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Abstract

Chaetoceros peruvianus is a marine diatom species with circumglobal distribution. While

frequently observed, it appears never to dominate the marine phytoplankton community

hence it can be characterized as a rather opportunistic, generalistic species. Here we pres-

ent ecological interpretations from a long-term data set on marine microphytoplankton in the

northern Adriatic Sea, where the abundancies and relative contributions of C. peruvianus

were observed along a set of steep ecological gradients. Limited supply of dissolved inor-

ganic phosphate was identified as the driving ecological factor for this ecosystem. In parallel

C. peruvianus was cultivated in monoclonal cultures and its morphological and physiological

reaction to replete and phosphorus depleted medium was analysed. C. peruvianus reacted

to phosphorus depletion by an increase in cell height and length as well as thickness and

length of setae. This morphological reaction included an increase in cellular volume and cal-

culated carbon content. Additionally, it represents the transition between two described mor-

phological varieties, C. peruvianus and C. peruvianus var. robusta. C. peruvianus showed a

significant induction of extracellular alkaline phosphatase activity if grown in phosphate

depleted medium. Microscopical analysis demonstrated this activity to be located exclu-

sively on the setae of the cells.

Introduction

The diatom genus Chaetoceros Ehrenberg is one of the largest and most diverse diatom genera

[1,2]. It contains more than 200 currently accepted species and more than 100 intraspecific

names [2,3]. Overall, more than 300 taxa were described so far [1,3]. Characteristic morpho-

logical features of these centric diatoms are their setae, hollow spine-like structures, that pro-

trude from the valve face or margin. Most species of the genus Chaetoceros form chains by

either fusion of setae or direct attachments between valves. The diatom genus Chaetoceros is

PLOS ONE | https://doi.org/10.1371/journal.pone.0203634 September 12, 2018 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Smodlaka Tanković M, Baričević A,
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divided in two subgroups [2]: the Hyalochaete group has thinner setae that are void of chloro-

plasts while the Phaeoceros group is characterized by rather thick setae that bear chloroplasts

and clearly a good portion of the cytoplasm. Chaetoceros peruvianus Brightwell is part of the

Phaeoceros group and hence has rather thick and chloroplast bearing setae. This species gener-

ally does not form chains. Three varieties are described for the species [4]. C. peruvianus var.

currens Paragallo is considered synonymous with C. peruvianus Brightwell [4]. C. peruvianus
var. gracilis Schroeder is characterized by a rather elongated pervalvar axis and rather thin

setae (2–3 μm) [4]. C. peruvianus var. robusta Cleve on the other hand shows similar measures

for apical and pervalvar axes and rather thick setae of approximately 8 μm thickness [4].

Already Hustedt, but also recently Gomez considered C. peruvianus to be rather easily identifi-

able and records of its circumglobal distribution are probably reliable [4,5]. Such a circumglo-

bal distribution of C. peruvianus observations is accumulated in the global biodiversity

information facility GBIF [6,7] (S1 Fig). C. peruvianus is generally considered to be frequently

observed but it never appears to grow to relatively high abundances like other bloom forming

species that at times dominate their phytoplankton communities.

The northern Adriatic Sea is a highly structured and shallow ecosystem. Maximum depth is

about 45 m. It is characterized by steep spatiotemporal ecological gradients [8,9]. These char-

acteristics allow sampling strategies with reasonably good spatiotemporal coverage both across

longitude and latitude as well as throughout the water column. This makes the northern Adri-

atic particularly suited for ecological observations of phytoplankton, as we can observe its

behavior and succession while it travels through a multitude of ecological conditions. The phy-

toplankton of the northern Adriatic is largely dominated by diatoms [10] where nutrient avail-

ability is governed by the river Po, the largest freshwater input into the Mediterranean [11,12].

Our earlier results demonstrate that the phytoplankton succession and growth is mainly gov-

erned by light availability, temperature and the species capability to cope with phosphorus (P)

limitation [13].

In situ measurements demonstrated that the expression of alkaline phosphatase activity as a

tool to access the P from organic pools is a key response of the phytoplankton community to P

limitation in the northern Adriatic [14,15]. Diatoms are known to express membrane bound,

extracellular alkaline phosphatase when stressed by low concentrations of inorganic phosphate

[16]. The enzymes dephosphorylate organic molecules and make the resulting phosphate avail-

able to the cells [17]. This mechanism is found to play a major role in marine phytoplankton

adaptations to limited availability of dissolved inorganic phosphate [17,18]. A second promi-

nent physiological response of diatoms to stress [19] by limitation of dissolved inorganic phos-

phate is a reduction of phospholipid content that is counterbalanced by an increase of non-

phospholipids in the cells [20–22]. This mechanism is believed to increase growth capacity in

phosphate limited conditions in the northern Adriatic [14,15,20]. Furthermore, experimental

evidence in various microalgae demonstrates changes in expression levels of proteins involved

in basic cellular metabolism as well as involved in the turnover of phosphorylated intermediary

metabolites [23,24]. Cellular RNA content as well as ATP/Chlorophyll a ratio were also dem-

onstrated to be reduced in response to phosphorous deprivation in microalgal cultures [25,26].

Furthering the knowledge on the metabolic reaction of diatoms to environmental stresses

not only allows the prediction of their behavior in the environment, but also has implications

on their application in biotechnology. Diatom metabolites are shown to have dramatic impacts

on their environment [27] and are even demonstrated to control grazer reproduction [28].

Diatoms are prospected for biofuel production as well as bioactive substances with medical

applications [29,30]. However the diatom metabolic activity as well a subsequent production

of interesting metabolites is strongly growth phase depended and influenced or even triggered

by nutrient deprivation [30]. We hence expect that the understanding of diatom reactions to
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environmental triggers not only helps us to understand their ecology and reaction to ecosys-

tem changes but also helps us direct applied research approaches to the exploitation of diatom

derived resources. We here characterize a common but non bloom forming diatom species.

As in other areas around the globe, C. peruvianus, is a common constituent of the marine

phytoplankton community of the northern Adriatic Sea. The steep ecological gradients (in

particular of nutrient availability) in the northern Adriatic and C. peruvianus in situ perfor-

mance along those gradients gave us insight into possible factors governing its ecological

behavior. Here, we present data from in situ measurements and observations of C. peruvianus.
We furthermore investigate the cellular and physiological characteristics of C. peruvianus dur-

ing a detailed time-course of P limitation by analyzing morphological features, alkaline phos-

phatase (AP) dynamics, P uptake dynamics and changes in the lipid composition. The current

study provides a suite of cellular features, which serves as a basis for understanding ecophysio-

logical behavior of natural P-limited not bloom forming taxa, particularly C. peruvianus
populations.

Materials and methods

Sampling strategy

Samples were collected in the northern Adriatic Sea (NA) north of 44˚N latitude (Fig 1). Sam-

pling cruises were performed under the auspices and with permission of the Croatian Agency

for Environment and Nature (CAEN). C. peruvianus spatial and temporal distribution was

extracted from a long term monitoring data set containing 41 sampling positions with

monthly to quarterly sampling frequency between the years 1972 and 2017 (Fig 1). Sampling

followed the methodology described earlier [31]. In situ alkaline phosphatase activity was

Fig 1. Spatial distribution of C. peruvianus in the northern Adriatic. The area of the circles marking the sampling

positions represents the maximum abundance recorded for the position. The shade indicates the contribution relative

to the total microphytoplankton abundances at sampling time. Arrows indicate the sampling stations analyzed for in

situ alkaline phosphatase activity.

https://doi.org/10.1371/journal.pone.0203634.g001
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measured monthly at 4 stations (Fig 1) between November 2015 and October 2017 (see meth-

ods description below).

Quantification of dissolved phosphate

PO4 concentration was determined with 20 μl of Vanadate-Molybdate reagent [32] added to

200 μl of cell cultures and measuring absorbance at 889 nm in the microplate reader (Infinite

M200Pro, Tecan GmbH, Austria). Triplicates of each culture were measured. Standard curves

of graded KH2PO4 solutions (concentrations ranging from 0.25 to 250 μM) were generated

simultaneously with measurements. We calculated the cellular phosphate uptake as amount of

dissolved phosphate removed from the culture medium during the growth period between

two measurements divided by either the cell numbers at time of the measurement, or by the

cell numbers at the time of the last measurement. Assuming that cell numbers grow between

two measurements, the true cellular uptake rate for dissolved PO4 ought to be between both

calculations.

Lipid analysis

Total lipid and lipid class quantitation was performed by Iatroscan thin layer chromatogra-

phy/flame ionization detection (TLC/FID) (Iatroscan MK-VI, Iatron, Japan). Triplicates of 80

mL culture, sampled at the end of growth (day 18), were filtered on precombusted 0.7 μm

Whatman GF/F filters to determine the lipid composition of diatom C. peruvianus. The filters

were stored at -80˚C until lipid extraction. The particulate lipids were extracted by a modified

one–phase solvent mixture of dichloromethane–methanol–water [33]. Five μg of hexadeca-

none (KET) was added to each sample before extraction. This internal standard was then

extracted with the lipids in the sample, and the amount measured in the final concentrate pro-

vided an estimate of lipid recovery. Lipids were separated on silica-coated quartz thin-layer

chromatography (TLC) rods (Chromarods SIII) (SES–Analysesysteme, Germany) and quanti-

fied by an external calibration with a standard lipid mixture. Each lipid class quantification

was achieved using calibration curves obtained for representative standard by plotting peak

area against the lipid amount spotted. Hydrogen flow rate was 160 mL min-1 and air flow rate

was 2000 mL min-1. Each sample extract was analyzed in duplicate. For the analysis, 2 μl ali-

quots of 20 μl of the solution in dichloromethane were spotted by semiautomatic sample spot-

ter. The standard deviation determined from duplicate runs accounted for 1–11% of the

relative abundance of lipid classes.

The separation scheme of 18 lipid classes involves subsequent elution steps in solvent sys-

tems of increasing polarity. Quantified lipid classes include hydrocarbons (HC), lipid degrada-

tion indices (fatty acid methyl esters (ME), free fatty acids (FFA), alcohols (ALC),

1,3-diacylglycerols (1,3DG), 1,2-diacylglycerols (1,2DG) and monoacylglycerols (MG)), wax

and steryl esters (WE/SE, further on discussed as SE (which are presumed to serve as inert

storage forms of sterols) as in the phytoplankton monocultures WE are not supposed to be

present as WE represent zooplankton storage lipids [34], phytoplankton energy reserves (tria-

cylglycerols (TG)), membrane lipids including three phospholipids (phosphatidylglycerols

(PG), phosphatidylethanolamines (PE) and phosphatidylcholines (PC)), glycolipids (sulfoqui-

novosyldiacylglycerols (SQDG), monogalactosyldiacylglycerols (MGDG) and digalactosyldia-

cylglycerols (DGDG)), sterols (ST) and pigments (PIG). For this work, we did not take into

discussion lipid degradation indices. Total lipid concentrations were obtained by summing all

lipid classes quantified by TLC-FID. A detailed description of the procedure is described in

Gašparović et al. [21,35,36].
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In situ alkaline phosphatase activity

For quantification of alkaline phosphatase activity (APA) in situ, seawater was sampled with

Niskin bottles and prefiltered through a 200 μm mesh to remove mesozooplankton. APA was

measured in such filtered seawater using the fluorogenic substrate analogue methyllumbelli-

feryl-phosphate (MUF-P) at saturation concentration (50 μmol l-1), following the procedure

described by Hoppe [37]. Aliquots of 2.5 mL, in triplicate, were used and incubation of the

samples was performed in dark at in situ temperature and pH. Fluorescence was measured

immediately after substrate addition and after ~1h of incubation using a Jenway fluorimeter

with excitation 365 nm filter and emission 380–500 nm bandpass filter. APA was calculated as

the difference between those measurements divided by the incubation time after calibration of

the fluorimeter with methylumbelliferone, the product of MUF-P degradation. Species specific

alkaline phosphatase activity in situ was analyzed as described earlier [15].

Quantitative phytoplankton analysis

Phytoplankton samples (200 mL) were fixed with neutralized formaldehyde (2% final concen-

tration). Phytoplankton cells were counted in 50 mL subsamples after 40 h of sedimentation

time [38] using an Axiovert 200 microscope (Zeiss GmbH, Oberkochen, Germany) and fol-

lowing the Utermöhl [39] method. For distribution analyses of C. peruvianus we analyzed

9599 phytoplankton samples collected roughly monthly at 7 stations and roughly quarterly at

29 stations in the northern Adriatic between the years 1972 and 2017.

Establishment of monoclonal cultures

Vertical net hauls were performed with a phytoplankton net (opening diameter 50 cm, length

2.50 m, mesh size 52 μm) from 15 m of depth to the surface. C. peruvianus cells were manually

isolated with a micropipette from live net samples collected at various stations in the northern

Adriatic Sea. Cells were grown into monoclonal batch cultures in 100 ml F/2 medium [40] and

incubated at 18˚C and 75 μmol photons m -2 s -1 on 12:12 h light/dark photoperiod.

Genotyping

For molecular species identification, the 5’ end region of the ribulose bisphosphate carboxylase

large subunit (rbcL) gene was used as a barcode. C. peruvianus cell cultures (25 mL) from the

experiment were filtered on a 1,2 μm cellulose filter (Merck Millipore) and frozen at -80˚C.

Genomic DNA was isolated using the DNeasy Plant Mini Kit (Qiagen) according to manufac-

turer instructions. rbcL barcode was PCR amplified using the primer pair rbcL66+ (5’-TT
AAGGAGAAATAAATGTCTCAATCTG-3’) and DtrbcL3R (5’-ACACCWGACATACGCAT
CCA-3’) [41,42]. Reaction mixture (25 μL) contained 200 μM of each dNTP, 0.3 μM of each

primer, 4mM MgCl2, 1X DreamTaq Green buffer, 0.2 U of DreamTaq DNA polymerase

(Thermo Scientific) and 0.5–1 ng of genomic DNA. The PCR reactions were performed in a

C1000TM Thermal Cycler (Bio-Rad Laboratories GmbH, Muenchen, Germany). PCR condi-

tions were as follows: an initial denaturation step of 10 min at 95˚C, 35 cycles of 30 s at 95˚C,

30 s at 47˚C and 1 min at 72˚C, and final extension step of 7 min at 72˚C. PCR amplified prod-

ucts were purified with MinElute PCR Purification Kit (Qiagen) according to manufacturer

instructions. Purified PCR products were sequenced at Macrogen Europe (The Netherlands).

The resulting sequences (from both ends) were aligned and further analyzed using Geneious

7.1.7. software [43]. BLAST was used for searches and comparisons of the NCBI GenBank

database [44,45].
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Morphological analysis

Morphological features were observed in light microscopy (LM). All LM observations were

carried out on field samples and exponentially growing cultures using a Zeiss Axiovert 200

microscope (Carl Zeiss, Oberkochen, Germany) equipped with Nomarski differential interfer-

ence contrast (DIC), phase contrast, and bright-field optics. Light micrographs were taken

using a Zeiss Axiocam digital camera. The terminology used to describe morphological fea-

tures of C. peruvianus species follows Anonymous [46] and Ross et al. [47]. All the morpholog-

ical measurements were made on LM micrographs in the software suite Axiovision 4.8 (ZEISS,

Oberkochen, Germany). Biovolume of C. peruvianus cells was calculated using the following

formula: V = π � (cellular width/2)2 � height + π�(width of setae/2)2 � total length of setae. Car-

bon content was calculated following the suggestions and results published by Menden-Deuer

and Lesard [48] using the following formula: log pgC cell-1 = log a + b � log V (μm3) with log

a = -0.933 and b = 0.881.

In vitro cultures

200 mL of medium (F/2 or P-limit, see description below) were inoculated with 1 mL of a

monoclonal culture (Center for Marine Research, Rovinj, Culture Collection, CIM 863). Batch

cultures were followed through the course of the experiment. Each culture condition was pre-

pared and followed in 3 independent replicates (triplicates). For each of the following parame-

ters 3 independent measurements were performed. Results given are averages across triplicate

measurements. For growth curve analysis, cell numbers of all three triplicate cultures were

analyzed together to demonstrate the stability and significance of growth reactions to the

medium conditions. Specific alkaline phosphatase activity as well as nutrient uptakes are given

as values calculated across all measurements and all replicates for the respective culture

condition.

Nutrient rich conditions were simulated by F/2 medium [40]. Stress by limitation of dis-

solved inorganic P was simulated in F/2 medium without sodium hydrogen phosphate (P-

limit). Both media were prepared in NA seawater rested for 2 months in the dark, filtered

twice through sterile 0.22 μm white plain filters (Merck Milipore Ltd.) and boiled in a micro-

wave oven [49]. Media amendments were added through sterile filters. Cultures were incu-

bated as batch cultures at 16˚C at irradiance of 75 μmol photons m-2 s-1, each with a light dark

cycle of 12:12 h in sterile 250 ml vented culture flasks (easy flasks, Nuclon, Denmark) from an

initial concentration of 4.27 x 105 cell L-1.

Cell concentrations were analyzed every second day of the experiment in Sedgewick-Rafter

counting chambers (1 mL) on a Zeiss Axiovert 200 microscope. Morphological analysis was per-

formed at the end of the exponential growth phase. Of each culture 5 subsamples of 20 μL were

analyzed after DAPI staining on a Zeiss Axioimager fluorescence microscope using the Zeiss fil-

terset 49 for epifluorescence as well as bright field phase contrast for transillumination [50]. Only

cultures with no bacterial sized (0.2–3 μm) and DAPI positive particles were further analyzed.

Growth curve

Growth curves were analyzed using non-linear fitting with the assumption of sigmoidal

growth in batch cultures of the package Growthcurver in the software environment R [51,52].

Alkaline phosphatase activity in vitro

APA in vitro was analyzed every second day in cultures as described earlier[15] but in this

study modified for 96 well microplates. Substrate was added to C.peruvianus cultures. Final
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reaction volume was 250 μL. Product (methylumbelliferone) concentrations were detected by

fluorescence intensity on a Tecan M200 Pro spectrofluorimeter (with excitation at 365 nm and

emission at 460 nm) directly after the addition of the substrate and further after 10, 30 and 60

min of reaction time. Standard curves with concentrations ranging from 0.008 to 3 μM were

generated for 4-methylumberlliferone (MUF; Sigma). Kinetic parameters were determined for

the APA at 15 substrate concentrations between 0.5 μM and 400 μM. Results were analyzed

using non-linear fitting of the package Dcr in the software environment R [53].

Subcellular localization of alkaline phosphatase activity

Alkaline phosphatase activity was localized utilizing the ELF_97 Endogenous Phosphatase

Detection Kit (E6601) (Thermo Fisher Scientific, Waltham USA) as described earlier

[15,54,55]. Live cells from cultures where incubated with the alkaline phosphatase substrate.

Microscopic analysis was performed using a Zeiss Axiovert Epifluorescence microscope. Chlo-

roplasts were detected by their autofluorescence (Filterset 14 Zeiss), and insoluble fluorescen-

cent product of alkaline phosphatase activity was localized using a specially adapted filter set

(exitation: 340/26, beamsplitter 400 longpass, emission 525/50).

Statistical analyses

Growth curves were analyzed using the R packages Growthcurver and Ggplot2 [52,56]. Multi-

ple analysis of variance was performed using the function MANOVA and t-tests (Welch’s Two

Sample t-test) were performed using the function t-test of the R base package [51].

Results

Species identification

C. peruvianus was morphologically identified using light microscopy and following the mor-

phological description by Hustedt [4]. Using the rbcL gene as a DNA barcode we confirmed

the isolated culture as C. peruvianus. Nucleotide BLAST similarity search found only one rbcL

sequence identified as C. peruvianus in the GenBank database [57]. The C.peruvianus sequence

reported here shows 98% pairwise identity (on 99% query cover) with that sequence. The here

reported C. peruvianus rbcL nucleotide sequence was deposited in GenBank under Accession

number: MH393890.

Spatio-temporal distribution of C. peruvianus in the northern Adriatic

C. peruvianus was found at 38 sampling stations across the northern Adriatic (Fig 1). Abun-

dances ranged between 39 and 11100 cells L-1, with a 1st quartile at 370 cells L-1 a median at

740 cells L-1, a mean at 1071 cells L-1 and a 3rd quartile at 1480 cells L-1. Highest abundances

(up to about 11100 cells L-1) were recorded in the north-western part of the northern Adriatic,

with highest records along a transect across the northern Adriatic at roughly latitude 45

degrees north.

Contributions of C. peruvianus to the total microphytoplankton abundance ranged between

0.0001 and 0.2280 (October 2000), with a 1st quartile at 0.002, a median at 0.006, a mean of

0.0208 and a 3rd quartile at 0.0279. Fig 2 shows the contributions of C. peruvianus throughout

the year. Highest contributions were found in July and in January, with some rare exceptional

numbers in October.
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Growth dynamics

Cultures in full medium (F/2) as well as in F/2 medium without added PO4 (P-limit) were

started at cell concentrations of 42x104 cells L-1. In both media types, the cultures reached the

beginning of a stationary phase after 18 days, when they reached average concentrations of

19.7x106 cells L-1 (stdev = 47x104) in F/2 medium and 15.1x106 cells L-1 (stdev = 13x105) in P-

limit medium.

Fig 3 shows the growth curves, averaged cell concentrations throughout 18 days of culture

duration as well as fitted models for growth in batch cultures. The cultures in F/2 reached the

inflection point of the growth curve (shortest generation time) on average after 10.90 days,

while the cultures in P-limit reached that inflection point on average after 9.15 days. Shortest

generation time for cultures in F/2 was on average 0.81 days, while shortest generation time

for cultures in P-limit was 0.851 days. Multiple analysis of variance on inflection points and

Fig 2. Box and whisker plot of the contributions of C. peruvianus throughout the year.

https://doi.org/10.1371/journal.pone.0203634.g002

Fig 3. Growth curves of C. peruvianus in different phosphate conditions. Growth curve in F/2 medium is indicated

in blue and growth curve in F/2 medium without added dissolved phosphate (P-limit) in red. Averaged cell

concentrations throughout 18 days of culture duration and fitted models for growth in batch cultures are presented.

Crosses are measured cell concentrations, dots give the averages for the given medium. Lines show the resulting model

values and the grey area around the lines represent the 95% confidence interval for the respective model.

https://doi.org/10.1371/journal.pone.0203634.g003
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minimum generation times revealed a significant difference (Pr< 0.0014) between two culture

conditions.

Morphological reactions to stress by low dissolved inorganic phosphate

concentrations

C. peruvianus cells grown in P-limit medium showed marked morphological differences if

compared to cells grown in F/2 medium. Fig 4 shows the 4 cell measures analysed for the cul-

ture conditions F/2 and P-limit. A Welch two sample t-test revealed significant differences for

cell height (pervalvar axis) (p-value = 3.893x10-3), width of setae (p-value = 0.01027) as well as

for the sum of the length of all 4 setae per cell (p-value = 4.731x10-9). Average cell height was

16.47 μm and 19.28 μm for cells grown in F/2 or P-limit media respectively. Average overall

length of setae per cell was 418.07 μm and 672.06 μm for cells grown in F/2 or P-limit media

respectively. Average width of setae was 1.65 μm and 1.83 μm for cells grown in F/2 or P-limit

media respectively. Fig 5 shows C. peruvianus cells grown in F/2 (a) and Plimit (b) medium

and demonstrates the thickened and elongated setae of cells grown in P-limit medium. Calcu-

lated cellular biovolume (from average values) was 1580.17 μm3 and 2503.70 μm3 for cells

grown in F/2 and P-limit medium, respectively.

The dynamics of dissolved inorganic phosphate uptake

Calculated cellular PO4 uptake rates in F/2 medium were between 0.01 pmol cell-1 d-1 and 5.04

pmol cell-1 d-1. Dissolved phosphate concentrations were below detection limit (0.02 μM) in P-

limit cultures throughout the experiments, so no phosphate uptake rates were calculated for

those cultures. Fig 6 shows the dynamics of phosphate uptake rates throughout the experiment

duration of batch cultures in F/2 medium. We detected high and increasing phosphate uptake

rates during the lag phase of the batch culture growth, followed by a steep decrease and very

low uptake rates during the exponential growth phase and a slight increase of phosphate

uptake rates at the beginning of the batch culture stationary phase.

Fig 4. Morphology measurements. Box and whisker plots for the cell height (pervalvar axis), cell width (apical axis),

sum lengths of all setae per cell and width of setae for C. peruvianus grown in F/2 (grey) and P-limit (white) medium.

For both media 150 cells were measured.

https://doi.org/10.1371/journal.pone.0203634.g004
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Alkaline phosphatase activity

For in vitro experiments, we calculated cellular APA as measured APA activity divided by the

number of cells in the sample. We detected a maximal APA of 65 fmol h-1 cell-1 at the

Fig 5. Light microscopy of C. peruvianus. Cells of C. peruvianus grown in F/2 medium (a) and in P-limit medium (b).

Note the thickened and elongated setae of the cell grown in P-limit medium (b). Scale bar represents 20 μm.

https://doi.org/10.1371/journal.pone.0203634.g005

Fig 6. Dynamics of phosphate uptake rates throughout batch cultures of C. peruvianus in F/2 medium. (a) Average

cell concentrations (and standard deviations) plotted over the duration of the batch culture.in days. The phases of the

growth curve are indicated. (b) Cellular phosphate uptake rates calculated as phosphate uptake divided by cell numbers

at the days of phosphate quantification (blue, or lower values) and divided by the cell numbers at the day of the

measurement before (orange, or higher values). The dashed line indicates lower and upper borders between the two

calculation methods. The true uptake rate must be between the two borders. Note the steep drop of phosphate uptake

rates during exponential growth.

https://doi.org/10.1371/journal.pone.0203634.g006
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beginning of the exponential growth phase in P-limit. Fig 7 shows the dynamics of APA across

the growth curves of cultures in F/2 and P-limit medium. Low cellular APA of around 8 fmol

h-1 cell-1 was measured in F/2 medium during the lag phase and the beginning of the exponen-

tial growth phase. This activity dramatically fell during the exponential growth phase and

stayed very low during the beginning of the stationary phase. In P-limit medium we observed

a dramatic increase in APA up to 65 fmol h-1 cell-1 at the beginning of the exponential growth

phase. During the exponential growth phase APA per cell was reduced dramatically and then

increased during the beginning of the stationary phase again to about 10 fmol h-1 cell-1. The

analysis of the AP enzyme kinetics showed a half saturation constant (Km) value of 64.59 μM

(standard error = 17.97, Pr = 0.000834) which indicates a low affinity enzyme.

In situ analysis of extracellular APA by C. peruvianus was performed in parallel to determi-

nation of total APA in seawater samples (including phytoplankton organisms at natural con-

centrations). On 4 stations across the northern Adriatic (see arrows in Fig 1) we found a stable

pattern of APA in seawater that rose in spring during the onset of stratification and fell in late

autumn during the onset of water column mixing (Fig 8). Black crosses indicate sampling

dates, when microscopic analysis showed C. peruvianus cells with extracellular alkaline phos-

phatase activity.

Localization of alkaline phosphatase activity

After incubation of C. peruvianus cells with substrate for AP from the ELF 97 Endogenous

Phosphatase Detection Kit, the fluorescent product accumulated on the setae of C. peruvianus
cells. Fig 9 shows an exemplary cell grown in P-limit medium. Notably all of the green signal

for APA is localized on the setae.

Fig 7. Dynamics of cellular alkaline phosphatase activity (APA) during batch cultures of C. peruvianus cells in F/2

medium and in P-limit medium. (a) Growth curves (average cell numbers with standard deviations as error bars) in

F/2 medium (dotted line) and in P-limit medium (dashed line). (b) Cellular APA in F/2 medium (dotted line) and in

P-limit medium (dashed line). Note the sharp in increase at the end of the lag phase and the steep reduction of cellular

APA during the exponential growth phase.

https://doi.org/10.1371/journal.pone.0203634.g007
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Cellular lipid composition

Table 1 presents the C. peruvianus cellular content of the lipid classes identified and their per-

centage contribution to total lipids for the P-replete (F/2) and P-limited (P-limit) culturing

conditions. No significant difference in neither lipid and lipid class content nor in the percent-

age contribution to total lipids between the cells grown in F/2 and in P-limit medium could be

found (P>0.05 for all distinguished lipid classes, see Table 1).

Fig 8. Alkaline phosphatase activity in water samples between November 2015 and August 2017 at different

longitudes across the northern Adriatic. Blue (12.75), red (12.83), green (13.31), black (13.61) (see positions

indicated by correspondingly colored arrows in Fig 1). Crosses mark sampling dates when C. peruvianus cells were

found in in situ samples to show extracellular alkaline phosphatase activity. Their activity pattern followed the general

trend of alkaline phosphatase activity in water samples throughout the year.

https://doi.org/10.1371/journal.pone.0203634.g008

Fig 9. C. peruvianus cell from a culture in P-limit medium after incubation with alkaline phosphatase substrate

from the ELF 97 Phosphatase Detection Kit. Chloroplast autofluorescence is shown in red. The fluorescent signal

from dephosphorylated alkaline phosphatase substrate is shown in green. It accumulates at the location of alkaline

phosphatase activity, along the setae of the cell. Scale bar represents 20 μm.

https://doi.org/10.1371/journal.pone.0203634.g009

Insights into the life strategy of the common marine diatom Chaetoceros peruvianus Brightwell

PLOS ONE | https://doi.org/10.1371/journal.pone.0203634 September 12, 2018 12 / 21

https://doi.org/10.1371/journal.pone.0203634.g008
https://doi.org/10.1371/journal.pone.0203634.g009
https://doi.org/10.1371/journal.pone.0203634


Discussion

Spatio-temporal distribution of C. peruvianus in the northern Adriatic

The northern Adriatic is the shallow and most northern part of the Mediterranean. Under the

influence of the Po river steep spatio-temporal gradients of nutrient availability are formed,

both longitudinally as well as latitudinally across the northern Adriatic [8,58]. Availability of

PO4 decreases eastwards and southwards in the basin and exerts a strong influence on the phy-

toplankton community structures observed [10,14,15,59]. Hot summer temperatures heat the

water column up to 30˚C (with a thermocline formation at around 15 m depth and significant

lower temperatures below the thermocline), while strong and cold winds during winter season

cool the water column down below 10˚C [8,9,60,61]. A general cyclonic current system in the

northern Adriatic not only stabilizes the ecological aforementioned gradients, but also trans-

port the northern Adriatic phytoplankton along those gradients, including advection of plank-

ton from the middle Adriatic in the eastern part of the basin and an outflow of northern

Adriatic plankton southwards along the western coast of the Adriatic. Consequently, the

northern Adriatic phytoplankton can be observed under a variety of different ecological condi-

tions [8,9,11,14]. Our results show highest abundances of C. peruvianus on a transect across

the northern Adriatic at latitude 45˚ north (Fig 1). This coincides with the area where nutri-

ents, transported with the river Po into the northern Adriatic, are spread across the basin

which resulted in maxima of phytoplankton abundances. Phytoplankton blooms develop at

the western part of the basin, near the Po river mouth, where dissolved nutrients are taken up

very fast while nutrient depleted water is transported with the current towards the eastern

Adriatic coast during surface temperature induced water column stratified period. However,

maximal contributions of C. peruvianus to the phytoplankton community were observed at

the eastern part of the study area, where generally nutrient concentrations and phytoplankton

Table 1. Cellular content of the lipid classes (pg cell-1) identified and their percentage contribution to total lipids (%) for the P-replete (F/2) and P-limited (P-limit)

culturing conditions. Standard deviations (Stdev) for culture triplicates are indicated. Phosphoglycerols (PG), phosphatidyl ethano amin (PE), phosphatidylcholine (PC),

monogalactosyldiglyceride (MGDG), di galactosyl diglyceride (DGDG), sulfoquinovysil diglyceride (SQDG), sterols (ST), pigments (PG), hydrocarbons (HC), steryl esters

(SE), triglycerides (TG). The last row (P t-test) shows P values for a Welch two sided t-test (F/2 against P-limit).

LipidT PG PE PC MGDG DGDG SQDG ST PIG HC SE TG

pg cell-1

F/2

55.63 9.27 9.07 0.47 8.12 1.49 6.38 3.03 1.75 3.40 0.71 11.95

45.85 14.87 7.52 0.41 2.67 1.07 8.95 1.58 0.76 2.66 0.29 5.07

63.69 15.65 7.95 0.71 6.17 1.23 5.94 3.31 1.50 1.64 0.68 18.91

Av. 55.06 13.26 8.18 0.53 5.65 1.26 7.09 2.64 1.34 2.57 0.56 11.98

Stdev 8.93 3.48 0.80 0.16 2.76 0.21 1.63 0.93 0.52 0.88 0.23 6.92

% 24.09 14.86 0.96 10.27 2.29 12.87 4.79 2.43 4.67 1.01 21.75

Stdev(%) 3.48 0.80 0.16 2.76 0.21 1.63 0.93 0.52 0.88 0.23 6.92

Plimit

83.88 13.25 11.71 1.03 9.22 2.93 7.94 3.57 4.37 1.96 0.61 27.30

52.49 13.76 13.36 0.42 4.22 1.18 5.87 1.93 1.98 0.68 0.83 8.26

73.19 16.76 23.68 1.31 5.45 0.67 8.37 0.86 2.10 2.58 0.74 10.67

Av. 69.85 14.59 16.25 0.92 6.29 1.60 7.39 2.12 2.82 1.74 0.73 15.41

Stdev 15.96 1.90 6.48 0.45 2.60 1.19 1.34 1.36 1.34 0.97 0.11 10.37

% 20.89 23.27 1.32 9.01 2.29 10.58 3.03 4.03 2.49 1.04 22.06

Stdev(%) 1.90 6.48 0.45 2.60 1.19 1.34 1.36 1.34 0.97 0.11 10.37

P t-test 0.08 0.23 0.09 0.09 0.23 0.31 0.44 0.32 0.07 0.23 0.24 0.33

https://doi.org/10.1371/journal.pone.0203634.t001
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abundances are lower. Not once C. peruvianus was observed to dominate the phytoplankton

community, which demonstrates, that there are always other phytoplankton species that out-

compete C. peruvianus under the given conditions in the northern Adriatic. Fig 2 shows high-

est contributions of C. peruvianus in January, during the winter clear water period, when the

water column is mixed entirely and the autumn phytoplankton bloom ended already. A sec-

ond peak contribution can be observed in June after the spring phytoplankton bloom. The

aforementioned spatial and temporal distribution of abundance and contribution values sug-

gest, that C. peruvianus is opportunistically present in most conditions observed in the north-

ern Adriatic. However, the species appears to be most successful in post phytoplankton bloom

periods and at lower temperatures, when general phytoplankton production is relatively low.

In those conditions organic phosphate is relatively abundant, while inorganic dissolved phos-

phate is a limiting factor [8,9,11,14,15].

Growth dynamics

To understand how C. peruvianus grows in nutrient replete conditions and how the species

reacts to PO4 limitation, it was grown in F/2 and P-limit medium. Our analyses showed a sig-

nificantly, but only slightly altered growth curve when inorganic phosphate was kept below

0.2 μM in the medium (Fig 3). In P-limit medium, the lag phase was slightly shortened, maxi-

mum growth rates as well as maximum abundances and stagnation phase were reached earlier

and maximal cell concentrations were lower if compared to F/2 medium. Overall, C. peruvia-
nus appears to grow better and faster and to higher concentrations when nutrients are abun-

dantly available. However, those differences between the two media are marginal if compared

to reactions of other diatom species [26,62,63]. It would hence appear, that phosphate avail-

ability is no particularly strong trigger for alterations in growth dynamics. This nicely fits the

in situ observations, where C. peruvianus abundances and contributions are always moderate,

and neither nutrient inputs nor limitations correlate with any dramatic changes in observed

abundances. The shortest observed generation time (maximum growth rate) was 0.81 days,

which is rather common for diatoms [64–68]. The observed maximal growth rates are in the

range of a calculated possible maximal growth rate that is derived from possible carbon accu-

mulation through RuBisCO activity [65,69]. It hence appears that C. peruvianus in principal

can grow as fast as other species, but either increased growth rate is not induced in situ or com-

peting species have faster nutrient uptake mechanisms which keeps C. peruvianus from out-

competing other species in situ.

Morphological reactions to stress by low dissolved inorganic phosphate

concentrations

C. peruvianus cell grown in P-limit medium showed marked morphological differences if com-

pared to cells grown in F/2 medium (Figs 4 and 5). The morphological alterations in P-limit

medium include a significantly elongated pervalvar axis, as well as significantly increased

width and length of setae if compared to the morphological characteristics of cells grown in F/

2 medium. This results in an overall increase in cellular volume. The morphometrics of cells

grown in F/2 medium fall within the ranges from the original species description elaborated

on by Hustedt [4]. However, the morphometrics of cells grown in P-limit medium resemble

the morphological description of C. peruvianus var. robusta Cleve. Our experimental results

hence demonstrate that one clone of C. peruvianus can change its morphology as a reaction to

nutrient availability so much that it resembles C. peruvianus var. robusta Cleve. This is a good

indication that in fact C. peruvianus var. robusta Cleve should be considered synonymous with

Chaetoceros peruvianus Brightwell. Furthermore, these results demonstrate that morphometric
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analysis of C. peruvianus in situ samples might deliver a good indicator for the ecological con-

ditions the cells grew in. Morphometrics resembling those of C. peruvianus var. robusta Cleve

might indicate limited availability of PO4. It however remains to be investigated if those mor-

phological peculiarities can be evoked by other limitations as well.

Localization of alkaline phosphatase activity

The ELF 97 Endogenous Phosphatase Detection Kit contains a non fluorescent, water soluble

substrate for alkaline phosphatase. After dephosphorylation a fluorescent and non soluble

product is formed, which accumulates at the site of phosphatase activity [70]. In our experi-

ments, the fluorescent product accumulated exclusively on the setae of the C. peruvianus. This

observation suggests that the localization of membrane bound extracellular alkaline phospha-

tase as well as the respective activity is limited to the setae of the species (Fig 8). The abovemen-

tioned morphological reactions observed in P-limit medium show an increase of volume and

surface in particular the setae, where APA is located. It hence appears that under limited avail-

ability of PO4, C. peruvianus increases the surface area where APA is located to increase its

capability of using organic phosphate sources. There is much speculation about the function of

setae so far. While increasing the cells dimensions they might be obstructive to predators or

might alter the cells hydrodynamic characteristics and hence decrease sinking rates [71]. How-

ever, our results show that one function of the setae is to provide surface area for membrane

bound extracellular enzyme activity like APA. This surface area can even be increased when

the environmental conditions demand increased APA.

The dynamics of dissolved inorganic phosphate uptake

Phytoplankton, while drifting in the northern Adriatic is exposed to quickly changing nutrient

regimes. Localized nutrient inputs like rivers or heavily populated coasts as well as general

nutrient increases during either localized upwelling or mixing of the water column produce

spatio-temporal limited peaks of nutrient availability [72,73]. The capability to quickly inter-

nalize or make use of such nutrient peaks is an important factor for successful competition in

the coastal phytoplankton [14,74]. We observed a maximal uptake rate of 5.04 pmol cell-1 d-1

which is comparable to uptake rates reported for other phytoplankton species [75]. The

dynamics of the cellular phosphate uptake rates throughout the growth curve is particularly

interesting. Highest uptake rates were observed at the end of the lag phase of the cultures.

With the beginning of the exponential growth phase cellular uptake rates dropped dramatically

to 0.01 pmol cell-1 d-1 and only rose again at the end of exponential growth phase and the

beginning of the stationary phase (Fig 6). It hence appears that in stationary phase, during cell

cycle arrest (G0) phosphate, uptake rates are highest, while during intense cell division and

shortened G1, S and G2 phases in the cell cycle, when cell contents are duplicated, as well as

during cell division phosphate cellular uptake rates are very much reduced. In situ this would

mean that C. peruvianus when faced with sudden availability of PO4 during times of slow or

no growth would benefit from a high cellular phosphate uptake rate (for the species). However,

during a potential bloom formation or fast growth period cellular phosphate uptake rates

would drop and allow for increased growth rates also when the availability of PO4 quickly

decreases e.g. when other species with fast bloom formation used up all available PO4. This

would fit the in situ observation that C. peruvianus generally achieves higher contributions in

the eastern oligotrophic part of the northern Adriatic, where the phytoplankton of the north-

ern Adriatic drifts after fast blooming species used up inorganic dissolved phosphate and

already start to release organic material including organic phosphate as a result of either cell

death or grazing [11].
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Qualitative and quantitative analysis of cellular lipid content

Neither total lipid nor any lipid classes cellular content appeared to show significant differ-

ences between C. peruvianus grown in P-replete (F/2) and P-limit culturing conditions. This

would suggest that C. peruvianus growing in the P limited conditions does not employ a strat-

egy to support intracellular P requirements (for e.g. DNA, RNA, ATP) by exchanging mem-

brane phospholipids for sulfolipids [22]. For PE we found a higher contribution in cells grown

under P limited conditions. PE are usually considered lipids of bacterial origin [76]. However,

PEs are also found in some diatoms [77]. Our results hence support the notion that also dia-

toms have to be considered a source for PE.

Unlike often reported for other species, where cellular TG content increases when diatom

cultures become P depleted [78,79]. C. peruvianus does not adjust carbon metabolism to syn-

thesize extra TG in phosphorus scarcity. Very likely C. peruvianus is channeling carbon from

primary production to a cell volume increase rather than creating reserves. This inability of C.

peruvianus to adjust lipid metabolism during growth in P-limit conditions further explains the

in situ observations, where the species never dominates (outcompetes) the phytoplankton

community. This might be due to the inadequate physiological response, compared to more

competitive species that use alternative lipid compositions as a strategy to compete in changing

environmental conditions.

Alkaline phosphatase activity

Cellular APA was maximal with 65 fmol h-1 cell-1 at the beginning of the exponential growth

phase. Fig 7 shows the dynamics of APA across the growth curves of cultures in F/2 and Plimit

medium. In P limited conditions, cellular APA was induced early during the lag phase of the

cultures and quickly increased to its maximum during the beginning of the exponential growth

phase. We did measure low APA of around 8 fmol h-1 cell-1 in F/2 medium during the lag

phase and at the beginning of the exponential growth phase. This activity dramatically fell dur-

ing the exponential growth phase and stayed very low during the beginning of the stagnation

phase. In P-limit medium we observed a strong increase in APA up to 65 fmol h-1 cell-1. Maxi-

mum APA was reached in P-limit cultures at the beginning of the exponential growth phase as

well. During the exponential growth phase APA per cell was reduced dramatically and then

increased during the beginning of the stagnation phase again to about 10 fmol h-1 cell-1. Like

for the cellular phosphate uptake rate it appears, that during cell cycle arrest or G0 phase the

cells can accumulate maximal amounts of alkaline phosphatase on their cell surfaces, while

this enzyme appears to be not produced or exported during intensified and shortened G1, S

and G2 phases, which results in a reduction of alkaline phosphatase per cell during cell divi-

sion. For in situ conditions this might translate into intensified cellular APA during the ini-

tialization of fast growth periods (or blooms) of C. peruvianus, while during the phases of fast

growth or bloom formation cellular APA is strongly decreased. The characterization of the

alkaline phosphatase enzyme kinetics showed a very high Km value of 64.59 μM. This is a com-

paratively high Km if considering that most species in the northern Adriatic show a Km value

of around 1 μM or below. Such a high Km indicates a low specificity for substrate and probably

indicates moderate or low performance in the competition for organic phosphate when sub-

strate concentrations are low, which might be another reason why C. peruvianus does not

reach higher contributions to the microphytoplankton community, where dominating species

probably induce high specificity AP.

In situ data showed that C. peruvianus followed the general trend of APA of marine plank-

ton in the northern Adriatic (Fig 8). APA closely correlates with the stratification pattern of

the water column in the northern Adriatic [14,15,80,81]. During unstratified conditions PO4 is
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available and primary production is low, while during stratified conditions primary produc-

tion is high and concentrations of dissolved PO4 are minimal, while organic phosphate

becomes an important source for phytoplankton.

Conclusions

C. peruvianus is a common marine diatom with global distribution. Wide range of ecological

conditions allow the persistence and survival of C. peruvianus. In the northern Adriatic C. per-
uvianus achieves higher contributions to the phytoplankton and hence competes more suc-

cessfully under conditions when inorganic phosphate resources are depleted and organic

phosphate concentrations increased. Relatively high Km of its alkaline phosphatase indicates

the species to be a rather weak competitor for organic phosphate when substrate concentra-

tions are low. C. peruvianus follows the general trend of northern Adriatic phytoplankton and

induces extracellular APA during stratification of the water column and increased primary

production in situ but shows a relative reduction of phospholipids as a second adaptation to

low phosphate availability. As a result, the species only very rarely achieves noteworthy contri-

butions and never dominate phytoplankton community. The species is able to take up dis-

solved phosphate resources better during resting phases with low cell division rates which

might be a good adaptation to fast changing nutrient regimes or highly structured planktonic

ecosystems. Limited availability of PO4 induces morphological adaptations, namely the elonga-

tion and thickening of setae as well as the elongation of the pervalvar axis that resemble the

transition of C. peruvianus Brightwell to its variety C. peruvianus var. robusta Cleve. This

observation suggests that C. peruvianus var. robusta Cleve should be synonymized with C. per-
uvianus Brightwell. Morphological change increases the surface area available for alkaline

phosphatase improving the species capacity to exploit dissolved organic phosphates. Morpho-

metric analysis of the species in in situ samples might also be a tool to detect stress by limited

availability of PO4 in seas and oceans. All results combined depict C. peruvianus Brightwell as

a generalist, opportunistic and non-bloom forming diatom species.
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Tihana Novak.

Project administration: Blaženka Gašparović.
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