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ABSTRACT
Purpose Fenebrutinib (GDC-0853), a Bruton’s tyrosine ki-
nase (BTK) inhibitor was investigated in a Phase 2 clinical trial
in patients with rheumatoid arthritis (RA). Our aim was to
apply a model-informed drug development (MIDD) approach
to examine the totality of available clinical efficacy data.
Methods Population pharmacokinetics (popPK) modeling,
exposure-response (E-R) analysis, and model-based meta-
analysis (MBMA) of fenebrutinib were performed based on
the Phase 2 data.
Results PopPK of fenebrutinib after oral administration was
described using a 3-compartment model with linear elimina-
tion and a flexible absorption transit compartment model.
Healthy subjects had a 52% higher apparent clearance than
patients. E-R analyses based on longitudinal ACR20, ACR50,
and ACR70 and DAS28 (CRP) data modeled fenebrutinib
effect with an Emax function, and an efficacy plateau was

achieved within the exposure range obtained in the Phase 2
clinical trial. Based on literature data, a summary-level clinical
efficacy database was constructed, and MBMA determined
ACR20, ACR50, and ACR70 responder rates in the placebo
and adalimumab arms of the Phase 2 clinical trial were found
to be consistent with historical data for these treatments.
Conclusions Our multi-pronged approach applied MIDD to
maximize knowledge extraction of efficacy data and enabled
robust interpretation from a Phase 2 clinical trial.
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ABBREVIATIONS
AUC Area under the concentration-time curve
BTK Bruton’s tyrosine kinase
CL/F Apparent clearance
Cmax Maximum concentration
Cmin Trough concentration
CRP C-reactive protein
DAS28 Disease Activity Score with 28-joint counts
EBE Empirical Bayes estimates
E-R Exposure-response
F1 Relative extent of absorption
FOCE-I First order conditional estimation with interaction
MBMA Model-based meta-analysis
MIDD Model-informed drug development
MTT Mean transit time
MTX Methotrexate
NLME Non-linear mixed effects
NTR Number of transit compartments
pcVPC Prediction-corrected visual predictive check
PD Pharmacodynamic
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PK Pharmacokinetics
popPK Population pharmacokinetics
PPC Posterior predictive check
PPI Proton pump inhibitor
RA Rheumatoid arthritis
RF Rheumatoid factor
SLE Systemic lupus erythematosus
TCAM Transit compartment absorption model
Tmax Time associated with maximum concentration
VPC Visual predictive check

INTRODUCTION

Model Informed Drug Development (MIDD)

In 2017, the sixth iteration of the Prescription Drug User Fee
Act (PDUFA VI) was authorized as part of the FDA
Reauthorization Act (FDARA). Among its goals was to aug-
ment the Agency’s expertise in model-informed drug develop-
ment (MIDD) approaches and support the evaluation of
model-based strategies used to guide development efforts (1).

MIDD approaches can be extremely informative to drug
development: they can be used to characterize the exposure-
response (E-R) relationship of new drugs, especially when the
relationship is complex and its interpretation challenging, and
to support selection of the appropriate dose and/or regimen
for an upcoming clinical trial. These approaches result in
more powerful inferences than other, non-integrated analyses
as they help to fully identify various aspects of the E-R rela-
tionship and maximize knowledge when harvesting from the
drug’s proof of concept study by examining the totality of
clinical efficacy and safety data. Drug development in rheu-
matoid arthritis (RA) patients can be used to illustrate the use
of MIDD approaches (2) in particular, where a large number
of studies showing the efficacy of therapy across various mech-
anisms of action have been published, thus providing the abil-
ity to pool data and make salient comparisons.

Bruton’s Tyrosine Kinase (BTK) and Fenebrutinib

RA is an autoimmune disorder, and although several therapeu-
tics are approved for the treatment of patients with an inade-
quate response to methotrexate (MTX) or tumor necrosis fac-
tor inhibitors (anti-TNF) (3–9), some patients become refracto-
ry to currently available therapeutics and may benefit from
therapy utilizing a different mechanism of action (6,8–12).

Bruton’s tyrosine kinase (BTK) is a nonreceptor Tec family
tyrosine kinase broadly expressed in hematopoietic cells (except
T cells) and plays a crucial role in signaling through the B cell
antigen receptor and the Fcγ receptor (FcγR) in B cells and
myeloid cells, respectively (13–16). Therefore, the inhibition
of BTK represents an attractive potential therapeutic approach

for the treatment of immunological disorders such as RA or
systemic lupus erythematosus (SLE) (15–20), in which B cells
and myeloid cells induce or sustain an excessive autoimmune
response. However, currently there is no approved BTK-
targeted therapy for such chronic autoimmune indications.

Fenebrutinib (GDC-0853, RG7845) is an orally adminis-
tered BTK inhibitor that is highly selective and noncovalent,
leading to reversible binding, intended to block B cell prolif-
eration and the resulting excessive immune response seen in
autoimmune disorders (21). Fenebrutinib has previously been
evaluated in healthy subjects (22) and patients with resistant B
cell lymphoma or chronic lymphocytic leukemia (23).

The pharmacokinetics (PK) of fenebrutinib was character-
ized previously in healthy subjects in a Phase 1 trial, and
plasma concentrations peaked 1–3 h after oral administration
and declined thereafter, with a steady-state half-life ranging
from 4.2–9.9 h (22). In the Phase 1 trial, fenebrutinib plasma
exposures were found to increase approximately dose-
proportionally with modest accumulation following twice dai-
ly dosing. Additionally, dose- and concentration-dependent
inhibition of BTK was observed, and pharmacokinetic/
pharmacodynamic (PK/PD) models were developed using
the PD biomarkers data to describe the treatment effect of
fenebrutinib on BTK inhibition, as assessed by BTK auto-
phosphorylation on circulating B cells and basophils in healthy
volunteers. Subsequent simulations conducted with these PK/
PD models suggest that a once-daily dosing regimen would
maintain steady-state plasma concentrations associated with a
high degree of CD63 inhibition over the entire dosing
interval.

Fenebrutinib is currently being investigated in patients with
RA, chronic spontaneous urticaria, and SLE. To fully under-
stand the treatment effect of fenebrutinib in patients with RA,
an MIDD approach was implemented by investigating the
totality of clinical efficacy data from a Phase 2 trial through
the integration of population pharmacokinetics (popPK) mod-
eling, E-R analysis, and model-based meta-analysis (MBMA)
of fenebrutinib.

MATERIALS AND METHODS

Trial Design

GA29350 (ANDES, ClinicalTrials .gov Identif ier:
NCT02833350) was a multicenter, Phase 2, randomized,
double-blind, placebo-controlled, parallel-group, dose-
ranging trial to evaluate the efficacy and safety of fenebrutinib
in patients with moderate to severe active RA and an inade-
quate response to previous MTX therapy (cohort 1) or anti-
TNF therapy (cohort 2) (24,25). All patients were seropositive
for either rheumatoid factor (RF) or anti-citrullinated peptide
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antibody, or had a history of seropositivity upon entry into the
trial and were on stable doses of MTX during the trial.

In cohort 1, 480 patients were enrolled, and were random-
ly assigned to 1 of 5 parallel treatment arms (3 fenebrutinib
arms, 1 placebo arm, and 1 adalimumab arm). In the fene-
brutinib and placebo arms, subjects received 50 mg QD,
150 mg QD, or 200 mg BID fenebrutinib tablets or placebo
tablets, together with subcutaneous (SC) placebo injections
every other week for 12 weeks (n = 40 in the 50 mg arm,
and n= 109 to 111 in each of the other 4 arms). In the active
comparator arm, patients received adalimumab 40 mg SC
every other week and placebo tablets for 12 weeks. In cohort
2 (n= 98 enrolled), patients received 200 mg fenebrutinib BID
or placebo tablets for 12 weeks.

Fenebrutinib dose selection for the Phase 2 trial was based on
its safety profile, PK properties, and the expectation that plasma
concentrations achieved would reach 70 to 90% BTK inhibi-
tion over the dosing interval in the majority of patients. Three
dose levels were selected for cohort 1 to obtain a broad range of
fenebrutinib exposures, with minimal exposure overlap among
the dose groups, to allow a thorough investigation of E-R in
patients. As the lowest fenebrutinib dose (50 mgQD) in the trial
was not expected to achieve maximal efficacious response, a
reduced number of subjects were assigned to this dose group.

Fenebrutinib plasma concentrations were determined by
high performance liquid chromatography with tandem mass
spectrometry (MS/MS) detection (Covance Laboratories Inc.,
USA). Calibration plots were linear throughout the range of
0.5 to 500 ng/mL (lower and upper limits of quantification,
respectively) for fenebrutinib in human plasma. Relative stan-
dard deviation of precision was <7.8%, and the accuracy of
the method was between 91.3% and 102.7%.

Population Pharmacokinetic (popPK) Analysis

Fenebrutinib plasma concentrations from subjects providing
all available PK data after tablet administration in the clinical
studies were integrated into the popPK analysis. The model
was characterized initially in healthy subjects (22) from the
Phase 1 multiple ascending dose (MAD) (GA29347) and a
Phase 1 relative bioavailability/food effect/drug-drug interac-
tion (GP29832, ClinicalTrials.gov Identifier: NCT02699710)
studies, and later updated to incorporate the Phase 2 data
from the three fenebrutinib-treated arms in patients with
RA. PK sampling schedules of the 3 studies included in the
popPK analysis are presented in Table S1.

The popPK model was developed by introducing features
in the order of increasing complexity, beginning with very
simple models (e.g. one-compartment with first-order elimina-
tion), and continuing until further improvement in model fit
was not supported by the data.

Covariate analysis first investigated the effects of pre-
defined demographic, laboratory, prognostic, and treatment

covariates on all the model parameters by using univariate
screening. If >10% of a covariate was missing, the covariate
was not included in the popPK analysis. Otherwise, the value
of missing covariate observations was imputed as the median
of the remaining values from an appropriate sub-population.
For example, the missing baseline body weight value was im-
puted as the gender-adjusted median body weight of the
remaining subjects. For categorical covariates, the most fre-
quently occurring value was imputed for subjects with missing
values in each trial. Concomitant proton pump inhibitor (PPI)
and food were categorized as time-varying covariates, whereas
the other categorical covariates were considered as baseline
(non-time-varying) covariates. Next, covariates selected from
the univariate screening (p value <0.05) were included in the
evaluation of a full model followed by backwards elimination
(p value <0.01). Effects of continuous covariates were incor-
porated into the model using the power function and normal-
ized using the median of the covariate. Effects of categorical
covariates were parameterized as proportional effects in the
model, in which the fractional change on a model parameter
was estimated, and the typical category constituted the largest
proportion in the analysis population.

The final model was determined on the basis of objective
function value, physiological plausibility of model parameter esti-
mates, numerical convergence success, parameter estimate preci-
sion (relative standard errors <50%), and visual predictive check
(VPC) plots. Goodness-of-fit plots were produced to verify the
general agreement of fitted values with observed data.
Prediction-corrected visual predictive check (pcVPC) was per-
formed by normalizing the observed and simulated dependent
variable based on the typical population prediction for themedian
independent variable in the bin (26). The pcVPCwas stratified to
evaluate the covariate effects of interest, whenever applicable.

In addition to exploring the effects of covariates on the
intersubject variability of PK of fenebrutinib, the popPK
model was also used to generate empirical Bayes estimates
(EBE; individual posthoc) for exposure, in terms of maximum
concentration (Cmax), trough concentration (Cmin), and total
daily area-under-the-concentration-time-curve (AUC) at
steady state as predicted using nominal dose due to the high
patient compliance in the trial (dose intensity rate ≥ 99.3%/
arm/cohort), for the E-R analysis.

Model development was carried out using first order con-
ditional estimation with interaction (FOCE-I) as implemented
in NONMEM (version 7.3, ICON Development Solutions,
Ellicott City, MD). Post-processing of NONMEM analysis
results was carried out in R (version 3.2.2, R Development
Core Team, 2008).

Exposure-Response (E-R) Analysis

Treatment responses in RA clinical trials are commonly eval-
uated by the American College of Rheumatology
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improvement criteria for 20, 50, and 70% threshold values
(ACR20, ACR50, and ACR70, respectively), which is a bina-
ry response variable, and by the Disease Activity Score with
28-joint counts (DAS28), which is a continuous variable
(27,28). Both types of endpoints can be measured repeatedly
during the course of the treatment period. The proportion of
patients achieving ACR50 responses and analysis of longitu-
dinal DAS28 (CRP) (DAS based on 28 joints and C-reactive
protein value) were evaluated as the primary, key secondary,
and secondary endpoints in the Phase 2 trial, and therefore,
were of primary interest among clinical efficacy endpoints
modeled for fenebrutinib. The E-R analyses aimed to estab-
lish the relationship between patient-specific fenebrutinib ex-
posure with clinical efficacy endpoints of interest.

ACR20, ACR50, and ACR70

Modeling of ACR20, ACR50, and ACR70 responses in indi-
vidual patients following treatment with fenebrutinib used
observations from cohorts 1 and 2 from the Phase 2 trial.
The E-R analysis dataset consisted of a total of 7005 observa-
tions (2335 each for ACR20, ACR50, and ACR70) from 467
patients. Observations were on days 7, 14, 28, 56, and 84 after
the initiation of study treatment. Study dropout rate was low,
with a majority of patients completing the 12-week trial with
≥90% completion rate/arm/cohort. Non-responder imputa-
tion was used for patients who discontinued prior to week 12,
and for whom an ACR response could not be determined.
Given the number of patients and use of imputation, there
were 467 observations available on each observation day.
Study treatments included placebo and fenebrutinib doses of
50 mg QD, 150 mg QD, and 200 mg BID.

Fenebrutinib exposure metrics of Cmax, Cmin, and AUC at
steady state as the driver for the E-R relationship were ex-
plored. Graphics created with R were used to view the time
course of fractions of ACR20, ACR50, and ACR70 respond-
ers, placebo effect, and treatment effect based on fenebrutinib
exposure.

An E-R analysis was conducted with NONMEM, using
Laplacian conditional estimation with −2 times the log of
the likelihood (−2LL). Simultaneous modeling (29) of
ACR20, ACR50, and ACR70 and all time points reflected
the analysis decision to utilize the benefits of pooling data
across highly interrelated observations. The E-R model con-
sidered the longitudinal measurements as a function of time,
placebo effect, and fenebrutinib exposure:

logit of ACR ¼ Baseline þ Time effect þ Covariate effect þMarkovian element

Time effect ¼ Tmax � timeHill

timeHill þ T 50
Hill

Covariate effect ¼ Geographic region þ Rheumatoid factor þ Fenebrutinib AUC

Fenebrutinib AUC þ EC50

where Tmax is the maximum placebo effect over time, T50 is
the time associated with 50% of placebo effect, and EC50 is
the fenebrutinib exposure (in terms of AUC) associated with
50% of drug effect. Finally, an analysis of covariate effects on
the endpoints was performed, and simulation (n= 1000) was
conducted based on the final model and summarized using
posterior predictive check (30).

DAS28 (CRP)

Modeling of the E-R relationship between fenebrutinib expo-
sure and DAS28 (CRP) response included observed data from
cohorts 1 and 2 of the Phase 2 trial. The analysis dataset
consisted of 2676 observations from 467 patients measured
on days 0, 7, 14, 28, 56, and 84 after the initiation of study
treatment. There were 467 observations at baseline, decreas-
ing to 424 observations on day 84. The data utilized last ob-
servation carried forward (LOCF) imputation but excluded
withdrawal. As was done for E-R analysis in ACR20,
ACR50, and ACR70, patient-specific predictions of exposure
metrics in terms of steady state Cmax, Cmin, and AUC from the
popPKmodel were used to enable E-Rmodeling. In addition,
the data were explored graphically prior to modeling, and an
E-R analysis was performed using longitudinal DAS28 (CRP)
data. Model development was conducted using first-order
conditional estimation with interaction (FOCE-I) as imple-
mented in NONMEM. The final model fit the observed data
as a function of time, placebo effect, and fenebrutinib expo-
sure. No covariate analysis was performed due to the support-
ive and exploratory nature of using a second efficacy end-
point, and simulation (n= 1000) was conducted based on the
final model and summarized using visual predictive check.

Model-Based Meta-Analysis (MBMA) Modeling
of ACR20, ACR50, and ACR70

An efficacy and safety meta-analysis database was constructed in
July 2017 using publicly available data of randomized trials in
RA, based on the guidelines in the Cochrane Handbook for
Systematic reviews. For this, a systematic review of publicly avail-
able data from the PubMed, Cochrane Library, and Embase
databases was conducted using the search term “rheumatoid ar-
thritis”. Furthermore, an existing database that contained data
published in or before 2012 (30) was augmented using an addi-
tional, systematic, and quality-controlled procedure to search for
relevant published studies, extract their data, and add to the
existing database yielding pertinent data published through 2017.

The summary data of the database were explored systemati-
cally to determine the amount of data available for each treat-
ment, efficacy and safety endpoint across trials, distribution of
mean patient characteristics, and to graphically view the time
course of longitudinal endpoints, placebo effect, active treatment
effect from each of the comparator treatments, and the effects of
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patient and trial characteristics. Response rates of ACR20,
ACR50, and ACR70 in terms of the proportion of patients
achieving specified thresholds were the most prevalent efficacy
endpoints in the database, and therefore, were chosen as the
variables for model development using MBMA. Because of the
relatively few adverse events observed in the fenebrutinib Phase 2
trial in RA (24), MBMA for safety events, such as serious infec-
tions, was not conducted.

The model simultaneously fit ACR20, ACR50, and ACR70
longitudinal data, and a non-linear mixed effects (NLME) esti-
mation method was carried out using R. This hierarchical re-
gression model used maximum likelihood estimation, and multi-
ple levels of heterogeneity were described as mixed effect vari-
ability terms accommodating between-trial and within-trial var-
iability. A residual variability term was used to account for the
unexplained deviation from fixed effects (31). The effects of time,
placebo treatment, active drug dose, and additional covariates
were considered during model development. For treatments
where dose-ranging data were available, the potential dose-
response relationships were tested.

The adequacy of model fits across trials was evaluated by
visually inspecting time course plots of observed distributions
vs. predicted values. Model simulations were performed using
fixed and random effect estimates from the final MBMAmod-
el to predict the treatment effects over time at hypothetical
doses of fenebrutinib comparing to the approved drug dose
levels, as well as to further evaluate difference in treatment
response rates among various patient populations in RA.

RESULTS

Population Pharmacokinetic (popPK)Modeling

The popPK analysis dataset consisted of 130 males and 255
females, between 18 and 75 years of age, and baseline body
weights ranging from 38 to 153 kg. The demographics of the
subjects included in the popPK analysis are summarized in
Table S2. No imputation of PK values was performed, and
records with missing PK or time values were omitted from the
analysis. In total, 506 (11%) out of 4565 observations were
reported as having concentration below the lower limit of quan-
tification (BLQ), and were excluded from the analysis without
further assessment of their impact on parameter estimates.
Predefined set of clinical and demographic covariate factors
(Table S2) were investigated during popPK model development
to assess their influence on the PK characteristics. The analysis
dataset did not include C-reactive protein (CRP) values from
healthy subjects in the Phase 1 multiple ascending dose (MAD)
trial or race information from the Phase 1 relative
bioavailability/food effect/drug-drug interaction trial.

The final popPK model was a 3-compartment model with
linear elimination from the central compartment. Its parameter

estimates are shown in Table I. A flexible transit compartment
absorptionmodel (TCAM) was used to describe the fenebrutinib
absorption (32). The final model included effects of PPI concom-
itant administration, food intake, and formulation onmean tran-
sit time (MTT) between absorption compartments, number of
transit compartments (NTR), and relative extent of absorption
(F1). In addition, concomitant administration of PPI, age, and
subject status (i.e. healthy subject or RA patient) were found to
affect apparent clearance (CL/F). The residual variability was
described using a proportional error model that was assumed
to decrease with time via an exponential model for the Phase 1
studies and constant for Phase 2 trial, due to the sparse sampling
in the Phase 2 clinical trial.

The final popPK model (Model S1) captured the observed
data well and adequately described the overall fenebrutinib
concentration versus time profiles. The performance and ade-
quacy of the model were demonstrated using GOF plots (Fig.
S1) and pcVPC plots (Fig. S2). Median individual post hoc
exposures among the three fenebrutinib dose groups investi-
gated in the Phase 2 trial were well separated (Fig. S3). The
epsilon-shrinkage value was 12.5%.

Statistically significant covariates included the impact of
subject status, age, and concomitant administration of PPI
on apparent clearance. Healthy subjects in the two Phase 1
studies had a 52% higher apparent clearance than patients
with RA in the Phase 2 trial. Additionally, apparent clearance
(CL/F) decreases with age (15.2% lower in a 75-year-old pa-
tient compared to a 25-year-old patient), and concomitant
administration of PPI (decreases by 33.7%).

Exposure-Response (E-R) Modeling

ACR20, ACR50, and ACR70

The efficacy of fenebrutinib as defined by the probability of
achieving ACR20, ACR50, and ACR70 was described by a
logistic model that represented effects of treatments as a func-
tion of time, fenebrutinib exposure at steady state, and patient
characteristics. The time component was modeled as a sigmoi-
dal Emax function to represent the increase in efficacy to a
maximum over time. The fenebrutinib effect on response was
modeled as an Emax function driven by fenebrutinib exposure
as measured by Cmax, Cmin, or AUC, and the statistical signif-
icance of incorporating each exposure metric into the E-R
model was similar in terms of p-values. Steady state AUC was
chosen as the driver for efficacy, based on exploratory results,
and prior E-R modeling knowledge in RA (33,34). Separate
Emax functions to describe the E-R relationship for each of
ACR20, ACR50, and ACR70 probability were tested, but it
was seen that a single Emax term for all three ACR thresholds
adequately captured the data. Additionally, a Markovian ele-
ment was added to reflect the inherent serial correlation in the
data (29). It is notable that by definition, at time zero, all
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patients are non-responders, and thus observed baseline mea-
surement is zero. However, during model development, it was
found that including estimated baselines in themodel improved
the fit at later time points substantially, without unduly adverse-
ly affecting the model predictions at time zero, where it is un-
derstood that the actual result is zero probability. Therefore,
separate baseline terms were estimated for each of ACR20,

ACR50, and ACR70 probability achievement, and an inter-
individual variability term was added on baseline (Model S2).

A clear E-R relationship was observed between fenebruti-
nib exposure in terms of steady state AUC and the probability
of achieving ACR20, ACR50, and ACR70. A dropout model
was not incorporated due to the high completion rate (≥90%)
of the Phase 2 trial. Table S3 shows the summary statistics of

Table I Parameter Estimates of
the Final popPK Model Parameter Alias Estimate Relative

SE (%)
95% CI Shrinkage

(%)

θ1 CL/F: Apparent systemic clearance (L∙h−1) 19.5 ..... (18.2–20.9)

θ2 V1/F: Apparent central volume of distribu-
tion (L)

381 ..... (333–437)

θ3 V2/F: Apparent peripheral volume of distri-
bution (L)

284 ..... (254–318)

θ4 Q1/F: Apparent Intercompartmental clear-
ance (L∙h−1)

52.8 ..... (44.1–63.2)

θ5 V3/F: Apparent second Peripheral volume
of distribution (L)

273 ..... (222–336)

θ6 Q2/F: Apparent second intercompartmen-
tal clearance (L∙h−1)

4.47 ..... (3.73–5.36)

θ7 NTR: Number of transit compartments 14.9 ..... (13.0–17.1)

θ8 MTT: Mean transit time (h) 0.849 ..... (0.755–
0.954)

θ9 Proportional residual error (%) 1.94 ..... (1.29–2.92)

θ11 Food effect on MTT 1.43 ..... (1.22–1.68)

θ12 PPI effect on MTT 0.835 ..... (0.692–1.01)

θ13 PPI and food effect on MTT 2.26 ..... (1.78–2.86)

θ14 PPI effect on F1 0.657 ..... (0.568–
0.759)

θ15 PPI and food effect on F1 0.693 ..... (0.611–
0.785)

θ16 Food effect on NTR 0.864 ..... (0.45–1.66)

θ17 Tablet effect on NTR 0.049 ..... (0.0287–
0.0838)

θ18 Residual error rate in healthy volunteers 1.94 ..... (1.53–2.46)

θ19 Maximum residual error in healthy
volunteers

6.66 ..... (4.21–10.6)

θ20 PPI effect on CL/F 0.663 ..... (0.650–
0.675)

θ21 Proportional residual error in patients 0.390 ..... (0.372–
0.408)

θ22 Age effect on CL/F −0.161 41.4 (−0.291 - -
0.0304)

θ23 Healthy volunteer effect on CL/F 1.52 ..... (1.27–1.82)

ω1.1 ω2
CL/F 0.0732 14.9 (0.0518–

0.0946)
27.3

ω2.2 ω2
V1/F 0.100 22.6 (0.0558–

0.145)
54.4

ω8.8 ω2
MTT 0.0861 29.7 (0.0360–

0.136)
58.1

ω9.9 ω2
F1 0.131 17.1 (0.0872–

0.175)
31.9

ω10.1 ω2
IOV on F1 0.299 5.30 (0.268–

0.330)
26.0

Log-transformed parameters have been back-transformed and thus relative SE (%) is not represented, instead 95%CI is
appropriate

popPK population pharmacokinetics, SE standard error, CI confidence interval, PPI proton pump inhibitor, F1 absorption
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the list of predefined covariates explored for the E-R analysis.
The subsequent univariate screening, followed by full model
formation and then backward elimination, found that baseline
rheumatoid factor (RF) level was a statistically significant
covariate. Parameter estimates for the E-R model using
ACR20, ACR50, and ACR70 data are shown in Table S4.

The final E-R model fit the data adequately as evident in
the posterior predictive check (PPC) plots that assessed the
performance of the models: (a) longitudinal probability of
achieving ACR20, ACR50, and ACR70 stratified by fenebru-
tinib dose (Fig. 1), and (b) fenebrutinib exposure effect (Fig. 2).
The 90% prediction interval for the 50 mg QD dose group is
wider than the other 3 dose groups, due to the smaller number
of subjects from the 50 mgQD arm compared to the others in
the Phase 2 trial. The correlation coefficients (r values) be-
tween ACR20 and ACR50, between ACR50 and ACR70,
and between ACR20 and ACR70 are 0.415, 0.59, and
0.245, respectively, for observed data, and 0.439, 0.613, and
0.269, respectively, for model-based simulation.

DAS28 (CRP)

The longitudinal measurements of DAS28 (CRP) were de-
scribed by a logistic model that includes the effects of treat-
ments as a function of time, fenebrutinib exposure in terms of
steady state AUC, and patient characteristics. The time com-
ponent was incorporated as a sigmoidal Emax function to rep-
resent efficacy increases to a maximum effect over time, with
separate parameters for fenebrutinib and placebo for the time
at which each reached 50% of maximum effect.

Exploration of an E-R relationship between fenebrutinib ex-
posure, in terms of Cmax, Cmin, and AUC at steady state, and
DAS28 (CRP) levels was performed. As with the E-R analysis
conducted using ACR response data, AUC was chosen as the
exposure metric with which to conduct subsequent E-R analysis
using DAS28 (CRP). The fenebrutinib exposure effect was mod-
eled as a simple Emax function. Inter-individual variability was
placed on baseline and the maximum effect parameters. The
NONMEM control stream for the model and the parameter
estimates are shown in Model S3 and Table S5, respectively.

The VPC plots (Fig. 3 for the timecourse of DAS28 (CRP)
stratified by fenebrutinib dose; Fig. 4 for the effect of fenebru-
tinib exposure) were used to assess the performance of the
models, and show that the final model fit the data adequately.

Model-Based Meta-Analysis (MBMA) of ACR20,
ACR50, and ACR70

The meta-analysis database contained publicly available trial da-
ta from 62 citations and included 9 drugs of multiplemechanisms
of action plus placebo. Notably, among these were 16 citations
providing summary metrics from 1871 patients for adalimumab,
51 providing summary metrics for placebo from 6567 patients,

and 10 containing summary metrics from 1132 patients for tofa-
citinib, collectively used to characterize both the longitudinal
course of effect over time, and dose-response for drugs of interest.
For each treatment, there were between 1 and 6 dose levels
(median of 3), and between 1 and 47 observation times (median
of 11). All of the above metrics also applied to the ACR50 subset
of the database, except that it contained between 1 and 44 ob-
servation times (median 10.5). Observations from fenebrutinib
Phase 2 trial were summarized at the study level and added to
the database. Table S6 summarize the ACR20, ACR50, and
ACR70 data, and sources from the database.

Analysis of summary-level treatment efficacy from fenebruti-
nib and published RA trial data was described by a logistic mod-
el, using the observed fraction of patients who achieved the three
ACR improvement thresholds. The model incorporated the ef-
fect of placebo or active treatment as a function of time, as well as
the effects of drug doses, and patient population characteristics.
The time component was modeled as an exponential function
reflecting the growth to amaximumeffect, and the dose-response
varied by treatment. Where appropriate, an Emax function was
used to describe the dose-response, while in others, a linear rela-
tionship or a single level of treatment effect was estimated. If data
from different dosing schedules were available, the dose was
normalized to total amount in one week in order to pool data
for the same treatment across multiple trials, when necessary.
Separate baselines were estimated for each of the ACR20,
ACR50, and ACR70. The model included a function to ensure
that the resulting predictions for ACR20, ACR50, and ACR70
were in proper order. Between-trial and between-arm variability
was modeled on baseline, while between-drug variability was
modeled on the rate of change in the time course.

The dose-response of fenebrutinib on ACR response end-
points in the MBMA model was informed by leveraging
patient-level data described for E-R analysis. The dose at
which 50% of efficacy (ED50= 525 mg/week) in the MBMA
was calculated and fixed in the model using the model-
predicted exposure associated with 50% of efficacy (EC50=
2650 ng*h/mL) that was estimated in the E-R analysis for
ACR20, ACR50, and ACR70. Lastly, covariate analysis using
forward addition found a high proportion (>80%) of patients
who had inadequate response to previous anti-TNF therapy
(TNF-IR), the percentage of patients who had failed previous
MTX treatment (MTX-IR), and concurrent MTX therapy
had statistically significant impact on ACR response rates.
The R code for the final MBMA model is shown in Data S1.

The ACR20, ACR50, and ACR70 response rates in the
placebo and adalimumab arms of the fenebrutinib Phase 2
trial were found to be consistent with historical data for these
treatments (Fig. 5). Additionally, the model performance was
validated using observed response rates across the treatments
used, their doses, and the longitudinal time courses of effect
against 90% prediction intervals for each treatment, as seen in
representative treatments in Fig. 6.
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Leveraging data across all 10 treatments in the model, the
final MBMA model estimates that populations with at least
80% of patients who are TNF-IR would have lower response
than those with higher percentages of patients who had pre-
viously failed on MTX. Background use of MTX resulted in
increased patient population response rates.

The utilization of comprehensive historical data through
MBMA enabled comparison of fenebrutinib versus its potential
comparator compounds. Simulation based on the developed
MBMA model showed that 200 mg BID fenebrutinib was
predicted to have similar efficacy in terms of ACR20,
ACR50, and ACR70 compared to the registrational doses of
adalimumab and tofacitinib in a MTX-IR (but anti-TNF-
naïve) population at 12 weeks after initiation of treatment,
when incorporating variability in PK and efficacy endpoints,
as depicted in Fig. 7. Simulation results for TNF-IR patient
populations are included in Fig. S4 to demonstrate, as an
example, the utility of applying the developed MBMA model
to predict efficacy in another patient population, which
showed that 200 mg BID fenebrutinib would have compara-
ble efficacy to the registrational doses of adalimumab and
tofacitinib in terms of ACR20, ACR50, and ACR70, in
TNF-IR patients at 12 weeks after initiation of treatment.

DISCUSSION

Thewealthanddiversityofefficacydataamongvarious treatments
in RA clinical trials necessitate an integrated approach to fully

leverage knowledge from publicly available summary-level data
and understand the impact of treatments based on new mecha-
nisms of action. Therefore, we aimed to design a novel study with
multiple model-based analyses using data from the fenebrutinib
Phase 2 trial in patients withRA, whichwe report here.

Population Pharmacokinetics (popPK) Analysis

The popPK analysis conducted herein provided a useful rep-
resentation of the exposures resulting from investigated doses
of fenebrutinib, and the effects of patient characteristics on the
inter-subject variability of the PK parameters. Food and PPI
effects were incorporated into the model using TCAM, be-
cause previous knowledge using non-compartmental analysis
from the Phase 1 relative bioavailability/food effect/drug-
drug interaction study indicated that food blunts the
concentration-time profile and delays the Tmax, whereas PPI
decreases the Cmax. In addition, out of the other statistically
significant covariates in the final popPK model, covariate ex-
ploration found that the age and subject status in the analysis
dataset could be confounded; i.e. healthy subjects tend to be
younger than patients with RA. Shrinkage values for interin-
dividual variability and residual error terms in the popPK
model are within an acceptable range, and along with the
results from EBE-based model diagnostic methods, these in-
dicate the observed data provided sufficient information for
individual posthoc exposures estimation for the E-R analyses.
Finally, if a larger sample size were available, additional

Fig. 1 Posterior predictive check for exposure-response model of ACR20, ACR50, and ACR70 – time course by fenebrutinib dose. Black dots: observed
responder fraction; bands: 90% prediction interval; red, green, blue middle lines: median prediction.

Fig. 2 Posterior predictive check
for exposure-response model of
ACR20, ACR50, and ACR70 – by
fenebrutinib AUC bins at week 12.
AUC, area under the concentration
time curve. Black dots: observed
responder fraction at fenebrutinib
exposure quartiles; bands: 90%
prediction interval; red, green, blue
middle lines: median prediction.
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causes of inter-subject variability in patients could be further
investigated.

Exposure-Response (E-R) Analyses

The primary goals of the E-R analyses with fenebrutinib were to
characterize the relationship between exposure and clinical effi-
cacy endpoints of ACR responses and DAS28 (CRP) levels, and
to determine whether the efficacy could be further augmented
with increasing exposure or dose. The longitudinal data of both
ACR responses and DAS28 (CRP) levels were modeled.
Graphical exploration and model-based simulation suggest that
a plateau of efficacy was achieved within the exposure range
obtained in the study, and further increase in fenebrutinib dose
would not lead to additional efficacy in cohort 1 patients who
were MTX-IR. The lack of difference in statistical significance
between Cmax, Cmin, and AUC as the driver for E-R is likely due
to the high correlation between the three exposure metrics in the
Phase 2 trial. Though region was the only covariate in the

longitudinal E-Rmodel, region and baseline RF were correlated
in the patient population evaluated (i.e. Latin America had
higher baseline RF values). Therefore, it might be difficult to
disentangle whether the covariate effect was truly due to region
or other regional differences, such as baseline RF levels, which
are important in the diagnosis and determination of RA severity
(35). Interestingly, treatment history (MTX-IR vs. TNF-IR) was
tested but was not a significant covariate in the E-R model,
indicating similar E-R between MTX-IR and TNF-IR patients.
This could possibly be due to the difference in background treat-
ment or diseasemanagement between the two populations in this
study.Ultimately, E-R in cohort 2 patients, whowere TNF-IR, is
unclear due to the small sample size and limited PK exposure
range investigated.

Model-Based Meta-Analysis (MBMA)

Modeling of historical meta-analysis data sought to leverage pub-
licly available information to enable direct and indirect

Fig. 3 Visual predictive check of DAS28 (CRP) exposure-response model – time course by fenebrutinib dose. Black dots: observed responder fraction; bands:
90% prediction interval; red middle lines: median prediction.

Fig. 4 Visual predictive check of
DAS28 (CRP) exposure-response
model – by fenebrutinib AUC bins
at week 12. AUC, area under the
concentration time curve. Black
dots: observed responder fraction
at fenebrutinib exposure quartiles;
bands: 90% prediction interval; red
middle lines: median prediction.
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comparisons against competitors and between study populations.
Such an analysis is particularly valuable at the end of Phase 2
milestone for informing go/no-go decisions to proceed to Phase
3 (36). First, MBMA aimed to quantitatively compare fenebruti-
nib against currently marketed therapies, through an indirect
comparison of the performance of placebo and adalimumab
historically versus that observed in the fenebrutinib Phase 2 trial.
Second, MBMA sought to better inform the magnitude of

impact of patient population covariates, with the initial interest
focusing on informing the impact of having patients who were
MTX-IR versus other patient populations, if possible.

Efficacy benchmarking against approved agents was
focused on adalimumab and tofacitinib within this body
of work, however, relative performance of other agents
could also be compared using the established MBMA
model. Tofacitinib is a janus kinase (JAK) inhibitor

Fig. 5 Posterior predictive check for model-based meta-analysis model - time course by endpoint, dose, and patient subgroup for placebo and adalimumab
treatments. TNF, tumor necrosis factor; IR, inadequate response, MTX, methotrexate; q2w, once every two weeks; concom, concomitant. black dots: observed
responder fraction with symbol size scaled to sample size; black lines: 90% confidence interval for observations; green dots and lines: observed summary-level
data and 90% confidence interval from fenebrutinib phase 2 trial; bands: 90% prediction interval; blue middle line: median prediction.
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previously approved for the treatment in patients with an
inadequate response to MTX, which was the target pop-
ulation in cohort 1 of the fenebrutinib Phase 2 trial as
well. Further, covariates in the model could be used for
clinical trial simulations in populations not yet investigat-
ed, permitting future decision makers to consider the mer-
its of new or altered therapies far before committing large
investments.

There was also a useful transfer of information from the E-
R analysis to the MBMA model development. Initially, it was
difficult to obtain a stable estimate of the ED50 of fenebrutinib
in the MBMA model. However, by leveraging the estimated
EC50 from the E-R analysis, which is based on data from
individual subjects, the final MBMA model that is based on
summary-level data is much more informed in regard to the
treatment effect of fenebrutinib.

The analysis had some limitations. Notably, efficacy of
fenebrutinib beyond 12 weeks is unknown, limiting compari-
son at such observation times. Although MBMA analysis by
Wang et al showed that ACR50 responses at 3 months after
initiation of treatment is predictive of long term efficacy for
most drug classes (37), this assumption might not apply to a
molecule with a new mechanism of action and possibly a
slower onset of action, and therefore longer monitoring to
accurately determine maximum efficacy could be warranted.

Further, the MBMA had slightly different prediction results
than observed (non-modeling) data from the fenebrutinib
Phase 2 trial (24). It is hypothesized that the study patients
from all arms are slightly over performing compared to me-
dian historical results for placebo and adalimumab treat-
ments, although still within the variability of historical data.
In our experience, MBMA can often yield slightly different
results for an individual trial when it is modeled along with
historical data, given the weight and richness of information
from the latter.

CONCLUSIONS

The multiple analysis types as described herein provided an
integrated view of model-based evidence, which has not been
reported previously for a BTK inhibitor in patients with RA.
This holistic approach yielded more insight than separate
analyses alone, especially at an earlier phase of the drug de-
velopment, where the uncertainly of treatment effect estima-
tion and prediction could be large. Thus, the approach exam-
ines the totality of available evidence and allows better in-
formed decision-making, and therefore is consistent with
model-based strategies that are currently being evaluated by
PDUFA VI to support drug development.

Fig. 6 Posterior predictive check
for model-based meta-analysis
model - time course of ACR50 for
other drugs leveraged (selected
doses). Note: only one dose level
per treatment is shown as repre-
sentative example. Black dots: ob-
served responder fraction with
symbol size scaled to sample size;
black lines: 90% confidence interval
for observations; bands: 90% pre-
diction interval; blue middle line:
median prediction.
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