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Introduction
High-dimensional datasets provide many mathematical and 
statistical challenges, as well as some opportunities, and will 
likely lead to novel theoretical developments. A major chal-
lenge of dealing with high-dimensional datasets is that, in 
many cases, not all the measured variables are considered 
important for understanding the underlying phenomena of 
interest.1 While certain computationally expensive tech-
niques2 can construct predictive models with considerable 
accuracy from high-dimensional data, reduction of these data 
prior to modeling is a separate problem that has received recent 
attention. Genetic algorithms (GAs), in particular, provide an 
attractive approach to reduce such a dataset.3 The GA method, 
compared to other popular methods, offers a wider solution 
space; handles noisy functions well; handles large, poorly 
understood search spaces easily; and can be easily modified for  
different problems.4

Over the years, GA methodology has evolved, as has 
the range of its applications. GAs have been employed in 
searching for the best subset of single nucleotide polymor-
phisms (SNPs) associated with a phenotype,5–10 searching 
for the shortest route and multiple semishortest routes in one 
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search,11 and prediction of small molecule binding modes 
to macromolecules.12

Surveys and questionnaires are widely used in various areas 
of research, especially in health-related fields, as they provide a 
relatively efficient method of sampling many individuals in an 
inexpensive and less obtrusive manner.13,14 Questionnaires have 
been used to study musculoskeletal, psychological, cardiovascu-
lar, and other disorders,15–21 and as the popularity of question-
naires has grown, so has the potential for new understanding 
via advanced statistical techniques such as GA. Although GA 
has been successfully applied to questionnaire variable selec-
tion in the context of family medicine, stressful life events,22 
and sleep apnea diagnosis,23 its application to the selection of 
questionnaire data for predictive modeling of disease outcome is 
relatively novel. Outside biomedical research, Madden utilized 
GAs in the analysis of questionnaire data to ascertain students’ 
attitudes toward their schoolwork, showing that GAs may be 
used to generate logical rules, which predict one variable in rela-
tion to others.24 Additionally, Yukselturk et al applied GA in 
predicting student dropout utilizing only 10 variables.25

GAs use a heuristic search and optimization method 
inspired by natural evolution and have been successfully 
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applied to a wide range of complex real-world problems. 
Beginning with a randomly generated population of 
chromosomes (potential solutions), the algorithm carries 
out a process of fitness-based selection in which the par-
ent chromosomes are recombined to generate a successor 
population. The process is iterated, evolving a sequence of 
successive generations, until the average fitness of chromo-
somes increases to reach a stopping criterion. Thus, GAs 
evolve a best solution to a given problem according to the 
specified fitness function.26 The detailed theories behind 
GA are beyond the scope of this article but are discussed in  
other publications.27–29

In our study, GA was used to select questions from the 
1999 to 2000  National Health and Nutrition Examination 
Survey (NHANES) most predictive of five-year mortality as 
indicated in a follow-up survey. Specifically, GA selected the 
top 24 questions from an initial 123 variables. Utilization of 
these 24 variables and selected variable subsets for predictive 
modeling, using five-year mortality as the outcome of interest, 
was carried out using a variety of machine learning methods, 
including gradient boosting, artificial neural network (ANN), 
elastic net, support vector machine (SVM), ridge regression 
(RR), logistic regression, random forest, least absolute shrink-
age and selection operator (LASSO), partial least squares- 
discriminant analysis (PLS-DA), and classification trees 
(implemented in the R package RPART [recursive partition-
ing and regression trees]). All of these techniques yielded 
optimum results when all 24 variables were included in the 
analysis, with gradient boosting demonstrating the best nomi-
nal performance.

Methods
Variable quality control and imputation. Participants 

with linked mortality data from the NHANES (1999–2000) 
were included in the study (Table 1). The NHANES is designed 
to monitor the health and nutritional status of the American 
civilian population using annual interviews and medical exami-
nations. Mortality data were accessed from the National Death 
Index (NDI) with an end point of December  2006.30 The 
1999–2000 NHANES questionnaire data initially included a 
heterogeneous cohort of 9,965 individuals who answered 2,058 
questions (variables), 5,444 of whom had available five-year 
mortality data and were included in the current study (412 
cases/5,032 controls) (Table 1). Variables with .30% missing 
information or zero variance were removed from the analysis, 

as were groups of highly collinear variables. All data were trans-
formed to an integer scale with uniform directionality, with 
higher numerical responses indicating poorer health status. For 
variables where directionality was not explicit, the order was 
inferred from factors known to contribute to mortality. Variables 
that could not be transformed in this manner were removed, 
generating 123 variables to be used in our final analysis. Miss-
ing information for the remaining variables was imputed using 
Amelia II as required for implementation of GALGO GA 
software in R.31,32 Amelia II imputes missing values using the 
expectation-maximization (EM) with bootstrapping algorithm. 
The algorithm utilizes the familiar EM algorithm on multiple 
bootstrapped samples of the original incomplete data to draw 
values of the complete-data parameters.31 Historically, the rule 
of thumb for multiple imputations is to use M = 5.33 We took 
the average of five imputation results and rounded the numeri-
cal responses to the nearest whole numbers according to the 
initial responses given. In order to circumvent the further effects 
of variable missingness or strong correlations among our vari-
ables, as well as the effects of the number of observations (ie, 
5,444 individuals) being higher than our number of parameters 
(ie, 2,058 questions), we implemented a ridge prior of at least 
10% of our number of observations. This promotes numeri-
cal stability by shrinking the covariances among the variables 
toward zero without changing the means of variances.31

The data were then randomly divided into 70% training 
(3,810 individuals [288 cases/3,522 controls]) and 30% testing 
(1,634  individuals [124 cases/1,510 controls]) sets. GA was 
performed in the training set using the procedure described 
in the following section. The predictive ability of the variables 
selected by the GA was then determined in an independent 
testing set.

Genetic algorithm. GA is a feature selection method 
that identifies variables that are most likely predictors of a 
given binary outcome. The procedure starts by generating 
a random population of variable clusters. These clusters, or 
chromosomes, are then assessed for their ability to accurately 
predict the binary outcome using a nearest centroid fitness 
function, which has been found to outperform other multivar-
iate selection functions, including random forests and SVMs, 
when paired with GA.32 In general, the initial variable cluster 
is mutated to form a new cluster of variables with higher clas-
sification accuracy, and the process is repeated until a desired 
level of accuracy is achieved.28,32 GA is advantageous in that 
during the exploration of the space of possible solutions, it 

Table 1. Demographics of questionnaire respondents with available five-year mortality data.

Age 18–20 20–29 30–39 40–49 50–59 60–69 70–79 $80

Individuals 568 871 824 763 585 817 594 422

Ethnicity White* Black* Mexican American Other Hispanic Other Race/Multi-Racial

Individuals 2329 1035 1550 337 193

Note: *Non-Hispanic.
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does not evaluate solutions one by one but evaluates a set of 
solutions simultaneously. Moreover, it is less prone to entrap-
ment within local minima and does not require assumptions 
about the interactions between features.34,35 To overcome the 
inherent problems of randomized algorithms, however, it is 
occasionally proposed that GA be run multiple times on a 
given optimization problem to provide the best solution.36 
Thus, we implemented 10 GA iterations to select NHANES 
questionnaire variables predictive of five-year mortality and 
considered the average output of GA. Further information 
about GA can be found in several references.4,27–29

Machine learning techniques. The optimally selected 
variables from the GA were then used to build predictive mod-
els using various machine learning techniques, including gradi-
ent boosting, ANN, elastic net, SVM, RR, logistic regression, 
random forest, LASSO, PLS-DA, and Classification Trees, 
with optimized parameters (Table 2). These algorithms were 
then compared to determine the technique and set of vari-
ables demonstrating the most accurate prediction. All machine 
learning technique calculations were performed using vari-
ous R packages under R version 3.1.2.37–45 While the intent 
of this article is to compare the predictive performances of 
various machine learning algorithms, we also provide some 
background about these methods to assist the readers.

Gradient boosting. This is a general method for improv-
ing the accuracy of any given learning technique. In this 
approach, the goal is to approximate the functional relation-
ship between independent variables and the outcome variable 
by minimizing some prespecified loss function. This process 
involves the combination and weighting of many relatively weak 
or inaccurate rules (usually decision tree models) to produce an 
ensemble predictor with higher predictive accuracy.46

Artificial neural network. Artificial neural networks 
are a family of machine learning techniques that are mod-
eled after biological networks of neurons. This technique 

attempts to infer the relationship between a set of inputs and 
an outcome of interest by using learning algorithms to assign 
numeric weight to each input measurement. The sum of the 
weighted inputs is used for outcome prediction.47

Elastic net. This technique combines the LASSO and 
ridge penalties, yielding an intermediate penalty with typi-
cally fewer regression coefficients approximating to zero than 
LASSO. Like LASSO, it is particularly useful for variable 
selection in high-dimensional settings, producing sparse 
models that preserve predictive power and encourage group-
ing of correlated predictors.48

Support vector machine. This algorithm involves pro-
jection of the data points in a training set with n input vari-
ables into n-dimensional space and the construction of an 
(n − 1)-dimensional surface (called a hyperplane) that maxi-
mizes the distance between cases and controls (or any binary 
categorization). New samples are then mapped into the same 
space, and the binary outcome is predicted based upon which 
side of the hyperplane each sample falls on.49

Ridge regression. This method is an extension of classi-
cal regression that involves imposing a constraint on the sum 
of the squares of the regression coefficients such that they do 
not exceed a chosen tuning parameter. The effect of this is to 
shrink the regression coefficient estimates to small, nonzero 
values. This approach exploits the bias–variance tradeoff, 
reducing variance of the coefficient estimates by increasing 
their bias. This shrinkage of coefficients prevents overfitting 
by compensating for the variance inflation that occurs due to 
multicollinearity. This technique is particularly powerful for 
high-dimensional problems.50

Logistic regression. This simple method is a special case 
of generalized linear models that evaluates the dependence of 
a binary variable on one or more independent variables using 
maximum likelihood techniques. It is intrinsically simple and 
valuable in solving binary classification problems.51

Table 2. Fine-tuning parameters for ANN, gradient boosting, SVM, PLS-DA, elastic net, and random forests to achieve the highest AUC values 
in the test set (f = frequency).

Technique Top 24 
questions

Top 13  
questions  
(f . 0.2)

Top 9  
questions  
(f , 0.3)

Top 5  
questions  
(f . 0.4)

Top 3 
questions 
(f = 1.0)

ANN Hidden layers 3 30 50 3 3

Decay parameter 0.04 0.04 0.04 0.001 0.04

Gradient boosting Number of trees 5000 10000 5000 1000 10000

Interaction depth 4 1 1 3 2

SVM Gamma 10−6 10−5 10 10−4 2

Epsilon 1 1 1 1 0.01

PLS-DA Factors (14 questions only) 8 – – – –

Elastic net Elastic Net mixing parameter 
(alpha)

0.01 0.1 0.1 0.2 0.1

Random forest Node size 50 50 50 10 10

Number of trees 10 10 10 10 10
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Random forest. This algorithm involves constructing a 
collection of decision trees using rule-based classification or 
regression methods. Each tree is constructed from a bootstrap 
sample extracted from the training set and is developed inde-
pendently of others. A large number of trees constructed this 
way are used to form an ensemble (known as a forest) that col-
lectively votes to optimally classify input vectors.2,52

LASSO regression. Like RR, this method is an exten-
sion of classical regression but uses a different penalty. This 
penalty involves constraining the sum of the absolute values 
of the regression coefficients such that they do not exceed a 
chosen tuning parameter. Unlike RR, some coefficients may 
shrink to zero, making LASSO especially useful for vari-
able selection problems. The result is a set of solutions that 
are shrunken versions of the typical least-squares estimates as 
in the case of linear regression, compensating for overfitting 
that may occur in the presence of multicollinearity, or in high-
dimensional settings.53

Partial least squares-discriminant analysis. In PLS-DA, 
the goal is to reduce the dimensionality of data with a large 
number of input variables, while simultaneously accounting for 
membership in classes representing categories of some discrete 
(eg, binary) outcome. Dimension-reduction is carried out by 
the construction of new variables (referred to as latent vari-
ables) using linear combinations of the input variables. The lin-
ear combinations are generated in such a way as to maximize 
correlation of the latent variables with the categorical outcome. 
This resulting model can then be used to carry out predictions 
for new samples.54

Classification trees. This is a powerful, intuitive non-
parametric technique that involves binary recursive splitting 
of a training set into increasingly homogeneous subsets using 
the input variables. This produces a tree-like construct (known 
as a decision tree) that, after being optimized, can be used to 
categorize new samples.55

Assessing model performance. Given a binary clas-
sification that can be positive or negative, the area under 
the receiver operating characteristic curve (area under curve 
[AUC]) measures the probability that a prediction method 
will rank a randomly chosen positive sample over a randomly 
chosen negative sample. Thus, AUC  =  1 represents a per-
fect model and AUC  =  0.5 represents a model that yields 
no advantage over random guessing. AUC is useful in that 
it is calculated from the direct value output of a prediction 
method across all thresholds rather than the binary output 
dependent upon threshold placement. Additionally, it does 
not vary with the distribution of class labels in the sample 
set.56 We implemented the pROC package to calculate 
the AUCs.57

Results and Discussion
From an initial 2,058 variables (questions), 123 remained 
after excluding variables with .30% missing information, 
zero variance, or collinearity (Table 3). Data from this initial 

preprocessing were then subjected to imputation using Amelia 
II as required for the GA analysis using GALGO.31,32

GA was performed using the 123 variables (ie, ques-
tions, Supplementary Table 1) and the training set consisting 
of 3,810  individuals. The default configuration shows three 
plots summarizing the characteristics of the population of 
selected chromosomes (Supplementary Fig. 1) or, within the 
context of our study, variable clusters. The topmost plot shows 
the number of times each gene (ie, question/variable) is pres-
ent in a stored chromosome. By default, the top 50 genes are 
colored, whereas the top 7 are labeled (variables 24, 27, 55, 59, 
60, 90, and 118). From the plot (Supplementary Fig. 1, top), 
it is apparent that variable 60 was included most frequently 
in the stored chromosomes, followed by variables 90 and 59. 
Also frequently included were variables 24, 27, 55, and 118. 
Once the top-ranked genes are stabilized, a second plot shows 
the stability of the rank of the top 50 genes (Supplementary 
Fig.  1, middle), aiding in the decision of whether or not to 
continue the process further. Unstable genes that demonstrate 
inconsistent rank or importance are indicated by numerous 
colors besides black and gray. Commonly, the top 7 black 
genes are stabilized quickly, in 100–300  solutions, whereas 
low-ranked gray genes would require thousands of solutions 
to be stabilized. Again, the top 7 aforementioned variables 
were the most highly ranked in this GA run, suggesting that 
they are the most important questions for predicting mortal-
ity. Finally, the bottom plot displays the distribution of the 
number of generations needed by the GA process to produce 
a solution (Supplementary Fig. 1), indicating how difficult the 
search problem is for the configuration of GA.

Before further analysis and refinement were performed, we 
first determined whether we were getting acceptable solutions. 
The success of the configured GA search can be determined 
by looking at the evolution of the fitness value across genera-
tions. On average, GA reached a solution in generation 4,  
which indicates an excellent result (Supplementary Fig.  2). 
The blue and cyan lines show the average fitness for all chro-
mosomes and for those that have not reached a goal, respec-
tively. These lines delimit an empirical confidence interval 
for the fitness across generations. The characteristic plateau 
effect is useful to decide whether or not the search is working 
effectively to reach our goal, which is marked with a dotted 
line. In general, our result indicates that we have achieved a 
stable solution within early generations.

Table 3. Breakdown of variables used in the analyses.

Variable Number

Initial 2058

.30% missing 1929

Zero variance 1

Perfectly collinear 5

Final 123
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Stochastic searches such as the GA are very efficient 
methods to identify solutions to an optimization (ie, classifi-
cation) problem. However, they only explore a small portion 
of the total model space. The starting point of any GA search 
is a random population. This implies that different searches 
are likely to provide different solutions. As such, in order to 
extensively explore the entire space of models, it is critical 
to collect a large number of chromosomes. GALGO offers 
a diagnostic tool to determine when the GA searches reach 
some degree of convergence. This analysis is simply based on 
the frequency with which each gene (ie, question) appears in 
the chromosome population. As chromosomes (ie, variable 
clusters) are selected, the frequency of each gene in the popu-
lation changes until no new solutions are found.32 Thus, we 
monitor the stability of gene ranks based on their frequency as 
a way to visualize model convergence (Supplementary Fig. 3). 
The most frequent 50 genes (ie, questions) are shown in eight 
different colors with about six or seven genes per color. The 
genes are ordered by rank along the horizontal axis, while the 
vertical axis indicates gene frequency (top portion of y-axis) 
and the color coded rank of each gene in previous evolutions 
(Supplementary Fig. 3). Changes in the ranks of the genes are 
coded by different colors (below the frequency). The top genes 
are stabilized in order with black genes first, then red, green, 
and so on, with the gray genes considered to be most unstable 
or of lowest priority (Supplementary Fig. 3).

Ten GA iterations using the training set data were per-
formed using 123 questions, and each run generated seven 
questions, with some overlapping results. Multiple GA runs 
were used because multiple isolated iterations are more advan-
tageous than a single GA run and reach the global solution 
using fewer function evaluations.58 From the initial 123 vari-
ables, GA output the top 24 questions for predictive mod-
eling strategies (Table  4). Investigation of the most stable 
results (black color coded genes, Supplementary Fig. 3) shows 
that questions 90, 59, and 60 are the most frequent variables 
appearing in each of the GA iterations (Table 5). Variable 90 
is a question regarding health problems that require the par-
ticipant to use special equipment, such as a cane or a wheel-
chair; variable 59 is a stroke-related question; and variable 60 
is an emphysema-related question. Physical disabilities often 
require the use of special equipment.59 Persons with disabili-
ties also have higher rates of hospitalization and emergency 
department use, yet they have more problems with health 
care access than those without disabilities.87 It is reasonable, 
then, that variable 90 can serve as a probable predictor of an 
individual’s five-year mortality. Stroke, on the other hand, 
is the leading cause of mortality and morbidity in developed 
countries,60 and stroke survivors often face ongoing mortality 
risks and stroke recurrence.61 In fact, it has been shown that 
the five-year survival rate after a single stroke is only 29%,62 
supporting our evidence for variable 59 as a five-year mortal-
ity predictor. Lastly, emphysema, an obstructive pulmonary 
disease characterized by the destruction and weakening of the 

alveolar walls, has been found in its advanced stages to influ-
ence mortality significantly.63 Thus, this validates our assess-
ment of variable 60 as a predictor of five-year mortality.

The GA methodology provides a large collection of vari-
able clusters. However, even though these are indicated as ade-
quate solutions, it is unclear which variables should be chosen 
for developing a classifier, that is, which of the questions are 
of significant biological interpretation or clinical importance. 
It is essential, then, to develop a model that is representative of 
the population. We accomplished this by using the frequency 
of questions in the population of variable clusters as the crite-
rion for inclusion in our predictive modeling strategies. Prior 
to implementing these machine learning techniques, we first 
tested the predictive ability of the top variables using the 
default strategy of forward selection in GALGO. Using the 
forward selection method, GALGO generated only two rep-
resentative models. The first model generated two genes (ie, 
questions), with variables 90 and 59, while the second model 
generated three genes with variables 90, 59, and 60. Clearly, 
these indicate the potential of implementing these variables 
for predictive modeling.

All questions (n = 24) selected by the 10 GA iterations 
were then used to construct predictive models in our training 
set using various machine learning algorithms. Once models 
were constructed, we assessed the predictive abilities of these 
machine learning techniques using AUC as the criterion in 
our independent testing set. In utilizing these techniques, 
the optimization of tuning parameters is critical. As such, we 
tested a wide range of tuning parameters (Table 2) in each of 
our algorithms and reported the results that garnered the high-
est AUC values (Table 6). Utilizing all 24 variables selected by 
the GA, gradient boosting demonstrated the most accurate 
prediction (AUC =  0.7654), using 5,000 trees and allowing 
an interaction depth of four units. Classification Tree, on the 
other hand, was the least accurate technique (AUC = 0.6657). 
Despite the robust performance of the gradient boosting 
algorithm, its AUC performance was not significantly differ-
ent (P . 0.05) from that of ANN, elastic net, SVM, RR, or 
logistic regression. This top performing algorithm was found, 
however, to significantly outperform (P , 0.05) random for-
est, LASSO, PLS-DA, and Classification Tree techniques 
(Table 7). It is interesting to note that PLS-DA did not per-
form optimally (AUC = 0.6756) compared to the other machine 
learning techniques, including logistic regression, using eight 
factors and Bayes probabilistic method as optimum param-
eters. PLS-DA had a specific limitation in our analysis in that 
the algorithm only worked after removing variables with zero 
or near zero variance. As such, the low-performing AUC can 
likely be attributed to the limited number of included variables 
(n = 14). It is also interesting to note that logistic regression 
demonstrated moderate predictive accuracy (AUC = 0.7405) 
using these top 24 variables. This is not surprising, though, 
since it has been shown previously that logistic regression may, 
in some instances, outperform more advanced techniques.64
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Table 4. List of the top 24 questions selected by GA in the training set.

Question No. Content

59 Has a doctor or other health professional ever told {you/SP} that {you/s/he} … had a stroke?

60 Has a doctor or other health professional ever told {you/SP} that {you/s/he} … had emphysema?

90 {Do you/Does SP} now have any health problem that requires {you/him/her} to use special equipment, such as a cane, 
a wheelchair, a special bed, or a special telephone?

72 Including living and deceased, were any of {SP’s/your} biological that is, blood relatives including grandparents, parents, 
brothers, sisters ever told by a health professional that they had … osteoporosis or brittle bones?

27 {Were you/Was SP} ever told that {you/s/he/SP} had active tuberculosis or TB?

24 {Have you/Has SP} ever received the hepatitis A vaccine series? This is a two dose vaccine that is given to people who 
travel outside the United States. It has only been available since 1995.

55 Has a doctor or other health professional ever told {you/SP} that {you/s/he} … had congestive heart failure?

69 Including living and deceased, were any of {SP’s/ your} biological that is, blood relatives including grandparents, parents, 
brothers, sisters ever told by a health professional that they had … Alzheimer’s disease?

76 Has a doctor ever told {you/SP} that {you/s/he} had broken or fractured {your/his/her} … wrist?

42 Up to the present time, what is the most {you have/SP has} ever weighed?

99 {Have you/Has SP} ever been told by a doctor or other health professional that {you/s/he} had weak or failing kidneys? 
Do not include kidney stones, bladder infections, or incontinence.

108 Did {you/SP} have flu, pneumonia, or ear infections that started during those 30 days?

118 {Are you/Is SP} covered by any single service plan?

6 Now I’m going to ask a few questions about milk products. Do not include their use in cooking. In the past 30 days, how often 
did {you/SP} have milk to drink or on {your/his/her} cereal? Please include chocolate and other flavored milks as well as hot 
cocoa made with milk. Do not count small amounts of milk added to coffee or tea. Would you say..

47 The next questions are about the food eaten by {you/you and your household}. {When answering these questions, think 
about all the people who eat here, even if they are not related to you.} Which of these statements best describes the food 
eaten {by you/ in your household} in the last 12 months, that is since {DISPLAY CURRENT MONTH} of last year. 1. {I/We} 
always have enough to eat and the kinds of food {I/we} want; 2. {I/We} have enough to eat but not always the kinds of food  
{I/we} want; 3. Sometimes or often {I/we} don’t have enough to eat.

56 Has a doctor or other health professional ever told {you/SP} that {you/s/he} … had coronary heart disease?

63 Has a doctor or other health professional ever told {you/SP} that {you/s/he} … was overweight?

71 Including living and deceased, were any of {SP’s/ your} biological that is, blood relatives including grandparents, parents, 
brothers, sisters ever told by a health professional that they had … arthritis?

82 The next questions are about alcoholic beverages. When answering think about {your/SP’s} use over the past 30 days. 
How often did {you/SP} drink beer or lite beer?

88 [During the past 3 months], did {you/SP} have low back pain?

104 {Have you/Has SP} used snuff, such as Skoal, Skoal Bandit, or Copenhagen at least 20 times in {your/his/her} entire life?

107 Did {you/SP} have a stomach or intestinal illness with vomiting or diarrhea that started during those 30 days?

109 During the past 12 months, that is, since (DISPLAY CURRENT MONTH, DISPLAY LAST YEAR), a year ago, (have you/has 
SP) donated blood?

112 How much did {you/SP} weigh at age 25? [If you don’t know {your/his/her} exact weight, please make your best guess.]
 

We also considered subsetting variable clusters based 
on the frequency of their selection by GA. Owing to the 
aforementioned constraints on variable inclusion in PLS-
DA, it was not performed with the smaller variable sub-
sets. Utilizing the 13  most frequently selected variables, 
gradient boosting still garnered the best AUC performance 
(AUC = 0.7371), using 10,000 trees and allowing an interac-
tion depth of one unit as the optimum parameter. Conversely, 
Classification Tree was still the least optimal technique 
(AUC = 0.6657) (Table 6). We further subset and analyzed 
the top nine most frequently selected variables and found 
ANN as the best performing technique (AUC  =  0.7154), 
using 50 hidden layers and a 0.04 decay parameter. ANN 

was also the top performing technique (AUC  =  0.6714) 
after further downsizing to include only the five most fre-
quently selected questions, using three hidden layers and 
a 0.04 decay parameter. All of our ANN analyses utilized 
200 maximum iterations as the optimum parameter. Finally, 
our analysis using the three most frequently selected vari-
ables yielded similar AUC values with 5 out of 10 techniques, 
including gradient boosting, ANN, elastic net, RR, and 
logistic regression (AUC = 0.6629). LASSO also performed 
quite similarly (AUC  =  0.6628), while Classification Trees  
again yielded the poorest performance (AUC  =  0.6470) 
(Table 6). It should be noted that despite tuning various param-
eters in each of these machine learning techniques, the AUC 
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Table 6. AUC values of different algorithms using the top 24 questions generated by GA and selected subsets based on selection frequency (f) 
by GA. PLS-DA utilized the top 14 questions after removing variables with zero or near zero variance (Table 8).

Technique AUC

top 24  
questions

top 13  
questions  
(f $ 0.2)

top 9  
questions  
(f $ 0.3)

top 5  
questions  
(f $ 0.4)

top 3  
questions 
(f = 1.0)

Gradient boosting 0.7654 0.7371 0.6981 0.6659 0.6629

ANN 0.7522 0.7157 0.7154 0.6714 0.6629

Elastic net 0.7436 0.7216 0.7008 0.6629 0.6629

SVM 0.7417 0.7102 0.675 0.6637 0.6611

Ridge regression 0.7414 0.7169 0.6889 0.6595 0.6629

Logistic regression 0.7405 0.7168 0.6985 0.6597 0.6629

Random forest 0.7258 0.6969 0.6191 0.5912 0.5712

LASSO 0.7135 0.7009 0.6882 0.6628 0.6628

PLS-DA 0.6756 – – – –

Classification trees 0.6657 0.6657 0.647 0.647 0.647

Table 5. Selection frequency of questions in 10 GA iterations.

Question No. Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Frequency (f)

59 x x x x x x x x x x 1.00

60 x x x x x x x x x x 1.00

90 x x x x x x x x x x 1.00

72 x x x x x 0.50

27 x x x x 0.40

24 x x x 0.30

55 x x x 0.30

69 x x x 0.30

76 x x x 0.30

42 x x 0.20

99 x x 0.20

108 x x 0.20

118 x x 0.20

6 x 0.10

47 x 0.10

56 x 0.10

63 x 0.10

71 x 0.10

82 x 0.10

88 x 0.10

104 x 0.10

107 x 0.10

109 x 0.10

112 x 0.10
 

values converged similarly to a common value of ∼0.6629 in 
50% of all algorithms when only the three most frequently 
selected variables were considered.

It is also important to observe that the AUC values 
decrease as fewer variables are considered in the analysis, 

suggesting that even the variables selected less frequently 
by GA  contribute to predictive capability. Thus, the use of 
all 24 selected variables allowed for the best performance  
overall and gradient boosting in particular provided the most 
accurate model.
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Gradient boosting ensemble classifiers are a family  of 
powerful machine learning techniques that have shown consid-
erable success and flexibility in a wide range of applications.65–68 
The high flexibility of this technique can be attributed to its 
high degrees of freedom, which make the choice of the most 
appropriate loss function a matter of trial and error.88 Thus, it 
is unsurprising that boosting performed so well in our study, as 
it has in other classification and prediction tasks.69–73 To fully 

understand the current study, however, it is important to note 
that no machine learning technique will perform best in all 
settings and that even traditional statistical approaches may 
outperform learning algorithms in some cases.74,75 The perfor-
mance of statistical and machine learning techniques is depen-
dent on the population and outcome of interest, the availability 
and dimensionality of variables,76,77 and the criteria used to 
evaluate algorithm performance.78 Consequently, studies com-
paring machine learning techniques for various classification 
and prediction tasks have produced heterogeneous results. For 
example, while LASSO fared relatively poorly in our study, it 
has performed optimally compared to other machine learning 
algorithms in various settings.79–81 It has been shown, however, 
that LASSO provides better prediction in high-dimensional 
orthogonal problems with few true predictors, while RR and 
elastic net can effectively handle many variables with moderate 
predictive power.89 Since our analysis only included variables 
suggested by GA to have some degree of predictive power, 
LASSO performance suffered while RR and elastic net had 
a slight advantage. The relatively accurate performance of  
ANN, too, may be attributed to its ability to handle complex or 
nonlinear relationships between variables, as are often encoun-
tered in predicting health outcomes.82,83 Decision tree-based 
methods (random forests and classification trees) yielded sub-
optimal performance in our study, likely due to the size and 

Table 7. DeLong’s test comparing AUCs to that of the top performing 
technique (gradient boosting, AUC = 0.7654) using the top 24 
questions.

Technique AUC (top 24  
questions)

P-value

ANN 0.7522 0.4379

Elastic net 0.7436 0.2344

SVM 0.7417 0.3424

Ridge regression 0.7414 0.1973

Logistic regression 0.7405 0.1968

Random forest 0.7258 3.188 × 10–2

LASSO 0.7135 1.988 × 10–3

PLS-DA 0.6756 7.337 × 10–4

Classification trees 0.6657 8.654 × 10–7

 

Table 8. Fourteen questions used in PLS-DA after removing those with zero or near zero variance from the initial 24 variables (AUC = 0.6756).

Question No. Content

90 {Do you/Does SP} now have any health problem that requires {you/him/her} to use special equipment, such as a cane, 
a wheelchair, a special bed, or a special telephone?

72 Including living and deceased, were any of {SP’s/ your} biological that is, blood relatives including grandparents, parents, 
brothers, sisters ever told by a health professional that they had … osteoporosis or brittle bones?

24 {Have you/Has SP} ever received the hepatitis A vaccine series? This is a two dose vaccine that is given to people who 
travel outside the United States. It has only been available since 1995.

69 Including living and deceased, were any of {SP’s/ your} biological that is, blood relatives including grandparents, parents, 
brothers, sisters ever told by a health professional that they had … Alzheimer’s disease?

76 Has a doctor ever told {you/SP} that {you/s/he} had broken or fractured {your/his/her} … wrist?

42 Up to the present time, what is the most {you have/SP has} ever weighed?

6 Now I’m going to ask a few questions about milk products. Do not include their use in cooking. In the past 30 days, how often 
did {you/SP} have milk to drink or on {your/his/her} cereal? Please include chocolate and other flavored milks as well as hot 
cocoa made with milk. Do not count small amounts of milk added to coffee or tea. Would you say..

47 The next questions are about the food eaten by {you/you and your household}. {When answering these questions, think 
about all the people who eat here, even if they are not related to you.} Which of these statements best describes the food 
eaten {by you/ in your household} in the last 12 months, that is since {DISPLAY CURRENT MONTH} of last year. 1. {I/We} 
always have enough to eat and the kinds of food {I/we} want; 2. {I/We} have enough to eat but not always the kinds of food  
{I/we} want; 3. Sometimes or often {I/we} don’t have enough to eat.

63 Has a doctor or other health professional ever told {you/SP} that {you/s/he} … was overweight?

71 Including living and deceased, were any of {SP’s/ your} biological that is, blood relatives including grandparents, parents, 
brothers, sisters ever told by a health professional that they had … arthritis?

82 The next questions are about alcoholic beverages. When answering think about {your/SP’s} use over the past 30 days. 
How often did {you/SP} drink beer or lite beer?

88 [During the past 3 months], did {you/SP} have low back pain?

107 Did {you/SP} have a stomach or intestinal illness with vomiting or diarrhea that started during those 30 days?

112 How much did {you/SP} weigh at age 25? [If you don’t know {your/his/her} exact weight, please make your best guess.]
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complexity of the training set, which can confound tree con-
struction and reduce node purity.84 Classification trees per-
formed most poorly, however, likely due to the added tendency 
of individual decision trees to overfit in large training sets.85 
PLS-DA, on the other hand, is capable of handling more com-
plex problems,86 but its performance likely suffered from the 
limited number of variables utilized by the technique.

The optimization of questionnaire variable selection and 
the ability to construct predictive models using selected variables 
represent a promising enterprise for researchers and clinicians 
alike. With techniques such as those employed in our study, 
interesting questions may be posed regarding the importance of 
variables for understanding a certain outcome, enabling ratio-
nal questionnaire design and improved diagnostic or prognostic 
capabilities. However, independent validation is needed before 
such methods are integrated into everyday clinical practice. 
Additionally, to optimize predictive reliability, machine learning 
techniques must be chosen according to the characteristics of the 
population and variables in question, as illustrated in our study.

We also explored the interdependency of our variables by 
implementing a gene interaction network model in GALGO. 
In Supplementary Figure  4, the numerical values 1 through 
7 (coded in black) represent the seven most highly ranked or 
most prioritized variables (questions 59, 60, 90, 72, 27, 24, 
and 55 represent numerical values 1–7, respectively) from our 
earlier GA stochastic search analyses. This figure illustrates the 
interdependency of these top-ranked variables, with line thick-
ness representing the relative dependency strength. The figure 
suggests that the top seven questions are, for the most part, 
independent of each other. It is shown, however, that numeri-
cal values 3 (question 90) and 5 (question 27), and 2 (question 
60) and 6 (question 24) show strong interdependence, perhaps 
implying that such questions may cluster together in multi-
variate models. Further detailed investigation and explanation 
regarding these interactions are the next steps to follow in 
this study.

Conclusion
This study provided a novel examination of GA as a useful 
tool for variable selection in the context of questionnaire data. 
From an initial set of 123 variables, GA selected 24 variables 
from the NHANES for use in predictive modeling of five-
year mortality with machine learning techniques. This study 
was uniquely comprehensive in its consideration of such 
techniques, and gradient boosting performed most optimally 
(AUC  =  0.7654), significantly outperforming random for-
est, LASSO, PLS-DA, and Classification Tree techniques 
(P  ,  0.05). Its performance, however, was not significantly 
different (P . 0.05) than that of ANN, elastic net, SVM, RR, 
or logistic regression. Insights obtained from this study can be 
used to design automated methods for variable selection and 
outcome prediction in a clinical setting. Further independent 
validation is needed, however, for these methods to be consid-
ered in everyday clinical practice.
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