]
Founding population size (ln-transformed)	-0.001	0.007	-0.169	0.867	[-0.015, 0.013]
Pre-mating barrier : Common garden present	-0.130	0.061	-2.121	0.034	[-0.250, -0.010]