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Objectives. Abdominal aortic aneurysm (AAA), a disease with high mortality, is limited by the current diagnostic methods in the
early screening. This study aimed to screen novel and significant biomarkers and construct a diagnostic model for AAA by using a
novel machine learning method, i.e., an ensemble of the random forest (RF) algorithm and artificial neural network (ANN).
Methods and Results. Through a search of the Gene Expression Omnibus (GEO) database, two large-sample gene expression
datasets (GSE57691 and GSE47472) were downloaded and preprocessed. Differentially expressed genes (DEGs) in GSE57691
were identified by R software, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). Essential metabolic
pathways related to positive regulation of cell death and NAD binding were found. Then, RF was used to identify key genes
from the DEGs, and an AAA diagnostic model was established by ANN. A transcription factor (TF) regulatory network of key
genes related to angiogenesis and endothelial migration was constructed. Finally, a validation dataset was used to validate the
model and the area under the receiver operating characteristic curve (AUC) value was high. Conclusion. Potential AAA-
associated gene biomarkers were identified by RF, and a novel early diagnostic model of AAA was established by ANN. The
AUC indicated that the diagnostic model had a highly satisfactory diagnostic performance. In conclusion, this study will
provide a promising theoretical basis for further clinical and experimental studies.

1. Introduction

AAA is a localized dilatation of the infrarenal aorta, a per-
manent and irreversible enlargement of the abdominal aorta
to a diameter of 3 cm or larger, exceeding the normal diam-
eter by more than 50% [1, 2]. Although it is usually asymp-
tomatic before enlargement, AAA is naturally progressive,
leading to a high risk of irreversible aneurysmal growth
and unpredictable rupture at any time, which leads to a high
mortality rate of up to 80% [3]. Approximately 150,000–
200,000 deaths are associated with AAA worldwide every
year [4]. With the aging of the population as well as the
improvements in living standard and diagnostic techniques,
an increasing incidence of AAA has been reported in recent
years. Early diagnosis of AAA before rupture can reduce the
risk of death associated with this disease. Therefore, novel

diagnostic model for patients needs to be urgently established.
Moreover, finding therapeutic agents that can prevent AAA
growth also need genetic and basic science research to identify
pivotal cell-signaling pathways involved [2].

The etiology of AAA is complex. AAA is associated with
various factors, including smoking, male sex, advanced age,
atherosclerosis, hyperlipidemia, race, chronic obstructive
pulmonary disease, and family history [5]. It results from
both genetic and environmental factors [6]. The risk of
AAA nearly doubles if the patient has a family genetic his-
tory [7]. One review showed that in asymptomatic men 65
years of age and older, population-based AAA screening
showed statistically significant reductions in AAA-related
mortality and rupture [8]. Previous AAA studies have con-
firmed several susceptibility genes that can help diagnose
AAA, including CTLA4, NKTR, CD8A, CANX, CD44,
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DAXX, STAT1, IL6R, LDLR, and STAT3 [9–13]. Therefore,
searching for AAA-related biomarkers has become a neces-
sary research direction for AAA screening and diagnosis.

Unlike traditional statistical methods, machine learning
is not rule-based programming but learning from examples
[14]. The most important step before choosing a machine
learning approach is to predict the number of variables. In
general, simple prediction tasks can be performed with tra-
ditional models (e.g., logistic regression), and complex tasks
require more complex models (e.g., neural networks). There-
fore, in order to establish a new diagnostic model of AAA,
we chose RF combined with ANN model to learn from the
data sets and then verify the diagnostic model in the valida-
tion set. With their continuous optimization, machine learn-
ing algorithms have become powerful tools for data
utilization thanks to their high classification accuracy and
convenient use. Among machine learning methods, random
forest (RF) [15] algorithms, and artificial neural networks
(ANNs) [16] have shown particularly strong computing
power. This study aimed to use a novel method, i.e., an
RF-ANN ensemble, for AAA risk factor screening and estab-
lishment of an AAA diagnostic model. The findings of this
study provide potential biomarkers for early clinical screen-
ing of AAA.

2. Materials and Methods

2.1. Research Design. Figure 1 is the research framework of
this study. Two large-sample gene expression datasets
(GSE57691 and GSE47472) were obtained through a search
of the Gene Expression Omnibus database (GEO, https://
www.ncbi.nlm.nih.gov/geo/) [17] with “Abdominal aortic
aneurysm” as the keyword. The differentially expressed
genes (DEGs) between the two sample groups (AAA and
non-AAA) in each dataset were identified by using the
“limma” package of R software (Step 1). Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) enrichment analyses were performed through the
Database for Annotation, Visualization, and Integrated Dis-
covery (DAVID) [18] based on the DEGs in GSE57691,
followed by functional classification of these genes (Step 2).
The DEGs identified in GSE57691 were subject to RF analy-
sis using the “randomForest” package of R, through which
74 genes with a mean decrease accuracy > 0:001 and mean
decrease Gini > 0:05 were determined (Step 3). Further, the
genes identified by weighted gene co-correlation network
analysis (WGCNA) [19] combined with the Enrichr data-
base were used to construct a weighted gene coexpression
network, and a regulatory network was then made of the
genes with correlation values >0.1 and their related TFs
(Step 4). A diagnostic model was constructed using the
“neuralnet” [20] package based on the DEGs identified in
Step 3 and was validated by in GSE47472 (Step 5). Finally,
the performance of the constructed model was compared
with the performance of existing diagnostic models (Step 6).

2.2. Data Preprocessing. The Illumina HumanHT-12V4.0
expression beadchip data of GSE57691 and GSE47472 were
downloaded from the GEO database. 59 samples (10 control
samples and 49 AAA samples) in GSE57691 were selected
for study. 20 small AAA samples (mean maximum
diameter = 54:3 ± 2:3mm) and 29 large AAA samples (mean
maximum aortic diameter = 68:4 ± 14:3mm) in GSE57691
were merged as AAA. More specific sample information
can be queried in GEO website (GEO, https://www.ncbi
.nlm.nih.gov/geo/). The constructed diagnostic model for
AAA was validated using 8 control samples and 14 AAA
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Figure 1: Schematic illustration of the research design.

Table 1: Source of datasets.

Dataset Platform AAA samples Control samples

GSE57691 GPL10558 49 10

GSE47472 GPL10558 14 8
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Figure 2: Continued.
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samples obtained from GSE47472 (Table 1). The datasets
downloaded from the database were normalized by Gene-
spring GX version 11.5.1 software for luminal single-color
arrays. Then the probe ID was converted into gene symbols
through R software. After mapping the probes to genes, the
unidentifiable probes were removed. If multiple probes
could be mapped to the same gene, the expression level of
the gene was represented by the maximum mean expression
value for subsequent analysis.

2.3. Screening for DEGs. The “limma” [21] package of R
software was used to analyze DEGs in the GSE57691 and
GSE47472 datasets, with FDR < 0:001 as a threshold.
Volcano plots and heatmaps were, respectively, visualized
with the “ggplot2” [22] and “pheatmap” [23] packages in R
software.

2.4. Functional Enrichment Analysis of DEGs. To further
understand the function of DEGs, they were subject to GO
enrichment, which categorizes genes into biological process
(BP), cellular component (CC), and molecular function
(MF) [24, 25]. Moreover, KEGG analysis [26] was used to
describe metabolic pathways, using DAVID 6.8 (https://
david.ncifcrf.gov/home.jisp). The results were visualized by
R software.

2.5. RF Analysis to Further Screen DEGs. The DEGs in
GSE57691 were further screened with the “randomForest”
package in R. First, we conducted cyclical computing and

obtained the out-of-bag (OOB) error rates when using dif-
ferent numbers of DEGs as a variable number, through
which the optimal number of variables was determined
based on the lowest OOB error. The OOB errors when the
number of trees ranged from 1 to 3000 were calculated,
and the optimal number of decision trees was determined
by considering both OOB error and stability. Finally, based
on the parameters determined, an RF model was con-
structed, and the candidate genes for AAA diagnosis were
determined according to the mean decrease accuracy and
mean decrease Gini.

2.6. Construction of a Transcription Factor Regulatory
Network. The “WGCNA” package in R was applied to calcu-
late pairwise correlations between genes identified from the
RF screening. The relevant genes with correlation values
>0.1 were subject to transcription factors (TF)-mRNA regu-
latory relationship analysis using the Enrichr database
(http://amp.pharm.mssm.edu/Enrichr/), through which the
TFs that regulated the DEGs were identified for cytoscape-
aided construction of a TF regulatory network.

2.7. Construction and Validation of an a NN Model.
GSE57691 was used for training, and GSE47472 was used
for validation. According to the DEGs selected by RF, an
ANN model was constructed by the “neuralnet” package of
R based on the training dataset. The model was validated
in the validation dataset, and its diagnostic performance
was assessed by calculating the area under the AUC.
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Figure 2: Screening of DEGs in the datasets. (a) The heatmap of 2486 DEGs in GSE57691, which was derived from clustering analysis of
gene expression data in 49 AAA and 10 control samples. (b) The heatmap of 1464 DEGs in GSE47472, which was derived from clustering
analysis of gene expression data in 14 AAA and 8 control samples. (c) Volcano plots demonstrated the distribution of DEGs in GSE57691.
The x-axis shows −log10 (p value), the y-axis refers to |log2 (fold change)|, and the cutoff value is |log2 fold change|≥1.
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Figure 3: Functional analysis and visualization of 2486 DEGs in DAVID. (a) Circle diagram of enriched GO functional clusters. (b) Circle
diagram of enriched KEGG pathways. (c) Functional enrichment bubble diagram of the 2486 DEGs.
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3. Results

3.1. Screening of DEGs. Differential expression analysis
derived 2486 DEGs in GSE57691 and 1464 DEGs in
GSE47472 when using false discovery rate ðFDRÞ < 0:001 as
the threshold (Supplementary Table 1 and Supplementary
Table 2). There were 178 same DEGs shared by both
datasets. Figure 2(a) and Figure 2(b) were the heatmaps
of DEGs in GSE57691 and GSE47472, respectively. Both
heatmaps showed satisfactory separation of gene expression.
Figure 2(c) shows the volcano plot of average gene
expression levels. Genes mentioned before such as IL6R, and
STAT1 were identified.

3.2. GO and KEGG Enrichment Analysis of DEGs. All 2486
DEGs were imported into DAVID 6.8 for functional enrich-
ment analysis (Supplementary Table 3 and Supplementary
Table 4). GO analysis of the DEGs yielded 86 enriched
annotations, including 52 BP, 17 CC, and 17 MF, as well as
13 KEGG enriched pathways. We find that genes such as
HBA2, HBB, UCP2 and ZC3H12A enriched in the pathway
of positive regulation of cell death were significantly
upregulated. Besides, significantly downregulated genes, such
as MT1M, MT1X, and GPD1L, are enriched in the pathway
of cellular response to cadmium ion, cellular response to
zinc ion, and NAD binding (Figure 3(a)). In KEGG pathway
analysis, significantly downregulated genes are related with
neurodegenerative diseases such as Alzheimer’s disease,
Huntington’s disease, and Parkinson’s disease (Figure 3(b)).
The biological process of clustering was consistent with the
pathophysiological mechanism of AAA.

3.3. Diagnostic Feature Genes Identified and Classified by RF.
To identify DEGs that were more reliable, the R package
“randomForest” was used to further screen the 2486 DEGs.
The classification was optimal when the number of variables
was three and the optimal tree number was set at 100. A
mean decrease accuracy > 0:001 and mean decrease Gini >

0:05 were key thresholds used for screening, which yielded
74 DEGs (Supplementary Table 5 and Figure 4). In the
training dataset GSE57691, all 74 genes were clustered
satisfactorily except in one control sample. In the
validation dataset GSE47472, the clustering of these genes
was fully satisfactory.

3.4. Construction of a Transcription Factors (TFs) Regulatory
Network of Feature Genes. The 74 feature genes selected by
RF were used to construct a network (Figure 5). The 74
DEGs formed 1084 interaction pairs (Supplementary
Table 6). The WGCNA package of R was used to calculate
the pairwise correlations between the 74 genes and conduct
the WGCNA (Figure 5(a)). The relevant genes with
correlation values > 0:1 were selected to construct the TF
network (Figure 5(b)).

3.5. Construction and Validation of the ANN Model. The 74
DEGs selected by RF were used to construct a neural net-
work with the GSE57691 dataset. The weight of each gene
was calculated for optimal differentiation between the AAA
and control samples. A diagnostic model was then con-
structed based on the weights of the genes and the neural
network (Figure 6). Prediction by the model had an AUC
of 0.786 in GSE47472 and 1 in the original dataset
GSE57691 (Supplementary Table 8 and Supplementary
Table 9), suggesting that the ANN is highly stable in
diagnosing AAA (Figure 7). These findings show that we
successfully constructed an AAA diagnostic model through
the differential gene expression between AAA and control
samples.

4. Discussion

Conventionally, AAA is diagnosed based on imaging find-
ings that confirm the presence of an aneurysm, and the
first-choice imaging method for AAA screening is abdom-
inal ultrasound. However, the accuracy of ultrasound
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Figure 4: Heatmaps of 74 feature genes selected by RF in GSE57691 and GSE47472. (a) Clustering of the 74 genes in GSE57691. (b)
Clustering of the 74 genes in GSE47472. (c) Ranks of input variables in the RF model, based on which the genes were classified in both
the AAA and control groups. (d) Determination of the optimal number of feature genes. (e) The impact of the number of decision trees
on the OOB error.
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diagnosis depends on the operator’s experience and skill.
Other factors such as the direction of the scanning plane,
patient compliance, obesity, or intestinal gas accumulation
can also significantly affect the accuracy of ultrasound
diagnosis [27]. The application of computed tomography
angiography and magnetic resonance angiography is lim-
ited to AAA screening due to such disadvantages as their
use of contrast agents, radiation damage, and high cost.
A previous study showed that early screening for AAA
can reduce the AAA-associated mortality by approximately
50% in men [28]. In 2005, the guidelines on screening for
AAA published by the American Heart Association rec-
ommended that men aged 60 or older who have siblings
or offspring with AAA should be given a physical exami-

nation for AAA [29]. Considering the lack of effective
examination methods for early AAA screening and diag-
nosis, as well as the lack of sensitive and specific biomark-
ers that can be used in clinical practice, it is crucial to
develop a model for early diagnosis and screening of
AAA [30].

Instead of focusing on phenotypic diagnosis, we further
explore the molecular level diagnosis of AAA, and machine
learning methods show great advantages in gene selection
and classification. Previous machine learning studies have
focused on predicting the risk of rupture in abdominal aortic
aneurysms. Liang et al. [31] used a machine learning method
to predict the rupture risk of ascending aortic aneurysm
based on the shape characteristics of the aneurysm. This

(b)

Figure 5: The WGCNA network and TF-mRNA network. (a) The WGCNA network. (b) 9 genes in yellow circles had correlation values
> 0:1. Related gene-regulatory factors were in red circles.
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machine learning-based method was much faster than finite
element analysis. Another study developed an auxiliary tool
to assess the possibility of AAA rupture and predict the pro-
gression of AAA through machine learning [32]. Therefore,
we proposed a new idea to combine the classification advan-
tages of machine learning with the diagnosis of AAA to
achieve the purpose of early diagnosis.

The question we are faced with is a dichotomous ques-
tion whether the patient has an AAA. Machine learning
offers a principled approach for developing sophisticated,
automatic, and objective algorithms for analysis of high-
dimensional and multimodal biomedical data [33]. The ran-
dom forest algorithm is popular in the life sciences because it
supports p≫ n datasets and is robust to large amounts of
noise, requires little parameter tuning, and requires no pre-
dictor transformation. Meanwhile, RF has high-prediction
accuracy and provides information on importance of vari-
ables for classification [34]. Most applications of ANN to
medicine are classification problems [35]. In supervised
learning, network patterns are trained by providing inputs
and outputs to the network at this stage, and the neural net-
work can adjust the connection weights to match its output
with the actual output in the iterative process until the result
is needed. Based on the advantages mentioned before, we

chose the method of random forest combined with artificial
neural network to construct the diagnostic model of AAA.

This study aimed to develop a diagnostic model based on
gene expression data. We used as many samples as possible
from the GEO database and ensured that the samples of
the selected dataset had come from the same sequencing
platform GPL10558, which minimized the effect of con-
founding factors to a certain extent. First, 2486 DEGs were
selected from the GSE57691 dataset, and then GO enrich-
ment analysis and KEGG pathway analysis were conducted.
Cell growth and death regulation were the most significantly
enriched GO terms. The association of cell growth and death
with aneurysm development has been investigated before.
The formation of aneurysms involves chronic inflammatory
cell infiltration into the tunica adventitia and tunica media
along with elastin rupture, degeneration, and attenuation
[36]. H19 promotes apoptosis and suppresses the prolifera-
tion of smooth muscle cells, resulting in aortic enlargement
[37]. Among the KEGG pathways, we found that metabolic
pathways had the most genes. A number of studies have also
reported metabolic pathway changes in the aneurysmal wall
compared with the normal arterial wall; for example,
BAF60a deficiency in vascular smooth muscle cells can pre-
vent the occurrence and progression of AAA by reducing
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inflammation and extracellular matrix degradation [38]. The
findings from GO enrichment analysis and KEGG pathway
analysis in the present study elucidated the pathogenesis of
AAA. Further, 74 key genes were identified using the RF
algorithm, providing more susceptibility genes as targets of
AAA research. 9 genes (ZBED5, VEZF1, CLASP1, ARPP19,
CTBP1, C12orf16, PUM1, CXXC5, and CSNK2A2) with
correlation values > 0:1 were obtained through WGCNA.
Among these 9 genes, vascular endothelial zinc finger 1
(VEZF1) encodes the Krüppel-like zinc finger protein, which
plays an important role in vascular development and can
inhibit the expression of antiangiogenic factor Cited2 in
endothelial cells, providing a biological target for the diagno-
sis and treatment of AAA [35]. CXXC5 is a member of the
CXXC zinc finger protein family. Functionally, CXXC5
mediates bMP4-induced inhibition of Wnt signaling in neu-
ral stem cells, as well as endothelial migration and angiogen-
esis [39]. Based on these genes with stronger correlations, a
regulatory network of TFs was constructed, through which
the pathogenesis underlying AAA can be further deter-
mined. Finally, using the ANN to calculate the weight of
each key gene, a diagnostic model for AAA was established.
The accuracy of the model was verified in an independent
dataset, which had a prediction AUC of 0.786. The high
AUC indicates that the constructed model reliably distin-
guishes AAA samples from normal samples.

Our study also has some limitations. First, it is difficult to
obtain abdominal aorta specimens, which may limit the clin-
ical application scenarios of this diagnostic model. Second,
the etiology of AAA involves both genetic and environmen-
tal factors. Many environmental factors are associated with
AAA, they may interfere with the diagnostic performance

of our model that was constructed based on susceptibility
genes. Third, the diagnosis of AAA using an ANN based
on gene expression data depends highly on the source of
the samples. Diagnosis based vascular samples from other
locations would have a lower accuracy than diagnosis based
on samples from the abdominal aortic segment in patients
with AAA. Fourth, this diagnostic model will have certain
significance in scientific research and can guide the clinical
screening and diagnosis of AAA, prospective experimental,
and clinical studies are needed to further verify the results.

5. Conclusion

In this study, 74 genetic biomarkers such as VEZF1 and
CXXC5 associated with AAA were identified and used to
construct an early AAA diagnostic model with satisfactory
diagnostic performance. Meanwhile, our study provides a
valuable reference for the early screening of AAA, sheds
new light on the pathogenesis of AAA, and offers potential
biomarkers as targets for the clinical treatment of AAA.

Data Availability
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