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Drug addiction is a chronic relapsing disease leading to allostatic alterations in the brain’s reward,
stress, and executive function systems (1). The etiology and pathophysiology of addiction are
complex, with multiple genetic and environmental factors involved. Despite considerable progress
in understanding the neurobiology of substance use disorders (SUDs), pharmacological treatments
remain limited in number and efficacy. Directly targeting dysregulated neurotransmitter systems to
treat SUDs can be problematic and may cause undesirable side effects. Thus, there is growing
interest in investigating the role of peripheral/modulatory pathways (e.g., immune factors,
hormones, gut microbiome) in addiction, with the ultimate goal of identifying novel therapeutic
targets (2–4).

Bidirectional interactions between the nervous system and immune system, collectively known
as the “neuroimmune system”, regulate a wide range of physiological and pathological processes (5).
While several studies have linked general neuroinflammation and neuropsychiatric disorders [e.g.,
depression (6), schizophrenia (7), addiction (8, 9)], only recently have specific immune factors been
shown to modulate neuronal activity and complex behavioral processes (10–12). Alcohol and other
drugs of abuse stimulate the neuroimmune system, primarily by activating microglial cells and
inducing immune-related gene expression. These neuroimmune responses can produce lasting
changes in neuronal structure and function, including cellular damage, synaptic remodeling, and
altered neurotransmission (e.g. dopaminergic and glutamatergic signaling). There is also growing
evidence indicating that microglial activation and unbalanced production of cytokines, chemokines,
and reactive oxygen species can play causal roles in the development and progression of SUDs
(13, 14).
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Granulocyte-colony stimulating factor (G-CSF) is a ~20-kDa
protein produced by bone marrow stromal cells, endothelial cells,
macrophages, and fibroblasts, as a peripheral hematopoietic
growth factor (15). Both G-CSF and its receptor (G-CSF-R) are
also present in the brain (expressed in neurons and glia), and G-
CSF signaling has been shown to modulate a variety of neuronal
functions (16). G-CSF has potent anti-inflammatory properties
and inhibits the production of pro-inflammatory cytokines [e.g.,
tumor-necrosis factor alpha (TNF-a), interleukin-1 and
interferon gamma] (17). It is also an essential neurotrophic/
neuroprotective factor that inhibits apoptosis, stimulates
neurogenesis, recruits neutrophils for neural tissue repair and
to fight infection, and mobilizes stem cells to injured brain areas
to increase neuroplasticity (18, 19). Given these important
regulatory effects, G-CSF has been proposed as a potential
treatment for conditions associated with aberrant neural
function, including neuropsychiatric disorders.

In a series of rodent experiments, Kutlu et al. (20) investigated
the effects of G-CSF administration on different measures of
motivation, cognition, dopaminergic neurotransmission, and
gene expression. The researchers first made use of a sucrose
threshold task, in which the number of lever presses necessary to
earn a reward was progressively increased. Animals treated with
G-CSF pressed more for sucrose than those treated with vehicle,
indicating enhanced motivation. Next, a reversal learning task
was employed, where the previously inactive lever became the
active lever, forcing the animals to alter their responses in order
to obtain a reward. Animals treated with repeated G-CSF
injections learned the new response-contingency faster and
made fewer incorrect responses than their vehicle-treated
counterparts, suggesting enhanced cognitive function. Of note,
animals previously treated with G-CSF failed to show enhanced
learning when the contingencies were reversed a second time,
suggesting that the enhanced cognitive function required G-CSF
to be on board.

To evaluate the biological underpinnings of these
observations, the researchers next turned to ex vivo fast-scan
cyclic voltammetry to assess dopaminergic function in the
nucleus accumbens (NAc)—a region heavily implicated in
reward processing. Repeated systemic administration of G-CSF
increased electrically-evoked dopamine release in the NAc,
without altering dopamine uptake or transport. Acute
application of G-CSF onto the brain slice failed to alter NAc
dopamine transmission, indicating that G-CSF does not act
directly at dopaminergic terminals in the NAc, but perhaps on
their cell bodies in the ventral tegmental area (VTA) or other
converging circuits [e.g., input from the medial prefrontal cortex
(mPFC)]. Finally, quantitative polymerase chain reaction
revealed that repeated G-CSF treatment suppressed pro-
inflammatory cascades in the NAc, as demonstrated by
reduced TNF-a gene expression, while acute G-CSF increased
the expression of several dopaminergic genes (e.g., dopamine
receptors D1 and D2) (20). Collectively, these results indicate
that immune mediators, such as G-CSF, can exert powerful and
dynamic effects on both behavioral and biological measures of
reward, suggesting that the neuroimmune system may be a viable
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target for the treatment of drug addiction and other
psychiatric disorders.

A previous study by the same group delineated the link
between G-CSF and the biobehavioral response to cocaine.
Specifically, Calipari et al. (21) found that serum G-CSF
concentrations were significantly increased following volitional
and non-volitional cocaine exposure, and these increases were
positively correlated with the extent of cocaine sensitization and
self-administration. Consistent with these peripheral changes, G-
CSF and G-CSF-R genes expression in the NAc were also
increased following acute and repeated cocaine injections.
These findings provided preliminary evidence that exposure to
cocaine is associated with changes in the endogenous G-CSF
system. Next, in order to test causality, the researchers examined
the effects of exogenous G-CSF administration on different
measures of cocaine seeking and consumption. An acute dose
of experimenter-administered G-CSF potentiated cocaine-
induced neuronal activation in the mPFC and NAc, though G-
CSF alone (in the absence of cocaine) did not alter neuronal
activity. Systemic injection of G-CSF also enhanced cocaine-
induced locomotor sensitization, conditioned place preference
for cocaine, motivation for cocaine, and cocaine intake, with no
effect on motivation for food reward or sucrose preference.
Notably, the latter observation contrasts with the report
mentioned before (20), where G-CSF enhanced sucrose
motivation and consumption. This discrepancy may be related
to the different experimental designs (i.e., sucrose threshold task
versus two-bottle sucrose preference task), animals’motivational
states (i.e. food deprived versus non-deprived), and/or other
unknown factors. Procedures requiring more effort (e.g., operant
self-administration) or the engagement of differing motivational
states may recruit specific circuitries in which G-CSF exerts a
stronger modulatory role.

Future work is warranted to determine the extent to which G-
CSF influences behavioral correlates of drug and natural rewards,
as well as its regulatory effects in other addiction-related brain
regions. As a first pass, Mervosh et al. (22) used an unbiased
quantitative approach to examine proteomic changes in the VTA
induced by G-CSF alone and its co-administration with cocaine.
Ingenuity Pathway Analysis (IPA) revealed that the proteins
influenced by G-CSF were also regulated by Fragile X mental
retardation protein (FMRP) and mammalian target of rapamycin
(mTOR), both key regulators of synaptic plasticity and intricately
involved in SUDs (23, 24). These findings further demonstrate
that neuroimmune factors like G-CSF can have profound and
multifaceted effects on the brain, underscoring the need to tease
apart their region- and circuit-specific actions in relation to drug
seeking behaviors.

As a whole, the aforementioned data elucidate novel
mechanisms whereby peripheral administration of an anti-
inflammatory cytokine (G-CSF) enhances the activity of a central
reward circuit (mesolimbic dopamine system) and modulates both
motivational and cognitive aspects of reward processing. The
sucrose threshold task used in this study should be highlighted as
this behavioral economics self-administration protocol allows for
the dissociation of A) the animal’s preferred level of consumption
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when effort is low (i.e. preferred intake level) and B) the maximal
effort the animal will expend to maintain its preferred intake level
(i.e. motivation to consume). The researchers determined that G-
CSF increased both sucrose intake andmotivation. As demonstrated
by the reversal learning task, cognitive flexibility was also enhanced
by repeated, but not acute, G-CSF injections. This is an important
finding given that cognitive deficits play substantial roles in many
neuropsychiatric diseases, including addiction, and most of the
currently available pharmacotherapies do not address these
impairments (25). A single dose of G-CSF (50 mg/kg) was used in
these experiments, and acute versus repeated treatment generated
different results. Therefore, follow-up studies on G-CSF’s time
course of action and ideal dosage, as well as its effects on other
measures of reward and cognition are crucial future steps. From a
mechanistic perspective, NAc dopaminergic signaling was
characterized as a key target for G-CSF’s central functions. Future
studies should investigate G-CSF’s effects on other brain regions (e.g.
PFC, amygdala, hippocampus) and neurotransmitter systems (e.g.
glutamate, GABA, norepinephrine, serotonin) implicated in the
pathophysiology of addiction. Future research should also delve
into the interplay between G-CSF and stress systems, as
neuroimmune mechanisms are closely linked to the neurobiology
of stress (26), and chronic stress is involved in the development and
progression of several neuropsychiatric disorders (27).

Medication development for neuropsychiatric disorders,
especially addiction, is a complex, lengthy, and expensive
process with low success rates. Therefore, the notion that G-
CSF may represent an effective therapeutic target is of particular
relevance and interest. Recombinant G-CSF is already approved
by the FDA and has been tested in clinical trials for other
indications—an advantage which may facilitate translation of
the present preclinical findings into human research. As an initial
bench-to-bedside step, proof-of-concept human laboratory
studies may provide valuable information on the effects of G-
CSF administration in patients with SUDs. As demonstrated by
Calipari et al. (21), G-CSF does not appear to have rewarding
properties on its own nor does it alter baseline metabolism,
which are favorable characteristics from a medication
development standpoint. Administration of recombinant G-
CSF in humans is generally safe and well-tolerated; the most
common side effects, which are usually mild-to-moderate and
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self-limiting, include headache, fatigue, myalgia, bone pain,
nausea, and vomiting (28, 29). Since G-CSF is an
immunomodulatory agent, it could also improve psychiatric
(e.g. depression, anxiety) and medical (e.g. HIV infection, liver
disease) comorbidities of addiction, though this hypothesis
requires investigation. Possible sex differences in response to
G-CSF is another consideration, especially because biobehavioral
correlates of the neuroimmune system are different between
males and females (30). Finally, while additional preclinical
experiments with G-CSF are needed (e.g., other drugs of abuse,
animal models of dependence), complementary pharmacological
manipulations (e.g., G-CSF neutralizing antibodies, G-CSF-R
agonists/antagonists) may also provide a deeper insight into
the applicability of this pathway as a viable target for treating
drug addiction and other psychiatric disorders.
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