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Abstract

Episodic memory is a recollection of past personal experiences associated with particular times and places. This kind
of memory is commonly subject to loss of contextual information or “semantization,” which gradually decouples the
encoded memory items from their associated contexts while transforming them into semantic or gist-like representa-
tions. Novel extensions to the classical Remember/Know (R/K) behavioral paradigm attribute the loss of episodicity to
multiple exposures of an item in different contexts. Despite recent advancements explaining semantization at a behav-
ioral level, the underlying neural mechanisms remain poorly understood. In this study, we suggest and evaluate a
novel hypothesis proposing that Bayesian-Hebbian synaptic plasticity mechanisms might cause semantization of epi-
sodic memory. We implement a cortical spiking neural network model with a Bayesian—-Hebbian learning rule called
Bayesian Confidence Propagation Neural Network (BCPNN), which captures the semantization phenomenon and of-
fers a mechanistic explanation for it. Encoding items across multiple contexts leads to item-context decoupling akin
to semantization. We compare BCPNN plasticity with the more commonly used spike-timing-dependent plasticity
(STDP) learning rule in the same episodic memory task. Unlike BCPNN, STDP does not explain the decontextualiza-
tion process. We further examine how selective plasticity modulation of isolated salient events may enhance preferen-
tial retention and resistance to semantization. Our model reproduces important features of episodicity on behavioral
timescales under various biological constraints while also offering a novel neural and synaptic explanation for semanti-
zation, thereby casting new light on the interplay between episodic and semantic memory processes.

Key words: Bayesian—-Hebbian plasticity; BCPNN; episodic memory; semantization; spiking cortical memory
model; STDP
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Significance Statement

Remembering single episodes is a fundamental attribute of cognition. Difficulties recollecting contextual in-
formation is a key sign of episodic memory loss or semantization. Behavioral studies demonstrate that se-
mantization of episodic memory can occur rapidly, yet the neural mechanisms underlying this effect are
insufficiently investigated. In line with recent behavioral findings, we show that multiple stimulus exposures
in different contexts may advance item-context decoupling. We suggest a Bayesian—Hebbian synaptic plas-
ticity hypothesis of memory semantization and further show that a transient modulation of plasticity during
salient events may disrupt the decontextualization process by strengthening memory traces, and thus, en-
hancing preferential retention. The proposed cortical network-of-networks model thus bridges micro and
\mesoscale synaptic effects with network dynamics and behavior. /
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Introduction

Episodic and semantic memory were originally pro-
posed as distinct systems that compete in retrieval
(Tulving, 1972). More recent studies suggest, how-
ever, that this division is rather vague (McCloskey and
Santee, 1981; Howard and Kahana, 2002; Renoult et
al., 2019), as neural correlates of episodic and seman-
tic retrieval overlap (Weidemann et al., 2019). Episodic
memory traces are susceptible to transformation and
loss of information (Tulving, 1972), and this loss of ep-
isodicity can be attributed to semantization, which
typically takes the form of a decontextualization pro-
cess (Viard et al., 2007; Habermas et al., 2013; Duff et
al., 2020). Baddeley (1988) hypothesized that seman-
tic memory might represent the accumulated residue
of multiple learning episodes, consisting of informa-
tion which has been semanticized and detached from
the associated episodic contextual detail. Extensions
of the classical Remember/Know (R/K) behavioral ex-
periment demonstrated that item-context decoupling
can occur rapidly (Opitz, 2010). In these experiments,
items were presented either in a unique context, or
across several contexts. Low context variability im-
proved the recollection rate, whereas context overload led
to decontextualization and “Know” type of responses, i.e.,
recognition of item-only information without any detail
about episodic context (Opitz, 2010; Smith and Manzano,
2010; Smith and Handy, 2014). To the best of our knowl-
edge, there have not been any computational hypotheses
proposed to offer mechanistic insights into this item-con-
text decoupling effect.

Several computational spiking neural network models
of cortical associative memory have previously been de-
veloped and used to investigate mechanisms underlying
working memory maintenance and recall (Lundqvist et al.,
2010, 2011; Herman et al., 2013). A similar model en-
hanced with a Bayesian-Hebbian learning rule (Bayesian
Confidence Propagation Neural Network; BCPNN) repre-
senting synaptic and intrinsic plasticity was then used to
study one-shot memory encoding (Fiebig and Lansner,
2017), and more recently, it was extended into a multinet-
work cortical model to examine a novel “indexing theory”
of working memory (Fiebig et al., 2020).

In the present study, relying on a similar spiking neural
network model with identical modular architecture we
propose and evaluate a Bayesian—-Hebbian hypothesis
about synaptic and network mechanisms underlying
memory semantization and qualitatively match model
output to available behavioral data. We show that asso-
ciative binding between items and contexts becomes
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weaker when an item is presented across multiple
contexts (high context variability). This gradual trace
transformation relies on the nature of Bayesian learning,
which normalizes and updates weights over estimated
presynaptic (Bayesian-prior) as well as postsynaptic
(Bayesian-posterior) spiking activity. We compare these
findings with an analogous model that features the more
well-known spike-timing-dependent plasticity (STDP) in-
stead of the BCPNN learning rule, and demonstrate that
no memory semantization effect can be reproduced, re-
gardless of the degree of context variability. Notably,
there have been earlier modeling attempts at semantiza-
tion using STDP or other learning rules but this memory
phenomenon has been interpreted differently involving
slow memory consolidation (requiring sleep, repeated
exposures, or systems consolidation) or extraction of se-
mantic relations (a.k.a. prototype learning) among a
group of episodic memories sharing statistical similar-
ities (Deperrois et al.,, 2021; Remme et al., 2021). We
argue that our hypothesis is more generic as it does not
assume any statistical structure of the memory object repre-
sentations. Finally, we also show how selective plasticity
neuromodulation of one-shot learning (tentatively modeling
effects of attention, emotional salience, and surprise on
plasticity) may delay or prevent decontextualization.

In contrast to existing computational models of episodic
memory (Norman and O’Reilly, 2003; Wixted, 2007; Greve et
al., 2010), our model bridges behavioral outcomes with neural
and synaptic mechanisms. It reproduces episodic memory
phenomena on behavioral time scales under constrained net-
work connectivity with plausible postsynaptic potentials, firing
rates, and other biological parameters.

Materials and Methods

Neuron and synapse model

We use adaptive exponential integrate-and-fire point
model neurons, which feature spike frequency adaptation,
enriching neural dynamics and spike patterns, especially for
the pyramidal cells (Brette and Gerstner, 2005). The neuron
model is an effective model of cortical neuronal activity, re-
producing a wide variety of electrophysiological proper-
ties, and offers a good phenomenological description of
typical neural firing behavior, but it is limited in predict-
ing the precise time course of the subthreshold mem-
brane voltage during and after a spike or the underlying
biophysical causes of electrical activity (Gerstner and
Naud, 2009). We slightly modified it for compatibility
with the BCPNN synapse model (Tully et al., 2014) by
integrating an intrinsic excitability current.

Development of the membrane potential V,,, and the ad-
aptation current /,, is described by the following equations:

av Vi1,
Cogp =~ 9V —E) + QAT T — htloxtloyn (1)
dly  —ly
V=T 4 —tsp).
gt =7, Tbot—te) @)

Equation 1 describes the dynamics of the membrane
potential V,,, including an exponential voltage dependent
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Table 1: Neuron model and synaptic parameters

Neuron model parameter Symbol Value BCPNN parameter Symbol Value
Adaptation current b 86 pA BCPNN AMPA gain wor A 0.76 nS
Adaptation decay time constant 7, 280 ms BCPNN NMDA gain WA 0.07 nS
Membrane capacitance Cm 280 pF BCPNN bias current gain B gain 40 pA
Leak reversal potential E. —-70.6 mV BCPNN lowest spiking rate fnin 0.2Hz
Leak conductance gL 14 nS BCPNN highest spiking rate frnax 25Hz
Upstroke slope factor At 3mVv BCPNN lowest probability € 0.0026
Spike threshold Vi —-55mV P trace time constant To 15s
Spike reset potential V., —60mV Regular plasticity Knormal 1
Refractory period Tref 5ms Modulated plasticity Kpoost 2
Receptor parameter Symbol Value Short-term plasticity parameter Symbol Value
AMPA synaptic time constant TAMPA 5ms Utilization factor u 0.2
NMDA synaptic time constant 7NMDA 100 ms Augmentation decay time constant A 5s
GABA synaptic time constant 7GABA 5ms Depression decay time constant ™ 280ms
AMPA reversal potential EAMPA omv

NMDA reversal potential ENMDA omv

GABA reversal potential EGABA —75mV

activation term. A leak current is driven by the leak re- ax; 1-x Ux Z St—t —t) 5)
versal potential E; through the conductance g, over a1 i — so i)

the neural surface with a capacity C,,. Additionally, V;
is the spiking threshold, and At shapes the spike
slope factor. After spike generation, membrane po-
tential is reset to V,. Spike emission upregulates the
adaptation current by b, which recovers with time con-
stant 7,, (Table 1). To simplify the model, we have removed
subthreshold adaptation, which is part of some AdEx
models.

Besides a specific external input current /,,;, model
neurons receive synaptic currents /sy, from conduct-
ance based glutamatergic and GABAergic synapses.
Glutamatergic synapses feature both AMPA/NMDA re-
ceptor gated channels with fast and slow conductance
decay dynamic, respectively. Current contributions for syn-
apses are described as follows:

i =Y D 97" (O)(Vin — E}")

syn i

= [VPA(t)+ VMDA (1) 4 [O48A (1), 3)

The glutamatergic synapses are also subject to synap-
tic depression and augmentation with a decay factor 7p
and 7,4, respectively (Table 1), following the Tsodyks-—
Markram formalism (Tsodyks and Markram, 1997). We
have chosen those time-constants from the plausible
range of computational fits made on the basis of electro-
physiological recordings of cortical pyramidal cells (Wang
et al., 2006). The utilization factor u represents the fraction
of available resources used up by each transmitted spike
(a proxy of synaptic release probability), whereas x tracks
the fraction of resources that remain available because of
transmitter depletion (synaptic depression):

au; u. )
_r_ "4 . _ _t.
ot , Ut —uy) Esp o(t t’sp ty) @

T

~
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Spike-based BCPNN plasticity

We implement synaptic plasticity of AMPA and NMDA
connection components using the BCPNN learning rule
(Lansner and Ekeberg, 1989; Wahligren and Lansner, 2001;
Tully et al., 2014). BCPNN is derived from Bayes rule, as-
suming a postsynaptic neuron employs some form of prob-
abilistic inference to decide whether to emit a spike or not.
Despite that it accounts for the basic Bayesian inference, it
is considered more complex than the standard STDP learn-
ing rule (Caporale and Dan, 2008), and as such, it reprodu-
ces the main features of STDP plasticity.

The BCPNN synapse continuously updates three syn-
aptic biophysically plausible local memory traces, P;, P,
and Py, implemented as exponentially moving averages
(EMASs) of preactivation, postactivation, and coactivation,
from which the Bayesian bias and weights are calculated.
EMAs prioritize recent patterns, so that newly learned pat-
terns gradually replace old memories. Specifically, learn-
ing implements exponential filters, Z, and P, of spiking
activity with a hierarchy of time constants, ,, and 7, re-
spectively [the full BCPNN model implements additional
eligibility E traces (Tully et al., 2014), which are not used
here]. Because of their temporal integrative nature, they
are referred to as synaptic (local memory) traces.

To begin with, BCPNN receives a binary sequence of
presynaptic and postsynaptic spiking events (S;, S)) to cal-
culate the traces Z; and Z;:

aZi Si 74

Tz —7 — — £ €
I dt fmaxtspike (6)
dz Si —Zte

Ty —0— =
K dt fmaxtspike
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fmax denotes the maximal neuronal spike rate, € is the
lowest attainable probability estimate, ts,ie denotes
the spike duration while 7, = 75 are the presynaptic
and postsynaptic time constants, respectively (7, = rAMPA =
5 ms for AMPA, and 7, = 7NMPA — 100 ms for NMDA
components; Table 1).

P traces are then estimated from the Z traces as
follows:

aP;

Tpg K(Zi — P|)

TDCTtJ—K(ZJ_Pj) 7
dP;

To g = K(ZZ = Pi)

The parameter k adjusts the learning rate, reflecting
the action of endogenous modulators of learning effi-
cacy (i.e., activation of a D1R-like receptor). Setting
k = 0 freezes the network’s weights and biases, though
in our simulations the learning rate remains constant
(x = 1) during encoding (see Results, Semantization of
episodic representations in the BCPNN model and
Item-context interactions under STDP). However, we
trigger a transient increase of plasticity in specific sce-
narios to model preferential retention of salient events
(see Results, Preferential retention; Table 1).

Finally, P;, P;, and P are used to calculate intrinsic excit-
ability 8; and synaptic weights wj with a scaling factor

Bgain and wiri respectively (Table 1):
P.
W Jog
WIJ W;amlog Pi Pj ) (8)

lgj = BgainlOg(PJ')

Spike-based STDP learning rule

In our study, we examine the impact on semantization
when the STDP learning rule replaces BCPNN associative
connectivity in the same episodic memory task. Synapses
under STDP are developed and modified by a repeated
pairing of presynaptic and postsynaptic spiking activity,
while their relative time window shapes the degree of
modification (Ren et al., 2010). The amount of trace modi-
fication depends on the temporal difference (A;) between
the time point of the presynaptic action potential (t) and
the occurrence of the postsynaptic spike (t) incorporating
a corresponding transmission delay (74) from neuron i to
neuron j:

At =t — (t+ 74). ©)
After processing At, STDP updates weights
accordingly:
+ ~(—|AL/T H
Awy(A) = § A (1w et oAt 1y (10)
X awgl-IAt/T-) if At<7,

Here, A corresponds to the learning rate, « reflects a
possible asymmetry between the scale of potentiation
and depression, 7. control the width of the time window,
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Table 2: STDP model parameters
Parameter Symbol Value
Weight initialization Wo 0nS
AMPA maximum allowed weight wAMPA - 13.5nS
NMDA maximum allowed weight wNMDA 3.5 nS
Learning rate A 0.01
Asymmetry parameter a 1.2
Weight dependence exponent, potentiation  u 1
Weight dependence exponent, depression . 1
Symmetric time window T4 20ms

while u. € {0,1} allows to choose between different ver-
sions of STDP (i.e., additive, multiplicative; Morrison et al.,
2008). Synapses are potentiated if the synaptic event
precedes the postsynaptic spike and get depressed if
the synaptic event follows the postsynaptic spike (Van
Rossum et al., 2000).

Associative weights w; are initialized to wg, and their
maximum allowed values are constrained according to
Wmax t0 ensure that synaptic weights are always positive
and between [wg, wnax] (Table 2). The resulting associa-
tive weight distributions are generally comparable in
strength to the BCPNN model weights, but to make them
match, we adjust w,,,, in conjunction with a reasonably
small learning rate A. The maximum allowed weight (W ax)
is a necessary standard parameter of the default STDP
we use in NEST (see below, Code accessibility). To obtain
a stable competitive synaptic modification, the integral of
Awj; must be negative (Song et al., 2000). To ensure this,
we choose a = 1.2, which introduces an asymmetry be-
tween the scale of potentiation and depression along
with a symmetric time window resulting in a ratio of
at_/7+>1.0 (Ren et al., 2010). We set u. = 1 resulting
in multiplicative STDP (in-between values lead to rules
which have an intermediate dependence on the synap-
tic strength).

Two-network architecture and connectivity

The network model features two reciprocally connected
networks, the so-called Iltem and Context networks. For
simplicity, we assume that ltem and Context networks are
located at a substantial distance accounting for the reduced
internetwork connection probabilities (Table 3). Each net-
work follows a cortical architecture with modular structure
compatible with previous spiking implementations of attrac-
tor memory networks (Lansner, 2009; Lundqvist et al.,
2011; Tully et al., 2014, 2016; Fiebig and Lansner, 2017;
Chrysanthidis et al., 2019; Fiebig et al., 2020), and is best
understood as a subsampled cortical layer 2/3 patch
with nested hypercolumns (HCs) and minicolumns
(MCs; Fig. 1A). Both networks span a regular-spaced
grid of 12 HCs (Table 3), each with a diameter of
500 um (Mountcastle, 1997). In our model, items are
embedded in the Item network and context information
in the Context network as internal well consolidated
long-term memory representations (cell assemblies),
supported via intranetwork weights derived using prior
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Table 3: Network layout, connectivity, and stimulation protocol
Layout Symbol Value Connectivity Symbol Value Stimulation Symbol Value
Cortical patch size Cps 2.0 x 1.5mm Axonal conduction speed \ 0.2m/s Background noise PYR (encoding) rg;incodmg 650 Hz
Simulated HCs (each network) Nc 12 Myelinated axonal speed Vinyer 2m/s Background noise PYR (recall) rggﬁ,m,, 450 Hz
Simulated MCs (each network)  nyc 120 Minimal synaptic delay [pctis 1.5ms Background noise BA rf; 75Hz
Simulated MCs per HC nte, 10 HC diameter due 0.5mm  Background conductance o A +15nS
Number of items Nrem 4 (from 10) Distance between networks ~ df5M . 10mm Stimulation duration tstim 250ms
Number of contexts NCONTEXT 10 (from 10) PYR-PYR recurrent cp CPpp 0.2 Stimulation rate Fstim 500 Hz
Layer 2/3 pyramidal per MC nhg-L2s 30 PYR-PYR long-range cp CPppL 0.25 Cue stimulation length teve 50ms
Basket cells per MC niasket 2 PYR-PYR associative cp CPrPA 0.02 Cue stimulation rate Feve 400Hz
MC grid size (Item + Context) GrTAL 24 x 10 PYR-BA cp, BA-PYR cp cpps, CPgp 0.7 Stimulation and cue conductance Jstim +1.5nS
PYR-BA cc 9rs 3nS Interstimulus interval Tstim 500ms
BA-PYR cc 98P —-7nS Attractor detection threshold I'h 10Hz

PYR, pyramidal cell; BA, basket cell; cp, connection probability; cc, connection conductance.

BCPNN learning with long time constant (Fig. 1B,C;
Table 3). Consequently, these weights were resistant to
changes during associative learning of projections be-
tween Item and Context networks (see Results). Our
item and context memory representations are distributed
and nonoverlapping, i.e., with a single distinct pattern-
specific (encoding) MC per HC. This results in sparse

should be noted that the model tolerates only a marginal
overlap between different memory patterns, i.e., shared
encoding MCs (data not shown). Each MC is composed
of 30 pyramidal cells (representing the extent of layer 2/
3) with shared selectivity, forming a functional (not
strictly anatomic) column. In total, the 24 HCs (10 MCs
each) of the model contain 7200 excitatory and 480 in-

neocortical activity patterns (Barth and Poulet, 2012). It  hibitory cells, significantly downsampling the number of

Double bouquet cell 100 active B
* mediating inter-pyramidal weights & connections

Basket cells Plastic connection g—

Inhibitory connection
—_—
£ i L2/3 Pyramidal cells  Excitatory connection

A ITEM ;)omsxr

—— Disynaptic inhibition
—— Attractor projections

4

I 1 ! 1 1 | 1
-0.500 05 1.0 15 2.0 25

C Weight [nS]
2.5
I: 2.0

- 15

1.0

MCpost

— 0.5

I: 0.0
=0.5

Weight [nS]

Figure 1. Network architecture and connectivity of the Item (green) and Context (blue) networks. A, The model represents a sub-
sampled modular cortical layer 2/3 patch consisting of MCs nested in HCs. Both networks contain 12 HCs, each comprising 10
MCs. We preload abstract long-term memories of item and context representations into the respective network, in the form of dis-
tributed cell assemblies with weights establishing corresponding attractors. Associative plastic connections bind items with con-
texts. The network features lateral inhibition via basket cells (purple and blue lines) resulting in a soft winner-take-all dynamics.
Competition between attractor memories arises from this local feedback inhibition together with disynaptic inhibition between HCs.
B, Weight distribution of plastic synapses targeting pyramidal cells. The attractor projection distribution is positive with a mean of
2.1, and the disynaptic inhibition is negative with a mean of —0.3 (we show the fast AMPA weight components here, but the simula-
tion also includes slower NMDA weight components). C, Weight matrix between attractors and competing MCs across two sampled
HCs. The matrix displays the mean of the weight distribution between a presynaptic (MC,,) and postsynaptic MC (MCpos;), within
the same or different HC (black cross separates grid into blocks of HCs, only two of which are shown here). Recurrent attractor con-
nections within the same HC are stronger (main diagonal, dark red) compared with attractor connections between HCs (off-diago-
nals, orange). Negative pyramidal-pyramidal weights (blue) between competing MCs amounts to disynaptic inhibition mediated by
double bouquet cells.
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MCs per HC (~100 MCs per HC in biological cortex). The
high degree of recurrent connectivity within (Thomson et
al., 2002; Yoshimura and Callaway, 2005) and between
MCs links coactive MCs into larger cell assemblies
(Stettler et al., 2002; Binzegger et al., 2009; Muir et al.,
2011; Eyal et al., 2018). Long-range bidirectional inter-
network connections (item-context bindings or associa-
tive connections) are plastic (shown in Fig. 1A only for
MC1 in HC1 of the Context network), binding items, and
contextual information (Ranganath, 2010). On average,
recurrent connectivity establishes 100 active plastic
synapses onto each pyramidal cell from other pyrami-
dals with the same selectivity, because of a sparse in-
ternetwork connectivity (cppps) and denser local
connectivity (cppp, CpppL; cONnection probability refers
to the probability that there is a connection between a ran-
domly selected pair of neurons from given populations; in
Fig. 1A, connection probabilities are only shown for MC1 in
HC1 of the Context network). The model yields biologically
plausible EPSPs for connections within HCs (0.45 =
0.13mV), measured at resting potential £, (Thomson et al.,
2002). Densely recurrent nonspecific monosynaptic feed-
back inhibition mediated by fast spiking inhibitory cells
(Kirkcaldie, 2012) implements a local winner-take-all struc-
ture (Binzegger et al., 2009) among the functional columns.
IPSPs have an amplitude of —1.160 mV (=0.003) measured
at —60mV (Thomson et al., 2002). These bidirectional con-
nections between basket and pyramidal cells within the
local HCs are drawn with a 70% connection probability.
Notably, double bouquet cells shown in Figure 1A are not
explicitly simulated, but their effect is nonetheless ex-
pressed by the BCPNN rule. A recent study based on a
similar single-network architecture (i.e., with the same
modular organization, microcircuitry, conductance-
based AdEx neuron model, cell count per MC and HC)
demonstrated that learned mono-synaptic inhibition
between competing attractors is functionally equiva-
lent to the disynaptic inhibition mediated by double
bouquet and basket cells (Chrysanthidis et al., 2019).
Parameters characterizing other neural and synaptic
properties including BCPNN can be found in Table 1.

Figure 1B shows the weight distributions of embed-
ded distributed cell assemblies, representing different
memories stored in the Item and Context networks.
Attractor projections can be further categorized into
strong local recurrent connectivity within HCs, and
slightly weaker long-range excitatory projections
across HCs (Fig. 1C).

Axonal conduction delays

Conduction delays (t;) between a presynaptic neuron i
and a postsynaptic neuron j are calculated based on their
Euclidean distance, d, and a conduction velocity V (Eq. 11).
Delays are randomly drawn from a normal distribution with a
mean according to distance and conduction velocity, with a
relative SD of 30% of the mean to account for individual ar-
borization differences, and varying conduction speed as a
result of axonal thickness and myelination. In addition,
a minimal delay of 1.5ms (t"; Table 3) is added to reflect

synaptic delays because of effects that are not explicitly
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modelled, e.g., diffusion of neurotransmitters over the syn-
aptic cleft, dendritic branching, thickness of the cortical
sheet and the spatial extent of columns (Thomson et al.,
2002). Associative internetwork projections have a 10-fold
faster conduction speed than those within each network, re-
flecting axonal myelination:

=9

v tmino til'NN(t_i/'? SE)

(11)

Stimulation protocol

Noise input to pyramidal cells and fast spiking inhibitory
basket cells is a zero-mean noise, generated by two inde-
pendent Poisson generators with opposing driving potentials.
Pyramidal cells coding for specific items and contexts are
stimulated with an additional specific excitation during encod-
ing and cued recall (all parameters in Table 3). ltem-context
association encoding is preceded by a brief period of back-
ground noise excitation to avoid initialization transients.

Attractor activation detector

We detect and report cued recall of items or contexts
by using an attractor activation detection algorithm based
on EMAs of spiking activity. Pattern-wise EMAs are calcu-
lated using Equation 12, where the & function 6 denotes
the spike events of a pattern-selective neural population
of npep = 30 pyramidal cells. The filter time constant 7 =
40ms is much larger than the sampling time interval
AT=1ms:

AT 1
eo:0,et:—et,AT+5t . (12)
T TNpop

Pattern activations are detected by a simple threshold (r,)
at about 10-fold the baseline activity with a small caveat: to
avoid premature offset detection because of synchrony in
fast spiking activity, we only count activations as terminated if
they do not cross the threshold again in the next 40 ms. This
method is highly robust because of the explosive dynamics
of recurrent spiking activity for activated attractors in the net-
work. Any attractor activation that crosses this threshold for
at least 40 ms is considered a successful recall.

Code accessibility

We use Neural Simulation Tool (NEST) version 2.2.2,
and a custom-built BCPNN learning rule module (Tully et
al., 2014) running on a Cray XC-40 Supercomputer. NEST
simulates the dynamics of spiking neural models and
features a convenient Python interface (PyNEST) to
NEST’s simulation kernel (Gewaltig and Diesmann, 2007).
The custom-built spiking neural network implementation
of the BCPNN learning rule for message passing interface
(MPI) parallelized NEST is freely available online at
Zenodo (https://doi.org/10.5281/zenodo.5101626) and
also on Github using a Singularity container platform
(https://github.com/Nikolaos-Chrysanthidis/BCPNN-
NEST2.2.2-MPICH-SINGULARITY). The custom NEST
BCPNN module is available as Extended Data 1. Further,
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Figure 2. Trial structure of the two simulated variants of the episodic memory task. ltems are first associated with one or several contexts
(CNX) during the encoding phase in 250-ms cue episodes, with an interstimulus interval of 500 ms. The colors of the coactivated contexts
are consistent with their corresponding associated item. The recall phase occurs with a delay of 1 s and involves different trials with either

brief cues (50 ms) of the (A) items or (B) contexts presented during the

the model is also available on ModelDB (https://modeldb.
yale.edu/257610).

Results

Semantization of episodic representations in the
BCPNN model

An episodic memory task simulated in this work is in-
spired by a seminal memory effect shown in an experimental
study by Opitz (2010). We deliberately abstract away some
details of Opitz (2010) experimental design to provide a
qualitative proof of principle with as few task assumptions
as possible. This approach also offers a more generalized
computational framework for studying the interplay of syn-
aptic learning and its outcomes. In the same spirit, the sys-
tems architecture of our model is reduced to the ltem and
Context networks storing item and context information, re-
spectively, as internal long-term memory representations
(Fig. 1; for details, see Two-network architecture and con-
nectivity and Table 3). We stimulate some items in a single
context and others in a few different contexts establishing
multiple associations (Fig. 2). Stimulus duration during en-
coding is tsim = 250 ms with a Tg,, = 500 ms interstimulus
interval, and a test phase occurs after a 1-s delay period,
which contains brief ., = 50-ms cues of previously
learned items (Table 3). Figure 3A illustrates an item-context
pair, established by an associative binding through plastic
bidirectional BCPNN projections (dashed lines). Item
and context attractors (solid red lines) are embedded
in each network and remain fixed throughout the simula-
tion, representing well-consolidated long-term memory. We
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item-context association encoding phase.

show an exemplary spike raster of pyramidal neurons in
HC1 of both the Item and Context networks reflecting a trial
simulation (Fig. 3B). Herein, item-3 (blue) establishes a single
association, while item-4 (yellow) is encoded in four different
contexts (Figs. 2A, 3B). We find clear evidence for strong
item-context decoupling. The yellow item-4 (but not the blue
item-3) is successfully recognized when cued but without
any corresponding accompanying activation in the Context
network (Fig. 3B). Figure 3C demonstrates that this item-
context decoupling effect holds true also for the multi trial
average as the performance of contextual retrieval when
items serve as cues deteriorates with a higher context over-
load. Successful item recognition without any contextual in-
formation retrieval accounts for a “Know” response, as
opposed to “Remember” judgments, which are accompa-
nied by context recall. In fact, episodic loss in our network
implies that no context is recalled despite the item memory
activation. To elucidate this observed progressive loss of
episodicity with the higher context variability (Fig. 3C), we
sample and analyze the learned weight distributions of item-
context binding recorded after the association encoding pe-
riod (Fig. 3D). The item-context weight distribution in the
one-association case is significantly stronger than in the
two-association, three-association, or four-association case
(p <0.001, Mann-Whitney, N=2000). This progressive
weakening of weights leads to significantly lower EPSPs for
the associative projections (p < 0.05 for one vs two associa-
tions; p < 0.001 for two vs three and three vs four associa-
tions, Mann-Whitney, N=300; Fig. 3D, see inset). To
measure EPSPs, we stimulate individually all the neurons
in HC1 of an item which forms one, two, three, or four

eNeuro.org


https://modeldb.yale.edu/257610
https://modeldb.yale.edu/257610

eN euro Research Article: New Research 8 of 17

A Attractor connection B ITEM-CONTEXT ASSOCIATION ENCODING RECALL
Associative binding - L - ) ) ) ﬂ‘
_ W W R
MC3 1 - 1 -
s B TR . [ase T 0 © . bl :
& Mot | Ml 40 S EROTEE  E
N R N R R S
> MCT7 B S Al R R
. Zucs: L ] A )
z MC3 . : i L i
MC1 K - g ' -
0 1500 3000 4500 6000 7500 9000
—~ 4 associations time [ms]
O 3 associations
C (é) D @@ 2 associations o1 EOO—
8_ 1.0- w1 association 1 3
N 600- i;
= 2 os- i _ 600-
[SER w1 = : —
3 06- 5 400- 5 5
x e o i ©400-
8 8 o4- © L
s S 02- 200- 0 S0
2
g 0.0- : 0- N - —— | 0~ i i | |
2 0.00 005 010 0.15 0.20 -135 -126 -117 -108 -99
~ Number of assomaﬂons Weight [nS] Intrinsic excitability [pA]
F3 ksl G |;3|00—
S 1.0 —_—
= 600-
_ § o8-
8 E 0.6- E
& 5 . 8400—
S - 0.4- O
o9 200~
O 02-
QL 0.0-™ 0 | | 0- | “ ’ - | | 0+ B S R 1 1
g 2 3 4 0.00 0.05 010 0.15 0.20 —-135 -126 -117 -108 -99
L Number of associations Weight [nS] Intrinsic excitability [pA]

Figure 3. Semantization of episodic memory traces. A, Schematic of the Item (green) and Context (blue) networks. Attractor projections are
long-range connections across HCs in the same network and learned associative projections are connections between networks. B, Spike
raster of pyramidal neurons in HC1 of both the Item and Context networks. Each context/item memory pattern corresponds to the activation
of a unique set of MCs in its network. ltems and their corresponding context representations are simultaneously cued in their respective net-
works (compare Fig. 2A). Each item is drawn with a unique color, while contexts inherit their coactivated item’s color in the raster (i.e., the yel-
low pattern in the Item network is repeated over four different contexts, forming four separate associations marked with the same color). The
testing phase occurs 1 s after the encoding. Brief 50-ms cues of already studied items trigger their activation. Following item activation, we
detect evoked attractor activation in the Context network. C, Average cued recall performance in the Context network (20 trials). The bar dia-
gram reveals progressive loss of episodic context information (i.e., semantization) over the number of context associations made by individual
cued items (compare Fig. 2A). D, Distribution of plastic connection weights between the Item and Context networks (NMDA component
shown here). Weights are noticeably weaker for items which participate in multiple associations. The distributions of synaptic weights exhibit
a broader range for the items with multiple context associations, as the sample size is larger. The inset displays the distribution of EPSPs for
the binding between Item and Context networks. The EPSP distributions follow the trend of the associative weights. The amplitudes (<1 mV)
are lower for higher context variability. E, The distribution of intrinsic excitability currents of pyramidal cells coding for specific context repre-
sentations. The intrinsic excitability features similar distributions because each context is activated exactly once, regardless of whether the
associated item forms multiple associations or not. F, Average cued recall performance in the ltem network (20 trials). Decontextualization
over the number of associations is also observed when we briefly cue episodic contexts instead (compare Fig. 2B). G, Distribution of strength
of plastic connections from the contexts to their associated items. Analogously to D, synapses weaken once an item is encoded in another
context. H, Intrinsic plasticity distribution of cells in the ltem network. Intrinsic excitability distributions are higher for pyramidal cells coding for
repeatedly activated items; **p < 0.001 (Mann-Whitney, N=20 in C, F). Error bars in C, F represent SDs of Bernoulli distributions.
Distributions of one, two, three, and four associations in D, G, H show significant statistical difference (p < 0.001, Mann-Whitney, N =2000).
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associations and record the postsynaptic potential
onto their associated context neurons. EPSPs are in
general below 1 mV (Thomson et al., 2002; Song et al.,
2005), measured at resting potential E;, (Table 1), after
item-context association encoding phase. Therefore,
we attribute the loss of episodicity to a statistically
significant weakening of the associative weight distri-
butions with the increasing number of associated con-
texts. The associative weight distributions shown here
refer to the NMDA component, while the weight distri-
butions of the faster AMPA receptor connections dis-
play a similar trend (data not shown). The gradual trace
modification we observe is a product of Bayesian
learning, which normalizes and updates weights over
estimated presynaptic (prior) as well as postsynaptic
(posterior) spiking activity (see below, BCPNN and
STDP learning rule in a microcircuit model for details).

Our simulation results are in line with related behavioral
studies (Opitz, 2010; Smith and Manzano, 2010; Smith
and Handy, 2014), which also reported item-context de-
coupling as the items were presented across multiple
contexts. In particular, Opitz (2010) concluded that repeti-
tion of an item across different contexts (i.e., high context
variability) leads to item-context decoupling, which is in
agreement with our study. Furthermore, Smith and
Manzano (2010) demonstrated in an episodic context
variability task configuration, that recall deteriorates with
context overload (number of words per context). Mean
recall drops from ~0.65 (one word per context) to 0.50
(three words per context), reaching ~0.33 in the most
overloaded scenario (fifteen words per context).

In Figure 3E, we show the distribution of intrinsic ex-
citability over units representing different contexts.
Pyramidal neurons in the Context network have a simi-
lar intrinsic excitability, regardless of their selectivity
because all the various contexts are encoded exactly
once.

Next, analogously to the previous analysis, we show
that item-context decoupling emerges also when we
briefly cue contexts rather than items during recall testing
(Fig. 2B). In agreement with experimental data (Smith and
Manzano, 2010; Smith and Handy, 2014), we obtain evi-
dence of semantization as items learned across several
discrete contexts are hardly retrieved when one of their
associated contexts serves as a cue (Fig. 3F). We further
sample and present the underlying associative weight dis-
tribution, between the Context and the ltem networks
(Fig. 3G). The distributions again reflect the semantization
effect in a significant weakening of the corresponding
weights. In other words, an assembly of pyramidal neu-
rons representing items encoded across multiple con-
texts receives weaker projections from the Context
network. At about four or more associations, the item-
context binding becomes so weak that it fails to deliver
sufficient excitatory current to trigger associated repre-
sentations in the ltem network. At the same time, intrinsic
excitability of item neurons increases with the number of
associated contexts corresponding to how much these
neurons were active during the encoding phase (Fig. 3H;
cf. Egorov et al., 2002; Tully et al., 2014).
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Item-context interactions under STDP

In this section, we contrast the results obtained with the
BCPNN synaptic learning rule with those deriving from
the more commonly used STDP learning rule in the same
episodic memory task (Fig. 2; Spike-based STDP learning
rule). The modular network architecture as well as neural
properties and embedded memory patterns remain iden-
tical, but associative projections between networks are
now implemented using a standard STDP synaptic learn-
ing rule (Morrison et al., 2008). The parameters of the
STDP model are summarized in Table 2.

Figure 4A shows an exemplary spike raster of pyramidal
cells in HC1 of both the Item and the Context networks,
based on the first variant of the episodic memory task de-
scribed in Figure 2A. As earlier, items are encoded in a
single or in multiple different contexts and they are briefly
cued later during recall. A successful item activation may
lead to a corresponding activation of its associated infor-
mation in the Context network. We detect these activa-
tions as before (see Materials and Methods, Attractor
activation detector) and report the cued recall score over
the number of associations (Fig. 4B).

Unlike the BCPNN network, we observe no evidence of
semantization for high context variability. Instead, recol-
lection is noticeably enhanced with an increase in the
number of associations, which is in fact the opposite of
what would be needed to explain item-context decou-
pling. STDP generates similarly strong associative binding
regardless of context variability (Fig. 4C). The enhanced
recollection in high context variability cases stems from the
multiplicative effect of synaptic augmentation in the Tsodyks—
Makram model on the Hebbian attractor weights. ltems
stimulated multiple times (e.g., four times) have a higher likeli-
hood of being encoded near the end of the task, leading to
more remaining augmentation during testing, thus, effectively
boosting cued recall (Fig. 5A). This recency effect diminishes
after removing synaptic augmentation from the model as at-
tractor weights in the Item network have comparable distribu-
tions leading to similar cued recall performance regardless of
context variability (Fig. 5B,C). As far as the context-cued vari-
ant of the task is concerned (Fig. 2B), there are also no signs
of item-context decoupling for high context variability (Fig.
4D). The associative projections between Context and ltem
networks again have distributions with comparable means
over context variability (Fig. 4E). Overall, decontextualization
is not evident in either variant of the episodic memory task
under the STDP learning rule.

BCPNN and STDP learning rules in a microcircuit
model

To better elucidate the emergent synaptic changes of
the BCPNN and STDP model, we also apply these learn-
ing rules in a highly reduced microcircuit of spiking neu-
rons. To this end, we now track the synaptic weight
changes continuously. The neural and synaptic parame-
ters (and most importantly all the plasticity parameters)
used for the highly reduced BCPNN and STDP model are
identical to the ones used for the large scale BCPNN and
STDP model, respectively (see Tables 1, 2).
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Figure 4. Network model where associative projections are implemented using standard STDP synaptic plasticity. A, Spike raster of
pyramidal neurons in HC1 of both the ltem and Context networks. B, Average item-cued recall performance in the Context network
(20 trials). Episodic context retrieval is preserved even for high context variability (as opposed to BCPNN; compare Fig. 3C). C,
Distribution of NMDA receptor mediated synaptic weights between the item and context neural assemblies following associative
binding. The distributions of item-context weights have comparable means at ~0.065 nS regardless of how many context associa-
tions a given item forms. Bins merely display a higher count for the four-association case as the total count of associative weights is
more extensive compared with items with fewer associations. D, Average cued recall performance in the ltem network when epi-
sodic contexts are cued (20 trials). E, Distribution of NMDA component weights between associated context and item assembilies;
***p < 0.001 (Mann-Whitney, N=20 in B, D). Error bars in B, D represent SDs of Bernoulli distributions.

First, we apply the BCPNN learning rule to the microcir-
cuit model. We consider two separate item neurons
(ID=1 and 2), which form two or three associations with
context neurons (ID=3, 4, or 5, 6, 7), respectively (Fig.
6A). We display the synaptic strength development of the
synapse between item neuron-1 and context neuron-3
(two associations, green), as well as the synapse between
item neuron-2 and context neuron-5 (three associations,
red) over the course of training these associations via tar-
geted stimulation. BCPNN synapses get strengthened
when the item-context pairs are simultaneously active

July/August 2022, 9(4) ENEURO.0062-22.2022

and weaken when the item in question is activated with
another context. Therefore, synapses of the item neuron
that is encoded in three different contexts converge on
weaker weights (Fig. 6A, 12 s), than those of the item neu-
ron with two associated contexts. Weight modifications in
the microcircuit model reflect the synaptic alterations ob-
served in the large-scale network. BCPNN weights are
shaped by traces of activation and coactivation (Egs. 7, 8;
Materials and Methods), which also get updated during
the activation of an item within another context. For exam-
ple, the item neuron-1 and context neuron-3 are not
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Figure 5. Removal of the augmentation mechanism in the net-
work model. A, Distribution of AMPA component weights of the
ltem network including synaptic augmentation. The multiplicative
effect of synaptic augmentation on the consolidated items fea-
tures stronger combined synaptic strength for items with higher
context variability. Slower NMDA receptor weights follow a similar
pattern. Weight distributions of one, two, three, and four associa-
tions have statistical difference (p<0.001, Mann-Whitney,
N=2000). B, Distribution of AMPA component weights of the ltem
network after removing synaptic augmentation. C, Cued recall
under STDP after removing synaptic augmentation. Average item-
cued recall performance in the Context network (20 trials). To
compensate for the removal of augmentation, we increased the
stimulation rates and the synaptic gain eliciting comparable spik-
ing activity. Error bars represent SDs of Bernoulli distributions.

stimulated together between 6 and 8 s, but neuron-1 and
context neuron-4 are. Thus, the P traces of the item activa-
tion (P) increase, while the ones linked to context-3 (P)
decay with a time constant of 15 s (Table 1). Since the item
and context neuron (ID=1, 3) are not stimulated together,
their coactivation traces (P;) decay between 6 and 8 s.
Overall, this leads to a weakening of the weight and hence
to a gradual decoupling (Eg. 8; Materials and Methods).

In the same manner, we keep track of weight change in
a microcircuit with the STDP learning rule (Fig. 6B). Unlike
the microcircuit with BCPNN presented in Figure 6A, the
STDP weights corresponding to the associations made
by both item neurons converge to similar values, although
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Figure 6. Continuous weight recordings in a microcircuit model
with plastic synapses under the A, BCPNN or B, STDP learning
rule. Neural and synaptic parameters correspond to those in the
scaled model. In both cases, two item neurons (ID=1,2) are
trained to form two or three associations, respectively (dashed
connections are simulated but their weight development is not
shown here). During training, neurons are stimulated to fire at
20Hz for 2 s. We display the developing synaptic weight be-
tween specific item-context pairs (ID=1 and 3 in the 2-associa-
tion scenario) and (ID=2 and 5 in the 3-association scenario),
and compare the converged weight values between the two-as-
sociation and three-association case under both learning rules,
following a final readout spike at 11 s.

they are associated with different number of contexts. As
before, the synapse between an item neuron and an associ-
ated context neuron strengthens when this pair is simultane-
ously active, but remains stable when the item neuron is
encoded in another context. For instance, the synapse be-
tween item neuron-2 and context neuron-5 strengthens
when this pair is encoded (0-2 s), yet remains unaffected
when item neuron-2 is activated in another context (i.e., con-
text neuron-6, 4-6 s). This synaptic behavior explains the
observed differences between the BCPNN and STDP large-
scale model.

Preferential retention

Several studies propose that one-shot salient events
promote learning, and that these memories can be re-
tained on multiple time scales ranging from seconds to
years (Frankland et al., 2004; Petrican et al., 2010; Gruber
et al., 2016; Panoz-Brown et al., 2016; Eichenbaum,
2017; Sun et al., 2018). Hypothetical mechanisms behind
these effects are dopamine release and activation of DR1
like receptors, resulting in synapse-specific enhancement
(Otmakhova and Lisman, 1996; Kuo et al., 2008), and sys-
tems consolidation (McClelland et al., 1995; Fiebig and
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Lansner, 2014). Overall, salient or reward driven events
may be encoded more strongly as the result of a transient
plasticity modulation. Recall from long-term memory is
often viewed as a competitive process in which a memory
retrieval does not depend only on its own synaptic
strength but also on the strength of other components
(Shiffrin, 1970). In view of this, we study the effects of
plasticity modulation on encoding specific items within
particular contexts, with the aim of investigating the role
of enhanced learning for semantization in our model.

Using the same network and episodic memory task as
before (Fig. 2A), we modulate plasticity during the encod-
ing of item-1 (red) in context-E via k = kpoost (EQ. 7;
Materials and Methods; Table 1). This results in an in-
creased cued recall probability for the item associated
with three episodic contexts relative to the unmodulated
control (Fig. 7A, Normal vs Biased scenario, three associ-
ations). Episodic retrieval improves from 0.6 (Normal; Fig.
7A, left) to 0.8 (Biased, modulated plasticity; Fig. 7A, right)
when item-1 is cued, which now performs more similarly
to item with just two associated contexts. We further ana-
lyze and compare the recall of each context when its as-
sociated item-1 is cued (Fig. 7B, three associations). The
control scenario (Normal; Fig. 7B, left) without transient
plasticity modulation shows that the three contexts (ID =
A, E, and J) are all recalled with similar probabilities. In
contrast, encoding a specific pair with enhanced learning
(upregulated k = kpo0st) Yields higher recall for the corre-
sponding context. In particular, the plasticity enhance-
ment during associative encoding of the context-E (with
item-1) results in an increased recall score to 0.8 (0.25
control), while the other associated contexts, ID = A and
J, are suppressed (Fig. 7B), primarily because of soft win-
ner-take-all competition between contexts (Fig. 1A).

We attribute these changes to the stronger weights be-
cause of enhanced learning (Fig. 7C, dark red distribution,
v). Weights between unmodulated item-context pairs
(item-1 and context-A,-J) show mostly unaltered weight
distributions («, 3, light red), while the biased associative
weight distribution between item-1 and context-E is now
comparable to the weight distribution of the one-associa-
tion case. Performance does not exactly match that case
though because of some remaining competition among
the three contexts. Overall, these results demonstrate how a
single salient episode may strengthen memory traces and
thus impart resistance to semantization (Rodriguez et al.,
2016).

Discussion

The primary objective of this work was to explore the in-
teraction between synaptic plasticity and context variabil-
ity in the semantization process. To cast new light on the
episodic-semantic interplay, we built a cortical memory
model of two spiking neural networks that feature the same
modular architecture. The networks are coupled with plastic
associative connections, which collectively represent dis-
tributed cortical episodic memory. Our results suggest that
some forms of plasticity offer a synaptic explanation for the
cognitive phenomenon of semantization, thus bridging
scales and linking network connectivity and dynamics with
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Figure 7. Plasticity modulation of a specific item-context pair
enhances recollection and counteracts semantization. A,
Context recall performance. One of the pairs (context-E, item-1)
presented in the episodic memory task (compare Fig. 2A) is
subjected to enhanced plasticity during encoding, resulting in
the boosted recall rate (3 associations, Normal vs Biased, 20
trial average). B, Individual context retrieval contribution in the
overall recall (3 associations). Retrieval is similar among the
three contexts since plasticity modulation is balanced (left:
Normal, k = Knormar; COMpare Table 1). However, when context-
E is encoded with enhanced learning (with item-1), its recall in-
creases significantly (right: Biased, k = kpoost; COMpare Table
1). C, Weight distributions of the NMDA weight component.
Encoding item-1 with context-E under modulated plasticity
yields stronger synaptic weights [3 association, «,8 (light red,
highly overlapping distributions) vs y (dark red)]; **p <0.001
(Mann-Whitney, N=20 in A, B, N=2000 in C)]. Error bars in A,
B represent SDs of Bernoulli distributions. Weight distributions
of one, two, three-a,-3, and four associations in C show signifi-
cant statistical difference (p < 0.001, Mann-Whitney, N =2000).

behavior. We use a spiking neuronal network model com-
bined with BCPNN, which allows us to directly compare it
with a standard Hebbian STDP learning rule. In particular,
we demonstrated that with Bayesian-Hebbian (BCPNN)
synaptic plasticity, but not with standard Hebbian STDP, the
model can reproduce traces of semantization as a result
of learning. Notably, this was achieved with biologically
constrained network connectivity, postsynaptic potential
amplitudes, and firing rates compatible with mesoscale re-
cordings from cortex and earlier models. Nevertheless, our
hypothesis of the episodic-semantic interplay at a neural
level requires further experimental study of the synaptic
strength dynamics in particular. As mentioned, quantitative
data on cortical synaptic plasticity is still quite limited,
and while STDP has been shown to offer explanation for
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Figure 8. Average cued recall performance in the Item network after sequentially cueing all the contexts that are associated with the
item that forms four associations. A, Spike raster of pyramidal neurons in HC1 of both the Item and Context networks. The cue par-
adigm during test for the one-association, two-association, and three-association case remains identical to the control case (com-
pare Fig. 2B). However, in particular for the four-association case, we sequentially cue all the four available contexts that share the
same target item. B, Average cued recall performance in the ltem network (20 trials). The bar diagram reveals progressive loss of
item information over the number of context associations, but not for the four-association case at which all the available contexts
were cued during test. Thus, providing more evidence via different sources boosts retrieval (~95%) recovering a nearly decontex-
tualized item (compare Fig. 3F, four associations, single cue, 25% accuracy score); ***p <0.001 (Mann-Whitney, N =20). Error bars

represent SDs of Bernoulli distributions.

some associative memory phenomena (Pokorny et al.,
2020), any specific plasticity rule is insufficiently vali-
dated experimentally. Yet our results with BCPNN offer a
possible explanation and testable behavioral predic-
tions. The spiking version of this plasticity rule has re-
peatedly been shown to be compatible with detailed,
biologically constrained network activity and structure.
Importantly, our simulations clearly demonstrate how
cognitive phenomena such as semantization could be
produced and thus explained by microscopic plasticity
processes. In particular, BCPNN solves the issue of de-
contextualization by its information-theoretical principle,
not by being hand-crafted to do so. Like any Bayesian
estimator, BCPNN trades-off synaptic strength (weights)
for increased intrinsic excitability (bias) in highly active
neurons, thus decreasing synaptic strength of neurons
that are highly active outside of a specific spiking corre-
lation. Unlike many other conceivable learning rules that
might achieve this effect, BCPNN is working only on lo-
cally available information, and is thus also biologically
plausible.

Our study conforms to related behavioral experiments
reporting that high context variability or context overload
leads to item-context decoupling (Opitz, 2010; Smith and
Manzano, 2010; Smith and Handy, 2014). These studies
suggest that context-specific memory traces transform into
semantic representations while contextual information is
progressively lost. Traces of item memory representations
remain intact but fail to retrieve their associated context.
Semantization is typically described as a decontextualiza-
tion process that occurs over time. However, several experi-
ments, including this study, proposed that exposures of
stimuli in different additional contexts (rather than time itself)
is the key mechanism advancing semantization (Opitz,
2010; Smith and Manzano, 2010; Smith and Handy, 2014).
In fact, simple language vocabulary learning implies that
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learners encode words in several different contexts, which
leads to semantization and a definition-like meaning of the
studied word (Beheydt, 1987; Bolger et al., 2008). Although
our network model is limited to a simple item-context
decoupling scenario, the proposed plasticity mechanis-
tic explanation for the observed item-context decoupling
effect may be generalized to support semantization in
more complex scenarios in which other mechanisms
may synergistically interact and contribute to decontex-
tualization. Admittedly, our hypothesis does not exclude
other seemingly coexisting phenomena and mechanisms
supporting memory retrieval that may facilitate semanti-
zation over time, e.g., reconsolidation or systems con-
solidation because of sleep or aging (Friedrich et al.,
2015). Further, our model does not feature any higher-
order mechanisms allowing a neutral stimulus (lacking
prior pairing) to evoke the same contextual memory re-
sponse as a conditioned stimulus does despite their
prior pairing. In other words, each stimulus has to be in-
dependently coupled with its context(s).

We also demonstrated (Results, Preferential retention)
how a transient plasticity modulation, reflecting known
isolation effects, may preserve episodicity, staving off de-
contextualization. Semantization may also be overcome
by accumulating additional evidence regarding an epi-
sode. In our simulations, we typically used single context
cues to retrieve an item during cued recall (e.g., item-4
forms four associations, but only one of its associated
contexts was cued, compare Figs. 2B and 3F). However,
an interesting question is whether providing multiple con-
text cues that share the same target item boosts its recall
(Fig. 8A). Figure 8B shows the result where we sequen-
tially stimulated all the four different contexts in the four-
association case. The 4-fold contextual information con-
siderably increases the likelihood of retrieval of a nearly
fully semanticized item (compare Figs. 3F and 8B, four
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associations). These results are relatively intuitive yet
novel from a modeling point of view and in line with be-
havioral studies reporting enhanced cued recall with mul-
tiple cues compared with a single one (Rubin and
Wallace, 1989; Broadbent et al., 2020; Pearson and
Wilbiks, 2021).

To our knowledge, there is no other spiking computa-
tional model of comparable detail that captures the se-
mantization of episodic memory explored here, while
simultaneously offering a neurobiological explanation of
this phenomenon. Unlike other dual-process episodic
memory models, which require repeated stimulus expo-
sures to support recognition (Norman and O’Reilly, 2003),
our model is able to successfully recall events learned in
“one shot” (a distinctive hallmark of episodicity). We note
that the attractor-based theory proposed in this study
does not exclude the possibility of a dual-process expla-
nation for recollection and familiarity (Yonelinas, 2002;
Yonelinas et al., 2010).

Related models of familiarity and recollection

Perceptual or abstract single-trace dual-process com-
putational models based on signal detection theory ex-
plain episodic retrieval but the potential loss of contextual
information is only implied as it does not have its own in-
dependent representation (Wixted, 2007; Greve et al.,
2010). These computational models often aim to explain
traditional R/K behavioral studies. As discussed earlier,
participants in such studies are instructed to give a
“Know” response if the stimulus presented in the test
phase is known or familiar without any contextual detail
about its previous occurrence. Conversely, “Remember”
judgments are to be provided if the stimulus is recognized
along with some recollection of specific contextual infor-
mation pertaining to the study episode. This results in a
strict criterion for recollection, as it is possible for a sub-
ject to successfully recall an item but fail to retrieve the
source information (Ryals et al., 2013). Numerous studies
suggest that recollection contaminates “Know” reports
because recalling source information sensibly assumes
prior item recognition (Wais et al., 2008; Johnson et al.,
2009). Mandler (1979, 1980) and Atkinson and Juola
(1973) treat familiarity as an activation of preexisting
memory representations. Our results are compatible with
this notion because our model proposes to treat item-only
activations as “Know” judgments, while those accompa-
nied by the activation of context representations best cor-
respond to a “Remember” judgment. Item activation is a
faster process and precedes context retrieval (Yonelinas
and Jacoby, 1994), and our model reflects this finding by
necessity, as item activations are causal to context
retrieval.

We assume that familiarity recognition is simply
characterized by lack of contextual information, yet
the distinction we make between the Context and Item
networks is arbitrary. Memory patterns stored in the
Context network are referred to as contexts and those
in the Item network as items. From the perspective of
the network’s architecture, items and contexts have
representations of the same nature, nonoverlapping
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sparse distributed patterns. While sparse internetwork
connectivity is sufficient for our model’s function, both
networks may just as well be part of the same cortical
brain area. The actual physical separation of the two
networks (which incurs connection delays commensu-
rate with the axonal conduction speed) is motivated by
our assumption that items and contexts are not neces-
sarily represented within the same network. A more
specific scenario might assume that items and con-
texts share part of the same local network. In principle,
our model should be capable of replicating similar re-
sults in that case.

Biological plausibility and parameter sensitivity

We investigate and explain behavior and macroscale
system dynamics with respect to neural processes, bio-
logical parameters of network connectivity, and electro-
physiological evidence. Our model consequently builds
on a broad range of biological constraints such as intrin-
sic neuronal parameters, cortical laminar cell densities,
plausible delay distributions, and network connectivity.
The model reproduces plausible postsynaptic potentials
(EPSPs, IPSPs) and abides by estimates of connection
densities (i.e., in the associative pathways and projec-
tions within each patch), axonal conductance speeds,
typically accepted synaptic time constants for the vari-
ous receptor types (AMPA, NMDA, and GABA), with
commonly used neural and synaptic plasticity time con-
stants (i.e., adaptation, depression).

The model synthesizes a number of functionally rele-
vant processes, embedding different components to
model composite dynamics, hence, it is beyond this
study to perform a detailed sensitivity analysis for
every parameter. Instead, we provide insightful obser-
vations for previously unexplored parameters that may
critically affect semantization. Importantly, a related
modular cortical model already investigated sensitivity
to important short-term plasticity parameters (Fiebig
and Lansner, 2017). After extensive testing we con-
clude that the model is generally robust to a broad
range of parameter changes and its performance only
gradually degrades in terms of the effect size. We ex-
pect even lower sensitivity to parameter variations in a
network approaching biological scales. Further, it is
worth reporting that the model’s function is preserved
across a wide range of sizes of a cortical column as
long as the number of pyramidal cells is not exces-
sively low. The same holds for the population of the in-
hibitory basket cells provided that the rough total
inhibitory synaptic current is maintained by controlling
feedback synaptic strength (ggp; Table 3).

The P trace decay time constant, r,, of the BCPNN
model is critical for the learning dynamics modelled in this
study because it controls the speed of learning in associa-
tive connections and the resulting weight amplitude. High
values of 7, imply long-lasting but weaker memory traces
and therefore lead to slower, more inertial learning (more
resistance to change and encoding new information as
well as forgetting) with overall lower weights and hence
weaker binding. Varying 7, by =30% does not change
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the main outcome, i.e., episodicity still deteriorates with a
higher context variability. At the same time, as mentioned,
slower weight development results in weaker associative
binding and overall lower recall (and vice versa for faster
learning). To compensate for this loss of episodicity,
an additional increase in the unspecific input is usually
sufficient to trigger comparable recall rates. Alternatively,
the recurrent excitatory gain can be amplified to com-
plete noisy inputs toward discrete embedded attractors.
Unspecific background input during recall plays a critical
role as well. In general, we use a low background noise
input into the two coupled networks. However, for the en-
hanced noise by +40% the model operates in a free re-
call regime with spontaneously reactivating memories
without any external cues.

As we explained in the investigation of the reduced mi-
crocircuit model, semantization is an inherent property of
BCPNN-driven weight dynamics, derived from Bayesian
logic. However, countervailing forces in local microcir-
cuits contribute to the generation and maintenance of
our associated memories, Bayesian weight development
drives semantization while intrinsic plasticity counteracts
it. In consequence, it is possible to lessen the relative im-
pact of this synaptic weight-dependent effect by making
intrinsic plasticity more prominent: frequently activated
items (in varying contexts) become more excitable be-
cause of memory recency effect. Conversely, we can
maximize the semantization effect by making the bias cur-
rent weaker, though fully removing it (8 gain = 0) is hard to
justify from a biological perspective. By manipulating the
strength of intrinsic plasticity (8 gain) to diminish signs of
decoupling as described above, the capacity, i.e., the
number of retrievable item-context associations, can in-
crease beyond three associations (compare Fig. 3). Other
key factors that can enhance model capacity for item-
context associations (resistance to semantization over
many established episodic associations) are larger net-
work size, higher associative binding connection proba-
bility (e.g., increase in cppps from 2% to 4%; Table 3), and
elevated background unspecific noise during the cue-re-
sponse association period. Strengthening associative
binding by upregulating wy,,;, can also enhance the mod-
el’s capacity for item-context associations (Table 1). Still,
there is an upper limit to w;,;, as extreme values can lead
to implausible EPSPs.

This study also demonstrates how a selective transient in-
crease of plasticity can counteract semantization. The plas-
ticity of the model can be modulated via the parameter «
(Eq. 7; Materials and Methods). Typically, « is setto 1 (k =
Knormai; 1able 1), whereas we double plasticity (k = kpoost;
Table 1), when modeling salient episodic encoding. We no-
tice that by selectively tripling or quadrupling plasticity (rela-
tive to baseline) during encoding of a specific pair whose
item component forms many other associations, the source
recall improves progressively (data shown only for k = kpoost
in Results, Preferential retention).

Finally, in Results, BCPNN and STDP learning rule in a
microcircuit model, we compare STDP and BCPNN plas-
ticity in a highly reduced model. We bind items with con-
texts to form different number of associations and keep
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track of the weight development per time step. STDP
plasticity generates same magnitude item-context bind-
ing regardless of how many associations an item forms. A
detailed parameter analysis for every critical synaptic pa-
rameter (=30%) did not yield any behaviorally significant
changes to the converged weights.

Semantization over longer time scales

Source recall is likely supported by multiple independ-
ent, parallel, interacting neural structures and processes
since various parts of the medial temporal lobes, prefron-
tal cortex and parts of the parietal cortex all contribute to
episodic memory retrieval including information about
both where and when an event occurred (Gilboa, 2004;
Diana et al., 2007; Watrous et al., 2013). A related classic
idea on semantization is the view that it is in fact an
emergent outcome of systems consolidation. Sleep-de-
pendent consolidation in particular has been linked to
advancing semantization of memories and the extrac-
tion of gist information (Payne et al., 2009; Friedrich et
al., 2015).

Models of long-term consolidation suggest that re-
trieval of richly contextualized memories become more
generic over time. Without excluding this possibility, we
note that this is not always the case, as highly salient
memories often retain contextual information (which our
model speaks to). Instead, our model argues for a much
more immediate neural and synaptic contribution to se-
mantization that does not require slow multiarea systems
level processes that have yet to be specified in sufficient
detail to be tested in neural simulations. It has previously
been shown, however, that an abstract simulation net-
work of networks with broader distributions of learning
time constants can consolidate memories across several
orders of magnitude in time, using the same Bayesian—
Hebbian learning rule as used here (Fiebig and Lansner,
2014). That model included representations for prefrontal
cortex, hippocampus, and wider neocortex, implementing
an extended complementary learning systems theory
(McClelland et al., 1995), which is itself an advancement
of systems consolidation (Squire and Alvarez, 1995). We
consequently expect that the principled mechanism of se-
mantization explored here can be scaled along the tem-
poral axis to account for lifelong memory, provided that
the plasticity involved is itself Bayesian-Hebbian. Our
model does not advance any specific anatomic argument
as to the location of the respective networks (Yonelinas,
2002; Diana et al., 2007). The model purposefully relies on
a generic cortical architecture focused on a class of syn-
aptic plasticity mechanisms which may well serve as a
substrate of a wider system across brain areas and time.

In conclusion, we have presented a computational
mesoscopic spiking network model to examine the inter-
play between episodic and semantic memory with the
grand objective to explain mechanistically the semantiza-
tion of episodic traces. Compared with other models of
episodic memory, which are typically abstract, our model,
built on various biological constraints (i.e., plausible post-
synaptic potentials, firing rates, connection densities,
synaptic delays, etc.) accounting for neural processes
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and synaptic mechanisms, emphasizes the role of synap-
tic plasticity in semantization. Hence it bridges micro and
mesoscale mechanisms with macroscale behavior and
dynamics. In contrast to standard Hebbian learning, our
Bayesian version of Hebbian learning readily reproduced
prominent traces of semantization.
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