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ABSTRACT

Therapeutic targeting of epigenetic modulators of-
fers a novel approach to the treatment of multiple dis-
eases. The cellular consequences of chemical com-
pounds that target epigenetic regulators (epi-drugs)
are complex. Epi-drugs affect global cellular phe-
notypes and cause local changes to gene expres-
sion due to alteration of a gene chromatin environ-
ment. Despite increasing use in the clinic, the mech-
anisms responsible for cellular changes are unclear.
Specifically, to what degree the effects are a result of
cell-wide changes or disease related locus specific
effects is unknown. Here we developed a platform
to systematically and simultaneously investigate the
sensitivity of epi-drugs at hundreds of genomic lo-
cations by combining DNA barcoding, unique split-
pool encoding, and single cell expression measure-
ments. Internal controls are used to isolate locus
specific effects separately from any global conse-
quences these drugs have. Using this platform we
discovered wide-spread loci specific sensitivities to
epi-drugs for three distinct epi-drugs that target hi-
stone deacetylase, DNA methylation and bromod-
omain proteins. By leveraging ENCODE data on chro-
matin modification, we identified features of chro-
matin environments that are most likely to be affected
by epi-drugs. The measurements of loci specific epi-
drugs sensitivities will pave the way to the develop-
ment of targeted therapy for personalized medicine.

INTRODUCTION

The location of a gene on the chromosome is known to
affect its expression. Position effect was first observed in
Drosophila by Muller in 1930 (1,2) and intensively investi-
gated afterward (3–5). Many years after the original work in
Drosophila, it is now well documented that gene expression
levels are influenced by the chromatin environment (2,6–
10). Chromatins play a key role in the regulation of gene

expression and are responsible for cell maintenance and
differentiation. Chromatin regulation is complex and is an
area of active research. The three-dimensional structure of
the chromatins plays an important role in gene regulation
by controlling the accessibility of transcriptional machinery
and the spatial proximity of a gene from cis regulatory ele-
ments such as enhancers. In addition, the specific 3D fold-
ing will change the spatial distribution of transcription fac-
tors and other regulatory molecules such as lncRNAs. The
spatial proximity of these regulatory molecules then plays a
key role in controlling gene expression patterns. The three-
dimensional structure itself is highly correlated with specific
histone and DNA modification patterns. Overall, the com-
plex multi-layered regulation of chromatin on gene expres-
sion pattern causes each gene to exist in a unique chromatin
environment that plays an important role in determining
gene expression distribution, i.e. both its average level as
well as population variability (6,9,11).

The proper regulation of gene expression is vital for
health and dysregulation of gene expression is associated
with a large number of pathologies. Advances in DNA
sequencing allow the classification of the specific disease
based on the underlying changes of gene expression, the ba-
sis of large parts of precision medicine approaches. Given
the large knowledge that is accumulating on what changes
in gene expression are associated with disease conditions,
it is only natural to attempt to correct these pathologies by
modification of underlying gene expression patterns. This
quest has a long history with initial attempts related to an-
tisense oligos (12). Similarly, the discovery of RNA inter-
ference (RNAi), followed by Zn fingers, TALEN, CRISPR
(13,14) sparked many attempts to develop therapies with
the goal of manipulating gene expression (15). However, de-
spite the conceptual simplicity, translating these concepts
into therapy was challenging (16–18).

Given the influence of local chromatin environment on
gene expression, strategies that target epigenetic regulators
are being investigated. Two main strategies are the pharma-
cological use of epi-drugs to influence gene expression and
targeted approaches for epigenetic editing. Pharmacologi-
cal approach uses inhibitors to the readers/writers/erasers
of epigenetic marks. The pharmacological approach that is
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being developed to address a wide range of diseases is con-
tinuously expanding (19–25). Multiple targeting strategies
for epi-drugs are being explored including specific loss and
gain of function (26–33), synthetic lethality (34–37), and to
overcome drug resistance (37–39). A common theme across
these strategies is the use of epi-drugs to manipulate gene ex-
pression patterns e.g. suppress oncogenes or activate tumor
suppressor genes (40). However, the precision of epi-drugs
induced gene expression targeting, i.e. the fraction of over-
all changes to gene expression that are desired for therapy,
is currently very low. This low precision limits the usability
of epi-drugs (41–43). The alternative strategy is based on
targeted recruitment of epigenetic modulators into specific
sites. CRISPR mediated sequence specific targeting of epi-
genetic regulators is used to cause changes in gene expres-
sion pattern of specific loci (44–46). The key advantage of
epigenetic engineering is its precision. However, many chal-
lenges have to be addressed before these approaches can be
translated into the clinic.

Despite the popularity of the use of epi-drugs to cause
changes in gene expression patterns, there are many un-
knowns resulting from gaps in existing measurement ca-
pabilities of the effect of epi-drugs on gene expression.
Epi-drugs change gene expression due to direct, locus-
dependent changes, and indirect or nonspecific effects (40).
Existing approaches to identify the direct effects of epi-
drugs rely on a combination of RNAseq and multiple
ChIPseq to show that gene expression changes are coupled
to changes in local histone modification (47). However, the
reliance on ChIPseq makes this approach limited as these
measurements are only semi-quantitative (48), it is often
hard to interpret their functional effects on gene expres-
sion (49), and they are challenging to scale to large num-
bers of samples (50). Therefore, it is currently impossible
to rigorously identify changes to gene expression that are
due to specific modifications to the chromatin environment
and not a result of non-specific or indirect effects. Therefore,
there is a gap in current capabilities of mapping the specific
and local impact of drug manipulating chromatin modifiers
on gene expression.

Here, we developed new measurement technology for the
Massive And Parallel Measurement of Epigenetic Drug
Sensitivity (MAPMEDS). MAPMEDS is based on a com-
parison of drug effect at specific locus compared to the
drug effect of hundreds of other loci. Statistical compari-
son of the drug effects on the expression of a reporter flu-
orescent protein allows the deconvolution of global effects
and locus specific sensitivities. MAPMEDS utilizes DNA
barcodes to pool together the time consuming step of ge-
nomic position identification of the reporters. Split-pool ap-
proach enables the mapping of DNA barcodes to individual
reporter cell lines. Using MAPMEDS we demonstrate the
widespread existence of loci specific sensitivities for three
epi-drugs that target histones acetylation, DNA methyla-
tion and proteins with bromodomains. By leveraging EN-
CODE data on the chromatin environment in each location,
we show what types of environments are more susceptible to
the different epi-drugs. Overall, these results shed light on
how epi-drugs cause changes in gene expression, the infor-
mation that can be used for the development of more precise
targeting strategies.

MATERIALS AND METHODS

Cell lines and cell culture

The human K562 cells (Sigma-Aldrich) were grown at 37◦C
in RPMI 1640 medium (Gibco) supplemented with 10%
FBS (Gibco), 1% penicillin–streptomycin (Gibco) and 1%
GlutaMAX (100×) (Gibco) under a 95% air and 5% CO2
atmosphere.

Construction of library reporter plasmid

The base plasmid without barcode was first constructed
to contain the following elements. Lentiviral production
units include HIV-1 truncated 5′ LTR, HIV-1 packaging
signal, HIV-1 Rev response element (RRE), HIV-1 trun-
cated 3′ LTR and central polypurine tract (cPPT). These
components allow proper viral packaging and viral inte-
gration into host cells. As a transcription unit, we used
cytomegalovirus promoter (CMV) to drive expression of
the reporter gene encoding yellow-green fluorescent protein
(mClover). Woodchuck hepatitis virus posttranscriptional
regulatory element (WPRE) is placed after mClover to en-
hances mRNA stability and protein yield. Ampicillin resis-
tance gene (�-lactamase) is included for selection of plasmid
in bacterial cells.

To generate barcoded plasmid libraries, based lentiviral
plasmid was cut upstream of the CMV promoter by ClaI
restriction enzyme and purified by ethanol precipitation.
The inserted cassette of 127-bp-long oligonucleotide con-
taining a random 16-bp-long barcode sequence (repeats of
A, T and G), MspI site, primer priming site, and homol-
ogy arms, were synthesized by Integrated DNA Technology.
The assembly reaction of 1:5 vector:insert ratio was carried
out for 1 h at 50◦C using NEBuilder HIFI DNA assembly
kit (New England Biolabs, NEB). Assembly products were
electroporated into NEB Turbo Competent Escherichia coli
(NEB) and then plated on ampicillin-containing medium.
Ampicillin resistant colonies were collected and extracted
for plasmids using Maxiprep kit (Invitrogen). Ten sam-
pling clones from the agar plate were analyzed by PCR
and Sanger sequencing to verify successful cassette inser-
tion and barcode diversity (Primer details in Supplementary
Table S1).

Generation of founder cell library and cell lines

Barcoded reporter and third generation lentiviral packag-
ing plasmids were transfected into HEK 293T cells to gen-
erate a library of barcoded lentivirus. Viral supernatant
was collected and concentrated by Lenti-X-concentrator
(Takara) at 48 hour post transfection. K562 cells were trans-
duced with barcoded virus in cultured media supplement
with 5 �g/ml polybrene and 20 mM HEPES for 2 h of
spinoculation and 24 h of incubation. An m.o.i. of ∼0.01,
corresponding to 1% infectivity estimated by flow cytome-
ter, was used to ensure that the majority of cells were la-
beled with single barcode per cell. Founder cells were se-
lected by fluorescence-activated cell sorting (FACS) at 72 h
post transduction. Founder cells were expanded for 2 weeks
and split into two pools. In the first pool, cells were subject
to mapping the genomic location of barcoded reporter. In
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the second pool, cells were sorted into single-cells to estab-
lish cell lines of unique barcode.

Identification of genuine barcode list

A library of genuine barcodes in founder cells was first
listed. Briefly, barcode region was amplified in first nested
PCR from 5 �g of genomic DNA in 50 ul of 20 cycles PCR
reaction using Titanium Taq. Barcode amplicons were en-
riched from genomic DNA using SPRI beads (Beckman
Coulter) and further amplified in the second nested PCR
for 20 cycles. Illumina adapter was attached to final am-
plicon, amplified and sequenced on Illumina HiSeq 3000
platform (1 × 50 bp). Sequencing reads were filtered and
analyzed using Matlab Bioinformatics Toolbox. To identify
genuine barcode, we used the following algorithm. First, we
sorted barcodes according to their counts from most fre-
quent to least frequent. Then, mutant versions of each bar-
code, defined as barcodes within a Hamming distance of
2, were sequentially removed. We consider remaining se-
quences as ‘genuine’ barcodes. We recovered 756 genuine
barcodes from 3000 sorted founder cells.

Mapping of reporter integration sites

Mapping of reporter integration sites was done by inverse
PCR coupled with high-throughput sequencing. Briefly,
founder cells were collected and splitted into two replicates.
For each replica, 2 �g of genomic DNA was digested with
20 units of MspI (NEB) overnight at 37◦C in a volume of
100 �l. Subsequently, three sets of ligation reactions were
set up by incubating 600 ng of purified digested DNA with
2 �l of high-concentration T4 DNA ligase (NEB, M0202T)
overnight at 4◦C in a volume of 400 �l. The ligation re-
actions were purified by phenol–chloroform isoamyl alco-
hol extraction and ethanol precipitation. DNA pellets were
dissolved in 30 �l of water. Two rounds of PCR were per-
formed to amplify and enrich fragments containing both
the barcodes and flanking genomic DNA regions (Primer
details in Supplementary Table S1). For the first round of
nested PCR, five sets of 25-cycle reaction in a volume of 50
�l were performed using Phusion Hot Start Flex 2× Mas-
ter Mix (NEB) and 5 �l of ligated products as templates.
Amplicon was pooled together, cleaned by DNA Clean &
Concentrator kit (Zymo), and diluted in 50 ul of water. For
the second round of nested PCR, four sets of 15-cycle reac-
tion in a volume of 50 ul were done with 5 ul of cleaned am-
plicon from first PCR. Purified sample was further ligated
with Illumina adapter, amplified and sequenced on Illumina
HiSeq 3000 platform (2 × 150 bp). Sequencing reads were
filtered and analyzed using Matlab Bioinformatics Toolbox.
The genomic regions associated with genuine barcodes were
extracted from mapping reads and aligned against the hu-
man genome (hg38) using STAR (51). Detected integra-
tion sites from each replicate were compared and assigned
to each genuine barcode only if top candidate site from
both replicates are identical. Mapping of reporter integra-
tion sites were plotted on the ideogram (Figure 2B) using
R and karyoploteR package (52). Genome coordinate of
reporter integration site was converted to human reference
genome (hg19) using UCSC liftOver tool (53) for compari-
son to ChIP-Seq data.

Combinatorial pool sequencing

Identity of reporter cell lines, linked by DNA barcodes, were
simultaneously revealed in a single run using combinato-
rial pooled sequencing. Clonal numbers were encoded in a
form of pooling pattern. To increase decoding accuracy, we
designed pooling signature to be unique four selected pools
out of total 18 pools. Cells from each clone were splitted into
four pools according to the design. Sequentially, genomic
DNA from individual pool of mixed clones was extracted
and used as templates for PCR to amplify barcode using
same procedure described in the method of identification
of genuine barcode list. Forward primers of second nested
PCR contain 6-bp index DNA to label PCR products from
each pool, which allow high-throughput multiplex sequenc-
ing (Primer details in Supplementary Table S1). Sequences
were filtered and demultiplexed using Matlab Bioinformat-
ics Toolbox. Genuine barcodes from all pools were first
listed. For each detected barcode, normalized counts per
pools were calculated and pools showing high reads above
the threshold were identified. Barcodes with four detected
pools were first assigned to the clone showing matched
pooling design. Some barcodes were found in more than
four pools when sister cells, expanded from one founder cell,
were sorted into multiple wells during single-cell sort. A list
of merged pooling signature of two unassigned clones was
matched with barcodes showing complexed readout. Clones
with two inserted barcodes (∼2% of the population) were
excluded from the library of reporter cell lines.

Epigenetic drug treatment

We first created reference cells expressing both mClover
and IRFP670 from multiple integration sites. Briefly, K562
cells were transduced with CMV-IRFP670 lentivirus at
high m.o.i. and sorted for IRFP positive cells. Lentiviral
transduction of CMV-mClover was followed and dual re-
porter cells were selected by FACS. Reference cells were co-
cultured with individual reporter clones. 0.5 million cells
of mixed samples were separately treated with 1 �M of
JQ1 for 24 h, 250 nM of SAHA for 72 h and 250 nM
of 5′ Azacytidine for 72 h. Afterward, cells were collected
and measured for expression distribution of mClover and
IRFP using BD FACSCelesta flow cytometer. Experiments
were done in three replicates per drug treatment per clone.
IRFP expression was used to separate control cells from
sample cells. To eliminate non loci-specific effects, log10-
transformed mclover expression of control cells with epige-
netic drug treatment was calibrated to match correspond-
ing expression in DMSO condition. Same adjustment was
applied to reporter cells in the same well. the Kolmogorov–
Smirnov test was performed by Matlab software to compare
histogram similarity of mClover distribution under differ-
ent conditions.

Validation of combinatorial pool sequencing

For the validation of combinatorial pool sequencing, five
clones were randomly chosen and two of them are sister
clones, sharing the same barcode. Genomic DNA (200 ng)
was used as a template for amplification with a set of vali-
dation primers (Primer details in Supplementary Table S1).
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PCR products were cleaned by DNA Clean & Concentra-
tor kit (Zymo) and Sanger sequenced to verify the barcode
sequences.

RNA extraction and gene expression analysis

K562 cells cultured at 2 × 105 cells/ml were treated with
JQ1 at a final concentration of 1 �M for 24 h before the
isolation of RNA. Same final concentration of the vehicle,
0.1% DMSO (Sigma), was used to treat the control sam-
ple. Total RNA was isolated using RNeasy Mini Kit (Qia-
gen) with on-column DNase digestion before RNA cleanup.
RNA was quantified using Qubit RNA Assay Kit (Thermo
Fisher Scientific), and the integrity was assessed on a Tapes-
tation RNA Screentape (Agilent Laboratories). All samples
had an RNA integrity number of ≥9. The libraries were se-
quenced on HiSeq3000 as 50 bp single-end reads. About 40
million reads were obtained from each sample (two control
samples and two JQ1 samples). The reads were quality con-
trolled using FastQC and mapped to the human genome
using STAR. DESeq2 (54) was used for differential gene ex-
pression analysis. Statistical significance of impact of JQ-1
on native genes that are in proximity of loci predicted by our
analysis to have loci specific effect was done using a rank
permutation test. First, all loci were ranked based on the
expected strength of a locus specific effect. Then, the aver-
age rank of loci where the nearest gene is significantly im-
pacted by JQ-1 was compared to random permutations of
all ranks.

Drug-induced cytotoxicity assessment

K562 cells were stained with Hoechst 33342 for nuclear la-
bel and resuspended in imaging media supplemented with
propidium iodide for cell death detection. Cells were then
seeded in poly-L-lysine coated 96-well plate at a density of
10 000 cells/well. Cell growth and death under different
concentrations of drug treatment was monitored by fluores-
cence imaging every 12 h for 3 days. Imaging analysis used
to determine cell growth and death was accomplished using
a custom MATLAB code.

Analysis of ChIP-Seq data

Following ChIP-seq data sets were downloaded from
ENCODE: H2A.Z (ENCFF191EXE), H3K4me1
(ENCFF526QTS), H3K4me2 (ENCFF118MMT),
H3K4me3 (ENCFF715DGL), H3K9ac (ENCFF6
02QRW), H3K9me1 (ENCFF526UWC), H3K9me3
(ENCFF834YLI), H3K27ac (ENCFF010PHG),
H3K27me3 (ENCFF445UCR), H3K36me3
(ENCFF678IWR), H3K79me2 (ENCFF003CLZ) and
H4K20me1 (ENCFF143CUR). Fold change over control
signals were averaged within a window of 10 kb cen-
tered around integration sites using R and Bioconductor
packages.

Methylation analysis of CMV promoter

To assess the levels of DNA methylation of CMV pro-
moter, targeted bisulfite conversion was performed. Ge-
nomic DNA from clones of interest was extracted and bisul-
fite converted with Qiagen’s EpiTect bisulfite kit according

to manufacturer’s instructions. Bisulfite converted genomic
DNA was used as a template for two rounds of nested PCR
using Invitrogen’s Phusion U polymerase (Primer details in
Supplementary Table S1). Amplicons from all samples were
pooled together, purified by DNA Clean & Concentrator kit
(Zymo) and deep sequenced. Sequencing reads were filtered
and demultiplexed by barcode using Matlab Bioinformatics
Toolbox. Changes in cytosine base at CpG sites were con-
verted into a matrix of methylation status.

RESULT

Overview of MAPMEDS

MAPMEDS is based on two key innovations: (i) A split-
pool strategy for the creation of cell lines that uses DNA
barcodes to identify what DNA labeling each cell line has
and what is the genomic integration position of that bar-
code (Figure 1A–D). Each expression reporter incorporates
a unique DNA barcode into a reporter cassette that con-
tains an identical promoter and fluorescent reporter. These
barcodes serve as unique identifiers for mapping the ge-
nomic locations of reporters and revealing clonal identi-
ties without the need for individual genomic extraction. The
use of split-pool encoding allows the mapping between iso-
clonal line expression and the DNA barcode and thereby
connecting genomic information with expression measure-
ments. (ii) A new strategy that uses in-well controls and
statistical tools enables the separation of gene expression
changes into locus-specific and global non-specific (Figure
1E and F). The use of in-well controls minimizes batch ef-
fects and is a key to identify locus specific sensitivities. Col-
lectively, these two steps allow the parallel creation of a large
number of reporter cell lines and their use to identify loci
specific epigenetic drug sensitivities.

MAPMEDS utilizes DNA barcoded expression re-
porters integrated as a single copy per cell. In order to gener-
ate founder cells with one copy of barcoded reporter, lentivi-
ral transduction at low multiplicity of infection (MOI)
was used. In short, we first created a library of lentivi-
ral plasmids containing barcode, MspI restriction site, cy-
tomegalovirus (CMV) promoter and GFP variant, mClover
(55) (Figure 1A). The barcodes are 16-bp sequences of ran-
dom adenosine, thymine and guanine. cytosine is excluded
to keep barcode intact for future application to examine
DNA methylation through bisulfite conversion. Barcoded
lentiviruses were packed and transduced at MOI of ∼0.01
into K562 cells, a leukemia cell line with abundant available
epigenetic profiles (56) (Figure 1B). Reporter K562 cells
were selected at 72 h post-transduction by fluorescent acti-
vated cell sorter (FACS) to establish a pool of 3,000 founder
cells. Founder cells were expanded for 2 weeks and split into
two pools (Figure 1C). One half was used to identify the ge-
nomic location using inverse PCR (6). The other half was
used to establish individual isoclonal lines through single
cell sorting. Once the cell lines were established, we utilized
a combinatorial pooling approach to combine all the cell
lines into a small number of pooled samples that were used
to identify the barcode identity, and hence the genomic in-
tegration site, of the ORFs for all cell lines (Figure 1D). The
result of this procedure is a library of clonal cell lines that
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Figure 1. An overview of MAPMEDS. (A) Schematic structure of barcoded lentiviral constructs. The library vector contains short barcode, CMV promoter
and mClover fluorescent protein as a reporter. The barcode is random 16-bp-long DNA with repeats of A, G and T. MspI restriction site is integrated
upstream CMV promoter for genomic location mapping. (B) Barcoded lentivirus was packed and transduced into K562 cells at low MOI to create founder
cells with singly integrated reporter. (C, D) Barcoded founder cells, selected by flow cytometry, were expanded for two weeks and split into two pools. Cells
in the first pool were collected for locating reporter integration site. Founder cells in the second pool were sorted into 96-well plates to establish clonal cell
lines. Barcode of each clone was simultaneously identified by split-pool encoding and deep sequencing. The library of characterized reporter clones is a
useful resource to examine loci specific epigenetic drug sensitivity. (E) Loci specific effects were decoupled from global effects through mixing individual
barcoded clones of interests with reference cells expressing mClover and IRFP from multiple integration sites. Co-cultured cells were treated with SAHA,
JQ1 and 5-AZA for 24–72 h. Expression of reporter proteins were measured by flow cytometers. Distribution of mClover expression in reference cells was
used to remove global effects of drugs. (F) A cartoon illustrating known mechanisms of actions of SAHA, JQ1 and 5-azacytidine.

can be used as a powerful resource to examine drug sensi-
tivity at diverse epigenetic environments.

In order to isolate locus-specific changes from any global
changes in gene expression patterns, we implemented a new
strategy using in-well controls and statistical tools. A ref-
erence ‘non-specific’ cell population was created by using
a polyclonal population of multiple integration cells so
that the overall population has thousands of integration
sites of same reporter cassettes. Far-red fluorescent protein
iRFP670 (57) was used to mark this reference population.
We split these control cells and co-cultured with each target
cell line in multiwell plates.

Integration landscapes of reporters

To map the integration sites of reporters, we split half of
founder cells into three sub-pools and further expanded the
population. The first pool was used to reveal a list of gen-
uine barcodes. We detected 756 candidate genuine barcodes
after two weeks of culture. Two other sub-pools are techni-
cal replicates for locating reporter integration sites by an in-
verse PCR method coupled to paired-end high-throughput
sequencing (Figure 2A). In short, genomic DNA from each
pool was isolated, digested with MspI enzyme and self-
ligated. Barcodes and adjacent genomic DNA were am-
plified and deep sequenced. After barcode demultiplexing,
genomic sequence was mapped to human genome assem-

bly GRCh38. Genomic coordinate was assigned to corre-
sponding barcode when mapped results from two replicates
are matched. We observed reporter integration through-
put the genome (Figure 2B, Supplementary Figure S1A)
with enriched pattern similar to previous study (Supple-
mentary Figure S1B) (8). Reporters were integrated at var-
ious genomic environments serving as diversified resources
to study epigenetic drug sensitivity.

Scalability and robustness of MAPMEDS

Pooled-sample sequencing is a cost-effective and practical
strategy for many studies, especially the ones related to the
discovery of rare mutation and single nucleotide polymor-
phism associated diseases (58–60). Combinatorial pooled
sequencing is an extension of standard pooled sampling
where each sample exists in a few pools creating a many to
many mapping between experimental conditions and sam-
ples. Combinatorial pooling improves the sensitivity and ro-
bustness of pooled sequencing since it includes built in error
corrections. It reduces the cost and time for library prepa-
ration exponentially (61–63).

Conceptually, in combinatorial pooled sequencing, the
identity of each sample is encoded in the composition of
pools and this pooling pattern serves as a reference for de-
coding sequences belonging to corresponding sample (Fig-
ure 3A). Clonal lines are mixed into few pools according to
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Figure 2. Diverse insertion landscapes of barcoded reporter. (A) Reporter mapping by inverse PCR. Genomic DNA of founder cells was extracted, digested
with restriction enzyme MspI and self-ligated to stitch barcode with its neighboring genome. Ligated product was amplified and followed by next generation
sequencing. (B) Ideogram plot displaying reporter integration sites of individual clones in the library. Centromere position is indicated in red and stalk
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a predefined design. Each individual pool is genomic DNA
extracted, barcode amplified and index tagged using nested
PCR. Amplicons from all pools are mixed together and se-
quenced. Subsequently, sequencing data is sorted by bar-
codes and their appearance patterns determined by the well
indexes. The measured patterns are compared with the de-
sign pooling signatures to match barcodes with clone num-
bers.

The use of combinatorial pooling circumvents the need
for individual genomic extraction and PCR per clones
which significantly reduces the cost of reagents and hands-
on time for sequencing preparation. In our design, each
clone is mapped into 4 selected pools from total of 18 pools
and this set-up allows up to 18-choose-4 or 3060 sample
identification. This approach is highly scalable because sam-
ple size can be easily increased by adjusting number of pool
and bit of code. We checked the accuracy of barcode iden-
tification using combinatorial pool sequencing by targeted
PCR and Sanger sequencing. For five randomly chosen
clones, the barcode deconvolution was all corrected which
confirm the robustness of our method.

Chromosomal position effects on protein expression distribu-
tion

To support the notion that each integration site exists in
a different chromatin environment, we examined the po-
sitional effect of our expression reporters. Across nearly a
hundred positions, we observed variable expression distri-
bution of mClover protein (Figure 3B). Some clones are
completely silent while many are highly expressed with
expression average of ∼1000-fold higher than the lowest-
expressing cells (Figure 3C). This variation range is com-
parable to a study that measured averaged mRNA expres-
sion across mouse genome (6), but higher than other stud-
ies carried out in bacteria or yeast (7,9–10). Broader magni-
tude of positional effect in expression level detected in mam-
malian genomes may come from their large and complex
genome organization and the discrepancy in experimental
design and techniques.

Our observation on variable expression distribution con-
firms that the location where reporter gene inserted af-
fects its expression and differences in genomic landscapes
and epigenetic profiles are suggested to explain such dif-
ferential expression in several studies. For example, lamina-
associated domain and chromatin compaction significantly
attenuate transcriptional activity (6) and certain histone
marks, including H3K36me3, are correlated with expres-
sion level of the reporters (9,10). Intuitively, epigenetic
drugs that target chromatin regulator should also be im-
pacted by distinct genomic environments. However, such
loci specific sensitivity has not been previously measured
and this motivates us to systematically measure positional
effects on the sensitivity of epigenetic drugs using our li-
brary of isogenic clones established and characterized by
MAPMED.

Epigenetic drugs show position-dependent sensitivity

As proof of concept, we chose three epigenetic drugs rep-
resenting three mechanisms of inhibition. Suberoylanilide

hydroxamic acid (SAHA) is histone deacetylases (HDACs)
inhibitor (64,65) and effective in the treatment of several
types of cancer (66–68). JQ1 is a small-molecule inhibitor
of BRD2 and BRD4, members of the bromodomain and
extra-terminal domain (BET) protein family. JQ1 compet-
itively blocks the binding of bromodomain proteins and
acetylated chromatin which results in transcriptional atten-
uation (69,70). JQ1 has been reported as a promising can-
cer therapeutic strategy in several cancers (71–73). Azacy-
tidine is a cytidine analogue that inhibits DNA methyla-
tion through loss of DNA methyltransferase (DNMT) ac-
tivity (74). Azacitidine was approved by the U.S. Food and
Drug Administration (FDA) for the treatment of all sub-
types of myelodysplastic syndrome (MDS) since 2004 (75).
In advance of epi-drug effect measurement, the cytotoxicity
test was first performed to select appropriate concentration
of drug that is high enough to slow K562 proliferation by
∼50% but limit cell death at 60 h to be less than 10% (Sup-
plementary Figure S2). Three drugs at selected concentra-
tion were added to co-cultured cells and incubated for 24–72
h before sample collection and fluorescent quantification.

The expression level of mClover and iRFP was measured
using high throughput sampler (HTS) flow cytometer. Cells
from each sample were separated into reference and target
cells based on iRFP gating. To quantify the site specific ef-
fect, we normalized the expression levels of the sample cells
by the average change between the drug and DMSO in the
control population. After correction, the site specific effects
of a drug that are not captured by reference population were
quantified by the Kolmogorov–Smirnov (KS) statistics that
compares distribution similarity between sample cells un-
der drug and sample cells with DMSO (Figure 4A–C). Any
effects that are only site specific are effectively measured as
changes beyond those also occur in the reference polyclonal
population. Differential magnitudes of drug sensitivity were
observed across examined locations. Most positions are ei-
ther hyposensitive or hypersensitive to only specific epige-
netic drugs in a non-uniform pattern across the genome
(Figure 4D–F) which further suggests the unique chromatin
environment at different genomic loci.

The distributions of KS statistics in control cells fall
within the three standard deviation limits (Supplementary
Figure S3). Therefore, we used this criteria to identify the
number of ‘hits’ per drug as it provides a non-parametric
estimate of our false discovery rate to be <0.015. Our drug
screening shows ∼44.3% and ∼29.5% of the positions that
have down-regulated and up-regulated reporter expression
after SAHA treatment, ∼64% and ∼24.5% in JQ1 and
34.4% and 52.5% in 5-azacytidine respectively. Overall, our
data demonstrates a chromosomal position effects on epi-
genetic drug sensitivity.

Analysis of histone modification profiles identifies chromoso-
mal environments susceptible to JQ1 sensitivity

We compared our maps of epigenetic drug sensitivity to a
collection of available epigenomic maps from K562 cells
focusing on histone modifications. ChIP-seq signals, ex-
pressed by fold change over control, in a window of 10
kb around barcodes of interest were considered. We note
that histone modification profiles were mapped in K562
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Figure 4. Chromosomal position effects influence magnitudes of epigenetic drug effects. (A–C) A bar graph of loci-specific drug effects scored by the
two-sample Kolmogorov–Smirnov (KS) test between DMSO and epigenetic drug treatment of SAHA (A), JQ1 (B) and 5-azacytidine (C). The dashed line
represents the three standard deviations of KS statistics in control cells. (D–F) Histogram plot showing mClover distributions of selected clones after the
treatment of DMSO (black), SAHA (orange), JQ1 (green) and 5-azacytidine (blue). Each position shows unique responses to different drugs.

cells without any genetic engineering. Insertion of reporters
potentially change the pre-existing epigenetic landscape or
cause sequence-specific or protein-specific interactions be-
tween regional chromatin and synthetic ORF. However,
previous studies suggest that integrated reporters generally
do not perturb the chromatin landscape but adopt the lo-
cal chromatin state (10,76). Complex sequence- or protein-
specific interactions between local chromatin and synthetic
reporters were not observed in previous study as well (11).

After selecting top JQ1-sensitive clones with distinct
downregulation and upregulation of reporter expression
(Figure 5A), we compared their epigenetic profiles. Inter-
estingly, we found JQ1 sensitivity is associated with cer-
tain histone modifications (Figure 5B). Structural study
reveals the binding of JQ1 to the acetyl-lysine binding
pocket of BET bromodomains (69). Such competitive bind-
ing disrupts bromodomain/acetyl histone interaction and
therefore transcriptional activation. Genomic regions en-
riched in acetylated histones were hypothesized to display
higher magnitude of reporter downregulation. Indeed, we
observed that clones with lower expression after JQ1 treat-

ment show higher enrichment of H3K9ac and H3K27ac.
Moreover, we also found that these clones have significantly
higher enrichment of H2A.Z. This data supports previous
studies demonstrating that BRD2 interacts with H2A.Z to
mediate transcription initiation (77,78) and thus suggests
that our assay recapitulated well-established results.

If indeed the changes in expression patterns reflect
changes to underlying chromatin environment we expect to
see that native genes in proximity to these sensitive loci will
also show differential gene expression. The regulation of na-
tive gene expression patterns is highly complex with mul-
tiple layers of feedback regulation. Therefore, we do not
expect all genes to directly change in the same way that a
synthetic reporter does. Nonetheless, the loci specific sensi-
tivities should reflect changes to native genes. To test that
we performed a standard differential expression change us-
ing RNA-seq after treatment with JQ1 (Figure 5C). For the
61 sites of integration of the synthetic reporters we checked
whether the closest gene showed differential response to
JQ1. In the majority of these cases, the integration site was
in the intronic region of the gene. We found statistically sig-
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Figure 5. Chromatin environment influences sensitivity of bromodomain inhibitor to expression alteration. (A) Examples of mClover distribution from
clones showing significant reduced (top row) and increased (bottom row) mClover expression to JQ1 drug. (B) Bar graph shows histone enrichments based
on data from the ENCODE consortium for comparison of positions displaying reporter down-regulation (light green) versus those exhibiting up-regulation
(dark green) after JQ1 treatment. Fold change over control of each histone mark was averaged within a window of 10 kb. The P-values were determined
by two-sample t-test. (C) Bar graph of the log2 fold change of the expression of the nearest native gene to each of the synthetic reporter integration sites.
Clones are sorted based on the magnitude of the effect at each locus. Red bars indicate a statistically significant change in gene expression determined using
DEseq2.

nificant enrichment of native gene JQ1 sensitivity for sites
we identified as JQ1 sensitive using the synthetic reporter
assay (P-value < 0.001 rank permutation test).

Differential sensitivity to 5-AZA treatment happened
through DNA methylation-independent mechanism

Considering azacytidine as a well-known inhibitor of DNA
methylation, it is likely that genomic regions with hyper-

methylated promoter will respond to such epigenetic drugs
the most. Moreover, CMV promoter used in our reporter
is highly enriched in CpG sites which should be susceptible
to DNA methylation. Therefore, we hypothesized that re-
porters inserted at diverse genomic environments will have
different DNA methylation levels and result in differential
drug sensitivity. To test this hypothesis, we examined DNA
methylation at CMV promoter, which contains 30 CG sites,
using target bisulfite sequencing (Figure 6A).
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We did not identify changes in the methylation status of
the reporter even in loci where we observed loci specific
changes in expression (Figure 6B). The CMV promoters
are mostly unmethylated and indistinguishable (Figure 6B).
These results are not surprising as by design we could only
focus on CMV promoters that are expressed and therefore
are not methylated in their promoters. Our data suggests
that differential sensitivity to 5-azacytidine treatment may
not result from the direct inhibition of promoter methyla-
tion but instead reflect changes in cell regulatory machinery
that has stronger effects on these loci than average. This ob-
servation is in agreement with previous studies that report
50–60% of induced genes by 5-Aza-CdR did not have CpG
islands within their 5′region (79,80).

DISCUSSION

Here, we developed a new method MAPMEDS that can
identify loci specific drug sensitivity in a robust and scal-
able manner. The method uses DNA barcoding to generate
cell lines with known integration position of an expression
reporter at genome scale and includes a statistical proce-
dure to quantify the locus specific effect that a drug has on
gene expression. We used MAPMEDS to evaluate the po-
sition specific effects of three common epi-drugs. We found
that up to 80% of positions change in a manner that is dif-
ferent than average including both hyper and hypo sensi-

tivity. Through analysis of the chromatin features that are
enriched in sites with hyper/hypo drug sensitivities we were
able to characterize what aspects of chromatin environment
make it more (or less) sensitive to a specific drug. The devel-
opment of MAPMEDS have both translational and basic
science implications.

Locus-specific sensitivity measurements will support the
development of new treatment strategies that use existing
drugs and the development of new, more precise drugs.
Identification of correct dosage of epi-drugs is challeng-
ing (81–83). Comparison of the dose-response curve of
the overall change in gene expression to the dose-response
changes in gene expression that are due to locus-specific
modification will help identifying drug concentrations that
maximally impact target genes while limiting non-specific
effects. Similarly, it will be possible to improve the preci-
sion of drug combinations (21,84). New drugs and lead
compounds could be identified based on predefined desired
locus-specific changes in expression patterns. For example,
in breast cancer that develops resistance to PI3K therapy,
it was shown that co-treatment with a bromodomain in-
hibitor JQ1 helps mitigate drug resistance since it silences
the compensatory upregulation of RTKs (85). The use of
JQ1 to achieve such desired effect is limited by the fact that
JQ1 has very broad effects on expression changes across the
genome. The tools we propose to develop will allow screen-
ing for new compounds and JQ1 derivatives that maximizes
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the effects on the desired genes such as EGFR and INSR
while limiting other undesirable changes.

Precision medicine is based on stratification of patients
and assigning specific therapies based on the molecular in-
formation often associated with the key aberrant pathways.
Therefore, in many cases, the nature of needed changes in
gene expression are known. Treatment is limited due to
the lack of therapies that can cause such desired changes
in gene expression. Current manipulations of gene expres-
sion patterns using epigenetic targeting drugs such as JQ1
are imprecise (41,42). The new measurement technology de-
veloped here will support the future development of more
precise epigenetic drug-mediated gene expression targeting.
The reduction in side effects and the ability to screen for
locus-specific changes in gene expression will lead to a large
array of new therapies.

From basic science perspective, our understanding of
chromatin regulation of gene expression is far from com-
plete. MAPMEDs has the capacity to generate large
datasets that look at changes across many positions and epi-
genetic drugs. Such large dataset will provide key insights
into how changes in the local chromatin environment can
affect gene expression in a manner isolated from any global
changes. The use of DNA barcodes as part of MAPMEDS
enables the pooled measurement of changes to local chro-
matin environment at scale. These data will provide invalu-
able insight into chromatin regulation.

MAPMEDS have two unique aspects that set it apart
from other measurement approaches such as TRIP and
BHIV (6,8) that aimed at measuring positional effects at
scale. Unlike other approaches, MAPMEDS is based on the
library creation of cell lines. The use of library of cell lines
provides single cell data on changes in expression variability.
Indeed, many of the locus specific drug effects we saw did
not simply shifted the population but changes the shape of
the distribution. These effects would have been missed with
bulk population measurements. Additionally, once the ini-
tial work in creating the cell line library was invested, the
measurement of the drug effects are straightforward and
can be scaled to large drug libraries. The work presented
here was based on one such library of cell lines and future
work is needed to explore larger numbers of loci, cell types,
and promoters. Other approaches such as TRIP and BHIV
will require full RNA sequencing for each drug tested. The
down side of the cell line library approach is that it is hard
to scale it to more than a few hundred sites. The small scale
limits the overall information and could generate a non-
uniform representation of loci in the genome, especially if
generating these reporter cell lines is more difficult in some
genomic regions. However, recent advances in in-cell bar-
codes make it possible to generate the cell line library in
pooled format, opening the way to a few orders of magni-
tude increase in the number of positions that can be mea-
sured. Future development of MAPMEDS to include these
in-cell barcodes will further increase it’s utility as a platform
for the discovery of more precise and useful epi-drugs.
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