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ABSTRACT
Although epigenome-wide association studies (EWAS) have been successful in identifying DNA 
methylation (DNAm) patterns associated with disease states, any further characterization of 
etiologic mechanisms underlying disease remains elusive. This knowledge gap does not originate 
from a lack of DNAm–trait associations, but rather stems from study design issues that affect the 
interpretability of EWAS results. Despite known limitations in predicting the function of 
a particular CpG site, most EWAS maintain the broad assumption that altered DNAm results in 
a concomitant change of transcription at the most proximal gene. This study integrated DNAm 
and gene expression (GE) measurements in two cohorts, the Adolescent and Young Adult Twin 
Study (AYATS) and the Pregnancy, Race, Environment, Genes (PREG) study, to improve the 
understanding of epigenomic regulatory mechanisms. CpG sites associated with GE in cis were 
enriched in areas of transcription factor binding and areas of intermediate-to-low CpG density. 
CpG sites associated with trans GE were also enriched in areas of known regulatory significance, 
including enhancer regions. These results highlight issues with restricting DNAm-transcript anno
tations to small genomic intervals and question the validity of assuming a cis DNAm–GE pathway. 
Based on these findings, the interpretation of EWAS results is limited in studies without multi- 
omic support and further research should identify genomic regions in which GE-associated DNAm 
is overrepresented. An in-depth characterization of GE-associated CpG sites could improve pre
dictions of the downstream functional impact of altered DNAm and inform best practices for 
interpreting DNAm–trait associations generated by EWAS.
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Introduction

Epigenome-wide association studies (EWAS), 
aiming to test the theory that marks of DNA 
methylation (DNAm) are involved in the patho
physiology of disease, have successfully identi
fied associations between complex traits and 
DNAm. Specific DNAm patterning has been 
associated with environmental exposures, as 
well as short- and long-term health outcomes 
[1–6]. Several attributes of DNAm potentially 
link this epigenetic mark to the development or 
progression of complex disease. Appropriate 
DNAm patterning is essential for normal devel
opment and ageing, and DNAm regulatory 
mechanisms are implicated in a multitude of 
molecular processes, such as cellular 

differentiation, X–inactivation, and genomic 
imprinting [7–10]. As an epigenetic mark, 
DNAm is both dynamic and persistent; modifi
able by environmental exposures yet heritable 
during cell division, so that any alterations to 
DNAm patterns may be carried through future 
populations of cells [11–14]. Importantly, altered 
DNAm has been linked to downstream func
tional changes, particularly in the regulation of 
gene expression (GE) [15]. These properties sug
gest that DNAm may be contributing to 
mechanisms in which previous exposures and 
genetic predispositions can have lasting effects 
on disease risk. While EWAS methods are pro
mising, their current utility beyond biomarker 
discovery is questionable due to study design 
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limitations that impact the interpretability of 
results, particularly those stemming from the 
omission of GE measurements [14,16].

The canonical mechanism describes DNAm as 
a repressor of proximal transcription, in which 
DNAm within promoter regions is able to silence 
GE by either blocking the binding of essential 
transcriptional machinery or by recruiting chro
matin modifying proteins that transition the local 
DNA conformation to a more heterochromatic 
state [9,17]. Despite accumulating evidence that 
suggests this model is overly simplistic when 
applied on a global scale, [17,18] many researchers 
rely on this paradigm to interpret an association 
between DNAm and a disease of interest 
[14,16,19]. In a typical EWAS, any significantly 
associated CpG sites (also known as differentially 
methylated positions or DMPs) are each mapped 
to their most proximal gene and the biological 
function of those genes is reported in the context 
of the tested phenotype. This method is proble
matic since the canonical DNAm mechanism 
applies specifically to CpGs within promoter 
regions whereas many DMPs are intergenic, 
within gene bodies, or downstream of the pro
posed gene. Given that this interpretation empha
sizes the functional relevance of specific genes to 
disease biology, an argument can be made that 
current EWAS are primarily interested in examin
ing a theory of DNAm-driven transcriptional reg
ulation [14,16]. By inferring transcriptional 
activity from DNAm–trait associations, this 
approach relies on assumptions without directly 
testing for functional evidence. Given that accu
rately inferring the functional consequences of 
modified DNAm at any particular site is still very 
limited, this practice may lead to inaccurate con
clusions about disease biology [18,20].

Accurately predicting the functional impacts of 
altered DNAm remains challenging, in part, due to 
the limited characterization of genome-wide 
DNAm–GE relationships [20]. DNAm often does 
not block transcription independently but rather 
works in concert with other regulatory elements to 
coordinate GE [21–23]. These regulatory mechan
isms involve a complex crosstalk between DNAm, 
higher-order chromatin modifiers, and other epi
genetic marks, further contributing to difficulties 
in determining the functional impact from DNAm 

measurements alone [21–23]. Moreover, linking 
genes to their putative regulatory regions is not 
always straightforward [24]. DMPs are often 
located outside of proximal regulatory elements, 
within intergenic or intronic regions with no 
known regulatory function. Since a frequently uti
lized approach for interpreting these results 
involves linking all DMPs to their nearest gene, 
any features of the genomic landscape beyond 
distance are disregarded. Even if CpG-GE pairs 
are identified, predicting the regulatory conse
quence of altered DNAm remains difficult as 
exceptions to the theory that describes DNAm as 
a proximal gene repressor have accumulated. For 
example, increased DNAm, particularly within the 
gene body, is frequently positively correlated with 
local transcription [25–30]. Although mechanisms 
linking hypermethylation to increased GE are still 
unclear, a recent study identified more transcrip
tion factors that preferred binding methylated 
sequences than those inhibited by DNAm [23]. 
These functional complexities suggest that 
assumptions regarding transcriptional activity 
should not be inferred by DNAm patterns alone. 
Instead, if the fundamental theory being explored 
is a mechanism of transcriptional regulation 
modulated by DNAm, measurements of GE 
should be included in the analysis [14,16].

Multi-omic studies integrating global DNAm 
and GE measurements can provide evidence for 
DNAm-driven transcriptional regulatory mechan
isms. Measuring GE in parallel with DNAm could 
allow for not only a direct test of the association 
between DNAm and the outcome of interest, but 
also whether this relationship can be explained by 
a mediator, in this case, GE [31]. This approach 
tests the hypothesized mechanism while avoiding 
assumptions regarding the regulatory function of 
DNAm that typically cloud the interpretation of 
EWAS results. Although cross-sectional studies are 
still unable to eliminate the possibility of reverse 
causation (i.e., GE changes proceeding DNAm 
changes), they can provide a more comprehensive 
understanding of biological processes involved in 
disease. However, current studies often integrate 
DNAm and GE measures by discovering differen
tially methylated and differentially expressed genes 
separately, and regulatory mechanisms are inferred 
by the observation of overlaps between DNAm– 
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trait and GE–trait associations at the gene level 
[32–39]. Since the relationship between DNAm 
and GE is not tested a priori, this method still 
relies on assumptions that DMPs strictly influence 
expression of the nearest transcript. A limitation 
impacting current studies is the lack of informa
tion on the extent that DNAm loci are associated 
with GE in cis or trans, which could vary by, for 
instance, cell type or developmental stage.

An extended EWAS approach integrating both 
DNAm and GE measurements holds promise in 
uncovering biological processes important to the 
development or progression of disease, however, 
a mechanistic interpretation requires prior knowl
edge regarding specific DNAm–GE relationships 
across the genome, which has yet to be resolved. 
Several studies have attempted to clarify this func
tional relationship by integrating DNAm and GE 
measurements [26,27,29,40,41]. Although a variety 
of complex relationships between DNAm and GE 
have been identified, including long-range associa
tions, focus has been primarily placed on outlining 
proximal relationships and relatively few studies 
have examined distal associations on a genome- 
wide scale [26,41]. The objective of this study was 
to expand upon this work by cataloguing and 
characterizing the relationships between DNAm 
and both proximal and distal GE (i.e., cis and 
trans relationships, respectively) in peripheral 
blood, a tissue commonly assayed in EWAS. To 
identify attributes that replicate across disparate 
samples, analyses were conducted in two pre
viously described cohorts, the Adolescent and 
Young Adult Twin Study (AYATS) [6,42], and 
the Pregnancy, Race, Environment, Genes Study 
(PREG) [43]. To our knowledge, this is the first 
study to test for genome-wide associations 
between DNAm and GE in two cohorts of the 
same tissue.

Methods

Study cohorts

Adolescent and Young Adult Twin Study (AYATS)
The AYATS study was designed to examine 
genetic and environmental contributions to inter
nalizing pathways (e.g., depression and anxiety) 

during development. A sample of monozygotic 
twins were chosen for their adherence to the 
study’s inclusion criteria (e.g., 15–20 years of age, 
no current use of psychotropic medications) 
[6,42]. Peripheral blood collected from 141 parti
cipants at a single time point was assayed for both 
DNAm and GE. An overview of study character
istics and further demographic information can be 
accessed in the supplement (Supplementary 
Table S1).

Pregnancy, Race, Environment, Genes (PREG) study
The PREG Study is a prospective longitudinal 
study with the purpose of identifying how envir
onmental determinants of health and DNAm 
remodelling relate to racial health disparities in 
perinatal health outcomes [43]. Of the 240 
women who enrolled in the study, 177 met all 
birth and pregnancy inclusion criteria (e.g., 
mother and father self-identify as either both 
Caucasian or both African American) and no 
exclusion criteria (e.g., preeclampsia, fetal con
genital anomaly, placental anomaly, fewer than 3 
study time points completed). Peripheral blood 
samples were collected up to four times through
out pregnancy. Sample collection was scheduled 
during gestational weeks 0–15, 10–25, 20–40, 
and 37–42. DNAm was assessed at all time 
points, whereas GE was measured once at the 
final collection during weeks 37–42. Only those 
DNAm measurements from specimen simulta
neously collected with GE were analysed in this 
study. A total of 151 women had concomitant 
DNAm and GE measured. An overview of study 
characteristics and further demographic infor
mation can be found in the supplement 
(Supplementary Table S2).

DNAm measurement and data processing

In both samples, DNAm and GE was measured 
from peripheral blood. The Infinium 450k 
HumanMethylation BeadChip assayed genome- 
wide DNAm and the Affymetrix HG-U133A 
2.0 array measured GE. A description of plat
form characteristics as well as the methods used 
for measurement and preprocessing can be 
found in the supplement.
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Association analysis

The relationship between all pairwise combina
tions of measured DNAm and GE (Table 1) was 
tested by linear regression in the R statistical envir
onment (version 3.5) [44]. Log-transformed 
expression values (dependent variable) were 
regressed on DNAm M-values (independent vari
able), while covariates controlled for differences in 
cell type heterogeneity. Cell type proportions were 
derived from the Houseman algorithm, which esti
mates proportions for granulocytes, monocytes, 
CD8-positive T cells, CD4-positive T cells, 
B lymphocytes, and natural killer cells based on 
cell type-specific DNAm profiles [45]. 
Granulocytes were selected to account for overall 
differences in cell type proportions based on high 
correlations with other cell type estimates (abso
lute correlations ranged from 0.47 to 0.71), and 
included as a covariate in all models. Natural killer 
proportions were included in AYATS models 
exclusively to adjust for the atypical variation in 
this cellular fraction characteristic of depressed 
patients [6,46].

Additional covariates were selected to adjust for 
potential confounding influences specific to the 
characteristics of each cohort, while also maintain
ing a similar analytical approach across the two 
studies. Since PREG is a racially diverse sample 
(Table 1), ancestrally informative principal com
ponents were estimated from the DNAm data 

using the method described in Barfield et al. The 
third principal component was highly correlated 
with self-reported race and included as a covariate 
in the PREG cohort models [47]. A linear mixed- 
model framework was used to account for twin 
structure in the AYATS cohort [48]. The limma 
Bioconductor package was used to estimate 
within-family correlations from 1,000 randomly 
sampled CpGs in order to appropriately adjust 
model standard errors and account for the non- 
independence of twin pair DNAm observa
tions [48].

Both DNAm and GE measurements were 
adjusted for technical artefacts prior to analysis 
(see supplement), so that variables related to slide 
or row effects were not included as covariates in 
subsequent analyses.

Although measurements were generated using 
the same technology in both cohorts, differing 
numbers of probes remained after quality con
trol procedures (Table 1). A within-study 
Bonferroni correction was used to adjust for 
multiple testing at an alpha threshold of 0.05. 
While estimates of genomic inflation are typi
cally used to identify spurious associations dri
ven by artefacts in genome-wide association 
studies (GWAS), it has been recently suggested 
that inflated test statistics should be similarly 
reviewed in epigenetic studies [49]. To mitigate 
the presence of false positives, genomic inflation 
was assessed using the method described in 
Kennedy et al. [26]. Briefly, genomic inflation 
factors were calculated for each transcript, across 
all CpG associations, as the median (T-statistic)2/ 
0.4549. Appropriate thresholds for test statistic infla
tion are not as well established in the epigenetics 
field. To facilitate cross-study comparisons, any 
transcript with an inflation factor > 2 was flagged 
for removal [26].

Every pairwise relationship between measured 
DNAm and GE was modelled and classified as 
either cis or trans, since molecular mechanisms 
linking proximal DNAm may differ from more 
long-range interactions. DNAm–GE pairs were in 
cis if the CpG site was located within a gene or 
2,500 base pairs (bp) upstream. This extension is 
expected to capture important transcript-specific 

Table 1. Study characteristics.
AYATS PREG

N 137 131
Study phenotype Internalizing disorders 

(e.g., early-onset major 
depression)

Perinatal health 
outcomes 
(e.g., preterm birth)

Age 16.96 (1.28) 29.06 (4.99)
Sex (% female) 97 (71%) 131 (100%)
Ethnicity (% 
Caucasian)

132 (97%) 67 (51%)

Methylation probes 
tested

445,120 421,729

Expression probes 
tested

10,913 12,249

Study characteristics were assessed after preprocessing and removal of 
poor quality samples. 

Mean (standard deviation) or N (%). 
Abbreviations. AYATS = Adolescent and Young Adult Twin Study; 

PREG = Pregnancy, Race, Environment, Genes cohort. 
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regulatory regions, given that many promoters 
are located up to 1 kilobase upstream of the 
transcriptional start site (TSS) [50]. CpG–tran
script pairs located outside this range were cate
gorized as trans relationships, with the rationale 
that more distal regulatory features (e.g., enhan
cers) may be responsible for the relationship 
between CpG methylation and transcript 
expression.

Characterization of results

CpG sites were mapped to biologically relevant 
annotations to test for feature enrichment 
among sites significantly associated with GE. 
Annotation selection was based on evidence 
that local CpG density, gene feature location, 
and proximity to regulatory elements are impor
tant characteristics that may impact the func
tional consequences of DNAm [17]. 
Transcription factor activity is regulated by 
DNAm, and a history of transcription factor 
binding also appears to influence the susceptibil
ity of CpG methylation in specific locations 
[23,51–53]. Moreover, processes involving tran
scription factors were previously enriched 
among CpGs associated with GE [26,54]. 
Similarly, non-coding RNAs are regulated by 
methylation patterning, while also contributing 
to the regulatory activity of DNAm [55,56]. 
Chromatin states are accurately able to distin
guish variable transcriptional activity by describ
ing the specific patterns of histone modifications 
that impact the regulation of GE [57,58]. 
Histone modifications are intricately linked to 
both DNAm and GE, potentially serving to med
iate the influence of methylation on transcrip
tion [17,57].

Selected features described local CpG densities 
(UCSC CpG island classifiers and HIL annota
tions) [59,60], genomic regions (UCSC 
knownGenes track, hg19 build) [61], chromatin 
states (ENCODE 15-state ChromHMM) [58], 
transcription factor binding (ENCODE TF ChIP- 
seq) [62], non-coding RNAs (GENCODE version 
37) [63], and other annotations related to regula
tory activity (i.e., FANTOM5-defined enhancer 
and ENCODE-defined insulator regions) [64]. All 
cell type-specific annotations (e.g., chromatin 

states, enhancer regions, etc.) were defined in the 
lymphoblastoid cell line GM12878. The specific 
gene feature annotations that were sourced using 
Bioconductor packages can be found on the Open 
Science Framework project page (https://osf.io/ 
dk3cg/).

Enrichment analyses were performed separately 
for cis and trans groups. The proportion of signif
icant findings annotated to each category was 
compared to the proportion of total number of 
tested CpG sites using Fisher’s exact test. 
Duplicate mappings were conserved for gene 
region annotations, so that individual CpG sites 
could be annotated to more than one gene region. 
Other annotations assigned each CpG to mutually 
exclusive categories (e.g., chromatin states and 
CpG classifiers). A Bonferroni correction for 20 
enrichment tests was used to adjust for unique 
annotation categories examined (e.g., CpG density 
classifiers, chromatin states, transcription factor 
binding, etc.)

Results

Participant demographics and initial findings

After performing the preprocessing procedures 
described in the supplementary methods, all 137 
of the remaining GE measurements also had cor
responding DNAm of sufficient quality in AYATS. 
In PREG, 131 samples had both DNAm and GE 
that passed quality control. While the tissue and 
platforms were consistent across studies, these 
cohorts differed in other characteristics (Table 1). 
PREG was an older (aged 18–40 years) and more 
racially diverse sample, with 49% of participants 
identifying as African American (Supplementary 
Table S2). Notably, all participants in the PREG 
sample were pregnant women, while the AYATS 
sample consisted of both male (29%) and female 
(71%) adolescents (aged 15–20 years; 
Supplementary Table S1).

Genome-wide methylomic and transcriptomic 
data was generated using the Illumina 
HumanMethylation 450k BeadChip and 
Affymetrix HG-U133A 2.0 array, respectively. 
After performing quality control procedures sepa
rately in both cohorts, a differing number of 
probes were identified as poor quality. In 
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AYATS, 40,392 DNAm probes and 10,809 GE 
probe sets were removed during preprocessing, 
while 63,783 DNAm and 9,473 GE measurements 
were removed in PREG (Table 1).

Associations between DNA methylation and gene 
expression

Overall findings
An overview of significant DNAm–GE relationships 
is presented in Table 2 (see the Open Science 
Framework project page at https://osf.io/dk3cg/ for 
summary statistics). Due to the differing number of 
measurements surviving quality control, associations 
with P-values < 9.68 ×10−12 (0.05 alpha corrected for 
5,165,758,521 total tests) in PREG and P-values < 1.03 
× 10−11 (0.05 alpha corrected for 4,857,594,560 tests) 
in AYATS were considered significant (Table 2). 
A total of 903 associations were identified in the 
AYATS cohort, 169 of which were in cis (4.72 × 
10−61 < P < 1.01 × 10−11) and 734 in trans (2.64 × 
10−61 < P < 1.03 × 10−11). 

Within the PREG sample, 379 DNAm–GE asso
ciations were statistically significant, of which 121 
were cis (5.15 × 10−58 < P < 8.50 × 10−12) and 258 
trans (2.86 × 10−53 < P < 9.51 × 10−12). Since GE 
probe sets measuring expression of the same gene 
were retained, some transcripts and CpG sites are 
represented more than once in the results. A total 
of 340 unique CpG sites and 105 unique genes 
comprised the 903 significant associations identi
fied in AYATS, while 228 CpGs and 69 genes were 
unique in PREG across both cis and trans 

relationships (total n = 379). Across all categories 
(i.e., AYATS/PREG cis/trans), many significant 
relationships occurred between one transcript 
and one CpG site (Supplementary Figures S1 and 
S2), although instances in which a single CpG site 
was associated with multiple transcripts, and vice 
versa, were also common. Both positive and nega
tive relationships were identified, although the 

Table 2. Overview of pairwise DNAm–GE Association results.

Study
Significant 

associationsa
Direction of  
Relationship Unique CpGs Unique transcriptsd

Mean adjusted 
R-squarede

AYATSb

cis 169 65% negative 107 42 0.58 (0.11)
trans 

PREGc
734 78% negative 266 96 0.48 (0.10)

cis 121 79% negative 87 31 0.46 (0.10)
trans 258 49% negative 156 43 0.40 (0.08)

aAfter Bonferroni adjustment for total number of tests performed within cohort. 
bP-value < 1.03× 10−11. 

cP-value < 9.68× 10−12. 

dDefined as unique by Entrez identifier. 
eMean (standard deviation). 
Abbreviations. AYATS = Adolescent and Young Adult Twin Study; PREG = Pregnancy, Race, Environment, Genes cohort. 

Figure 1. Percent negative CpG-GE associations by gene region.
With the exception of 3’ untranslated regions (UTRs), the major
ity of cis CpG-GE relationships were negative across gene 
regions in both the AYATS (red) and PREG (blue) cohorts. 
Promoters and 5’ UTRs had the highest fraction of negative 
associations, aligning with canonical descriptions of promoter 
DNAm as a repressor of local gene transcription. 
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majority of significant associations had negative 
coefficients (49% to 78% negative across tested 
categories; Table 2 and Figure 1). Effect sizes 
were relatively large throughout (adjusted 
R-squared range = 0.23–0.90), with cis DNAm 
explaining more GE variability on average (mean 
adjusted R-squared = 0.58 and 0.46 for AYATS 
and PREG, respectively) when compared to trans 
(mean adjusted R-squared = 0.48 and 0.40 for 
AYATS and PREG, respectively).

AYATS Associations. The distribution of 
significant cis and trans connections is shown 
in Figure 2(a). On average, each significant cis 
CpG site was associated with 1.58 transcripts 
(median = 1, range = 1–4; Supplementary 
Figure S1). Trans CpGs were more likely to 
associate with multiple transcripts than cis 
(mean = 2.75, median = 1, range = 1–22). 
Effect sizes, defined by adjusted R-squared 
values, ranged from 0.23 to 0.90. Cis DNAm 
explained more variation in GE on average 
(Welch’s t-test P = 2.2 × 10−16). DNAm–GE 
relationships were predominantly negative 
(65% of cis and 78% of trans relationships; 
Table 2 and Figure 1).

PREG Associations. The distribution of signifi
cant cis and trans connections is shown in Figure 2b. 
On average, each significant cis CpG site is 

associated with 1.39 transcripts (median = 1, 
range = 1–4; Supplementary Figure S1). Significant 
trans CpGs were more likely to associate with multi
ple transcripts (mean = 1.65, median = 1, range = 1– 
11). Effect sizes ranged from 0.31 to 0.86, with cis 
DNAm explaining more variation in GE on average 
(Welch’s t-test P = 5.10 × 10−8). Cis DNAm–GE 
relationships were predominantly negative (79%) 
while trans relationships were split almost equally 
between positive and negative associations (Table 2).

Between study comparison
A total of 86 individual DNAm-transcript pairs 
replicated across cohorts (57 cis and 29 trans). In 
cis, 34% of significant CpG-GE pairs identified in 
AYATS were replicated, and 47% of those found in 
PREG overlapped with AYATS. In trans, only 4% 
of AYATS and 11% of PREG connections were 
replicated. Notably, all overlapping trans relation
ships consisted of same-chromosome CpG–tran
script pairs. Replicated trans CpGs were located 
anywhere from 2,654 to 91,895 bp away from their 
associated gene (mean = 22,826 bp). On average, 
relationships that replicated across cohorts had 
stronger effects than those that were cohort- 
specific (Welch’s t-test P = 1.9 × 10−7).

Enrichment analyses characterizing those GE- 
associated CpG sites that replicated across cohorts 
identified similar attributes to the whole sets of 

Figure 2. Distribution of significant connections between DNA methylation and transcript expression across the genome in the 
AYATS (2a) and PREG (2b) cohorts. The location of significant cis (red track) and trans relationships (blue track) across the genome 
(ideogram of human chromosomes, outer track) is shown. Bar graphs show the direction of the relationship (positive relationships 
are shown in the darker color) and the relative magnitude of the effect (height of bars; defined by adjusted R-squared values). Trans 
CpG-GE relationships often spanned chromosomes (location of associated CpG-GE pairs shown by center grey links).
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significant CpGs. Replicated GE-associated CpG 
sites were significantly (P < 0.0025) enriched in 
South shores (P = 7.0 × 10−5), regions of transcrip
tion factor binding (P = 2.7 × 10−6), in chromatin 
states corresponding to areas flanking active tran
scription (chromatin state 3 P = 0.0008) and zinc- 
finger binding sites (chromatin state 4 P = 0.0024), 
and within introns (P = 3.5 × 10−7). These results 
were not significant when the replicated relation
ships were compared to all significant relation
ships rather than all tested relationships, 
indicating that similar proportions of replicated 
CpG sites and cohort-specific CpG sites were 
located within these regions.

Location relative to transcriptional start sites
Previous research has observed that methylation sta
tus at CpGs adjacent to gene TSS is more likely to 
correlate with proximal GE than that at CpG sites 
within other genomic regions [26,54,65]. To explore 
this topic further, CpG sites associated with GE in cis 
were mapped to their associated TSS, as defined by 
gene annotations from the UCSC hg19 build 
knownGene track [66]. This annotation defines the 
most 5’ TSS as the primary gene TSS. The location of 

Figure 3. Absolute distance between CpG probes and transcrip
tional start sites (TSS) of proximal genes. A density plot depict
ing the absolute distance of DNA methylation microarray 
probes (darker colour) relative to the GE-associated CpG sites 
(lighter colour) from the transcriptional start sites of cis genes. 
Both the AYATS (red) and PREG (blue) cohorts showed enrich
ment in areas flanking active transcription. The proportion of 
GE-associated CpGs compared to the CpGs represented on the 
microarray was highest in areas directly downstream of the TSS.

Table 3. Results of AYATS Enrichment Analyses.a

Annotation cis trans
Enriched Depleted Enriched Depleted

Chromatin Statesb TxFlnk (3), 
ZNF/Rpts (8)

Tx (4), 
TxWk (5), 
Quies (15)

TssAFlnk(2),  
TxFlnk (3), 
TxWk (5), 
EnhG (6), 
Enh (7)

TssA (1)   
Het (9), 
TssBiv (10), 
BivFlnk (11), 
ReprPC (13), 
ReprPCWk (14)

CpG Classifiers South Shore North shore, 
Island

South shore, 
Open sea

North shelf, 
North shore, 
Island

Gene Regions 5’-UTRs,   
Promoters

Introns 5’-UTRs, 
Promoters

Otherc Enhancers, 
TF binding

lncRNAs Enhancers lncRNAs,  
Insulators

Abbreviations. UTR = untranslated region; TF = transcription factor; lncRNAs = long non-coding RNAs. 
Bolded items. P-value <0.0025 (Bonferroni corrected for 20 tests) 
Underlined items. Concordance across both the AYATS and PREG study. 
aP-value < 0.05. 
bENCODE ChromHMM 15-state model; 1 = Active transcriptional start site (TSS), 2 = Flanking active TSS, 3 = Flanking strong transcription, 4 = Strong 

transcription, 5 = Weak transcription, 6 = Genic enhancer, 7 = Active enhancer, 8 = Zinc-finger genes and repeats, 9 = Heterochromatin, 
10 = Bivalent/poised TSS, 11 = Flanking bivalent TSS, 12 = Bivalent Enhancers, 13 = Polycomb-repressed, 14 = Weak Repressed Polycomb, 
15 = Quiescent. 

cFANTOM5-defined enhancers, transcription factor binding sites derived from ENCODE TF ChIP-seq, GENCODE long non-coding RNAs. 
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cis CpG sites relative to the TSS of their associated 
gene is shown in Figure 3. Although many signifi
cant sites were located near the 5’ end of gene 
boundaries, these areas are also overrepresented in 
the 450k microarray. Overall, the relative proportion 
([number GE-associated CpGs within 2500 bp/total 
number GE-associated CpGs]/[number microarray 
CpGs within 2500 bp/total number microarray 
CpGs]) of TSS-proximal CpGs was higher in the GE- 
associated CpG sites compared to the microarray 
background. Interestingly, this observation was dri
ven by CpG sites located downstream of the TSS. 
The relative proportion of CpG sites 2500 bp 
upstream of the TSS was lower in GE-associated 
CpGs than was present on the microarray, while 
the opposite relationship was observed immediately 
downstream of the TSS (relative proportion 
upstream = 0.58 and 0.65; relative proportion down
stream = 1.59 and 2.21 in AYATS and PREG, 
respectively).

Enrichment analyses

CpG sites were annotated by genomic regions, 
local CpG densities, chromatin states, bound tran
scription factors, and other related regulatory 
regions (e.g., insulator regions, regulatory RNAs). 
Enrichment tests were then performed within 
annotation type. An overview of results from 

enrichment analyses is outlined in Table 3 
(AYATS) and Table 4 (PREG). Annotation cate
gories with P-values <0.0025 exhibited significant 
depletion or enrichment, while P-values <0.05 
were considered suggestive. A number of depleted 
and enriched categories overlapped between the 
two cohorts (underlined in Tables 3 and 4). 
Overall, regions of high CpG density were 
depleted across all groups (Supplementary Table 
S3 and Supplementary Figures S3 and S4) while 
annotations indicative of regulatory activity (e.g., 
transcription factor binding, enhancers) were 
enriched among GE-associated CpGs (Tables 3 
and 4).

Characterization of cis connections
South shore regions (i.e., shore regions located 
downstream from a CpG island) were either sig
nificantly (P < 0.0025) or suggestively (P < 0.05) 
enriched across all groups (AYATS/PREG and 
cis/trans; Figure 4). In addition to CpG classifiers, 
HIL annotations were used to describe local CpG 
density [60]. Regions of low CpG density were 
enriched in the AYATS cohort, while high- 
density regions were consistently depleted across 
AYATS and PREG (Table S3 and Figure S3). CpG 
islands are often associated with promoters, and 
both of these annotations were depleted in 
AYATS but were neither significantly enriched 

Table 4. Results of PREG Enrichment Analyses.a

Annotation cis trans
Enriched Depleted Enriched Depleted

Chromatin Statesb TssA (1), 
ZNF/Rpts (8)

TssAFlnk (2),  
Tx (4)

TssAFlnk(2),  
TxFlnk (3),  
Enh (7), 
EnhBiv (12)

TxWk (5), 
Het (9), 
ReprPCWk (14), 
Quies (15)  

CpG Classifiers South Shore North shore,  
South shore

Island  

Gene Regions Exons Promoters,  
3’-UTRs

Otherc TF binding Enhancers,  
TF binding

Abbreviations. UTR = untranslated region; TF = transcription factor; lncRNAs = long non- coding RNAs. 
Bolded items. P-value <0.0025 (Bonferroni corrected for 20 tests) 
Underlined items. Concordance across both the AYATS and PREG study. 
aP-value < 0.05. 
bENCODE ChromHMM 15-state model; 1 = Active transcriptional start site (TSS), 2 = Flank- ing active TSS, 3 = Flanking strong transcription, 

4 = Strong transcription, 5 = Weak tran- scription, 6 = Genic enhancer, 7 = Active enhancer, 8 = Zinc-finger genes & repeats, 9 = Heterochromatin, 
10 = Bivalent/poised TSS, 11 = Flanking bivalent TSS, 12 = Bivalent En- hancers, 13 = Polycomb-repressed, 14 = Weak Repressed Polycomb, 
15 = Quiescent. 

cFANTOM5-defined enhancers, transcription factor binding sites derived from ENCODE TF ChIP-seq, GENCODE long non-coding RNAs. 
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or depleted in PREG (Figures 4 and 5). 
Transcription factor binding sites, defined by sig
nificant peaks identified in ChIP-seq analyses of 
134 transcription factors in lymphoblastoid cells 
[62], were enriched in both cohorts (Figure 6). 
Chromatin state characteristics, which assign 
a function to genomic regions based on the pre
sence of specific histone methylation marks, also 
showed some concordance between the two stu
dies (Figure 7). Specifically, zinc-finger genes and 
repeats were consistently found to be enriched, 
whereas areas of strong transcription were con
sistently depleted. Regions flanking active tran
scription were more variably assigned, with one 
category found to be enriched in AYATS (areas 
flanking strong transcription) and another 
depleted in PREG (areas flanking active TSS).

Characterization of trans connections
Like cis CpG-GE pairings, CpGs associated with 
GE in trans were overall depleted in areas of 
high CpG density (Table S3 and Figure S4) and 
within the promoter regions of genes, while 
South shore regions and regions of intermediate 
CpG density were enriched (Tables 3–4 and 
Figures 8–9). Again, GE-associated CpG sites 
were overrepresented in areas of known regula
tory importance, such as sites of transcription 
factor binding and enhancer regions 
(Figure 10). With the exception of lncRNAs, 
which were depleted in AYATS, noncoding 
RNAs were neither over- or underrepresented. 
The chromatin state analysis highlighted dis
tinct differences between cis and trans results. 
Chromatin states reflecting enhancer regions 
were enriched in both AYATS and PREG, as 

Figure 4. Enrichment for CpG classifiers in cis CpG–transcript relationships. CpG classifiers based on the distribution around CpG 
island regions were defined by the UCSC hg19 knownGene track. Islands and regions directly upstream from islands were depleted 
in AYATS. However, downstream regions bordering islands (South shores), were significantly enriched in both cohorts (***P < 0.0005; 
** P < 0.005; * P < 0.05).
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were areas flanking sites of active transcription. 
Repressed states, including heterochromatic 
regions and polycomb-repressed regions, were 
consistently depleted (Figure 11).

Functional enrichment analysis
The Gene Ontology (GO) Consortium and the 
Kyoto Encyclopaedia of Genes and Genomes 
(KEGG) were used to assess overrepresented 
gene functions and pathways within significant 
cis results (see supplement for more informa
tion). Terms with a false discovery rate (FDR) 
<0.05 were deemed significant [67]. Common 
themes were uncovered in both cohorts 
(Supplementary Tables S4–S11), and include 
functions related to the activation and regulation 
of immune response and cellular detoxification. 
A total of 33 significantly enriched GO terms 
overlapped between the two cohorts, and all sig
nificant KEGG pathways identified in AYATS 
(n = 31) were also found in PREG (n = 39). 

However, these consistencies were supported by 
relatively few genes.

Discussion

Although genome-wide epigenetic studies aim to 
uncover the role of DNAm in disease development 
and progression, they often do not utilize an 
experimental framework that provides evidence 
for a mechanistic relationship. Most EWAS oper
ate under the assumption that DNAm influences 
proximal gene transcription. However, the absence 
of measured GE makes relying on this interpreta
tion difficult, especially as mounting evidence sug
gests that DNAm does not always follow 
a canonical cis relationship [17]. Given the com
plicated network of interactions between DNAm, 
GE, higher-order chromatin modifiers, and other 
regulatory elements, it is challenging to draw accu
rate conclusions about the downstream functional 
effects of altered DNAm without, at minimum, 
integrating concomitant measurements of GE 

Figure 5. Enrichment for gene regions in cis CpG–transcript relationships. Gene regions were annotated based on the UCSC hg19 
knownGene track. GE-associated CpG sites were depleted in 5’ untranslated regions (UTRs) and in promoters in the AYATS cohort 
only. (*** P < 0.0005; **P < 0.005; * P < 0.05).
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[14,17,22,62]. To investigate the relationship 
between DNAm and GE further, this study tested 
genome-wide associations between DNAm and 
GE in peripheral blood collected from two cohorts. 
Both proximal and distal relationships were iden
tified, highlighting potential inaccuracies in the 
current functional interpretation of trait- 
associated CpG sites within the frequently adopted 
EWAS framework.

Across cohorts, DNAm was significantly asso
ciated with both proximal (cis) and distal (trans) 
GE. The primary findings of this study align with 
other reports of long-range DNAm–GE relation
ships, adding to the growing body of literature 
questioning the accuracy of current EWAS inter
pretations [18,26,68]. The effect sizes detected 
among DNAm–GE pairs were relatively large, 
with DNAm predicting 42–50% percent of GE 
variability on average. Although this result is likely 
influenced by a lack of statistical power to detect 
more attenuated relationships, it reiterates that 
while DNAm may not be an appropriate proxy 
for changes in GE, strong links between the two 

measurements exist. Approximately 23% of con
nections identified in PREG were also significant 
in the AYATS cohort, suggesting a consistent pro
gramme of gene regulation even among the dis
parate cohorts tested. While this proportion is 
similar to DNAm–GE connections identified in 
peripheral blood and isolated monocytes [26], dis
crepancies between the two cohorts could be 
related to differences in statistical power or differ
ences in demographic and clinical features (i.e., 
genetic ancestry, developmental stage, etc.). On 
average, cis connections were more likely to repli
cate between studies and account for larger pro
portion of GE variability when compared to 
within-cohort trans associations. Larger samples 
are likely necessary to detect more subtle cis and 
trans CpG-GE pairings and provide a balanced 
assessment of the expected replication across 
samples.

Interpreting DNAm–disease relationships is 
hindered not only by limitations in identifying 
DNAm–GE pairs but also by challenges in predict
ing the precise functional impact of altered DNAm 

Figure 6. Enrichment for additional regulatory annotations in cis CpG-transcript relationships. Sites of transcription factor binding, as 
defined by ENCODE TF ChIP-seq annotations, were significantly enriched across cohorts. FANTOM5 enhancers were enriched in 
AYATS (*** P < 0.0005; ** P < 0.005; * P < 0.05).
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on an associated gene’s expression. Both negative 
and positive relationships between cis and trans 
DNAm–GE pairs were identified (Figure 1). 
Although DNAm is usually considered 
a repressive mark, inhibiting GE by either blocking 
transcription factor binding or by promoting 
a more condensed DNA conformation [17], posi
tive DNAm–GE relationships could be explained 
by several mechanisms. Within genomic regula
tory elements, transcription factors with repres
sive, rather than activating properties, may bind 
unmethylated sequences [25]. Furthermore, many 
transcription factors actually exhibit an increased 
affinity for heavily methylated sites [23]. Besides 
influencing the binding affinity of regulatory pro
teins, DNAm patterns may also reflect a history of 
transcription factor binding, a phenomenon that 
cannot be separately identified by a classic EWAS 
design [69]. In recent years, speculation has 
emerged regarding potential alternative roles of 

DNAm in the cell, including theories that DNAm 
may serve to direct splicing regulation or in main
taining genomic stability within specific regions 
[4,70–73]. Although this study found that the asso
ciations were predominantly negative across the 
majority of gene regions (Figure 1), these findings 
agree with other reports that strong positive 
DNAm–GE relationships exist [26,27,54]

Given the large effect size distribution of 
detected associations and the modest number of 
participants in each cohort, it was expected that 
only a small proportion of DNAm–GE connec
tions would reach statistical significance. Instead 
of only focusing on individual connections, this 
study sought to outline genome-wide trends by 
identifying attributes of GE-associated CpG sites. 
Despite the modest number of DNAm–GE pairs 
overlapping across cohorts, GE-associated CpG 
sites displayed similar annotation characteristics 
(Tables 3 and 4). Annotations uniquely 

Figure 7. Enrichment for ENCODE chromatin states in cis CpG–transcript relationships. The 15-state ChromHMM model was used to 
determine regional chromatin states. Overall, GE-associated CpGs were depleted in transcriptionally active regions but enriched at 
zinc-finger binding sites (*** P < 0.0005; ** P < 0.005; * P < 0.05). Abbreviations: 1 = Active transcriptional start site (TSS), 
2 = Flanking active TSS, 3 = Flanking strong transcription, 4 = Strong transcription, 5 = Weak transcription, 6 = Genic enhancer, 
7 = Active enhancer, 8 = Zinc-finger genes & repeats, 9 = Heterochromatin, 10 = Bivalent/poised TSS, 11 = Flanking bivalent TSS, 
12 = Bivalent Enhancers, 13 = Polycomb-repressed, 14 = Weak Repressed Polycomb, 15 = Quiescent.
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characterized attributes of cis and trans GE- 
associated CpGs, indicating that separate para
digms may exist for proximal and distal connec
tions. In general, DNAm within intermediate CpG 
density regions were more likely to be associated 
with GE. Regions of intermediate CG density are 
more variable compared with low- or high-density 
regions, and appear more dynamic across tissues 
and developmental stages [74,75]. Conversely, 
CpG sites in high-density regions, which are 
most often associated with CpG islands and pro
moter regions, were consistently depleted. 
Interestingly, both transcription factor binding 
and chromatin states in regions near active TSS 
were enriched, with those regions directly down
stream of the TSS particularly characterized by 
a high proportion of GE-associated CpGs 
(Figure 3). Other studies have noted a similar rela
tionship with DNAm located in the first intron, 
while also observing high transcription factor 

activity typical of intronic enhancers within these 
areas [65,76,77]. Although mechanisms of DNAm 
transcriptional inactivation usually focus on the 
hypermethylation of CpG sites within promoter 
and island regions, these results agree with other 
studies showing enrichment for “off-island” 
DNAm among GE-associated CpG sites [26,74]

The DNAm regulatory paradigm is predicated on 
the importance of DNAm in promoter regions, yet in 
this study CpG associations in promoters were 
depleted. Results from this study instead reiterated 
the significance of DNAm within enhancer regions 
and suggest that additional chromatin areas should be 
considered in addition to promoter-associated 
DNAm [26,29]. Multiple enhancer definitions (i.e., 
enhancer-like chromatin states and enhancer annota
tions generated from cap analysis of gene expression 
[CAGE]) were enriched within trans results. 
Enhancers have an established role in long-range 
gene regulation [8,78], often looping over more 

Figure 8. Enrichment for CpG classifiers in trans CpG–transcript relationships. CpG classifiers based on the distribution around CpG 
island regions were defined by the UCSC hg19 knownGene track. Islands were depleted while downstream regions bordering islands 
were significantly enriched in both cohorts. The North shore region directly upstream of CpG islands was more variable, with 
significant CpGs showing depletion in AYATS and enrichment in PREG (*** P < 0.0005; **P < 0.005; * P < 0.05).
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proximal genes to interact with those farther away 
[79]. Enhancer regions are often characterized by 
intermediate DNAm and chromatin accessibility, 
demonstrate greater DNAm variability than promo
ters [57,74], and exhibit ongoing de novo methylation 
and demethylation activity [53]. The high rate of 
DNAm remodelling within enhancers, coupled with 
the strong DNAm–GE relationships found within 
these regions, align with hypotheses that suggest envir
onmental exposures can influence complex disease 
risk through epigenetic mechanisms of transcriptional 
dysregulation. While mapping enhancers to their 
putative genes is a fundamental aim in identifying 
transcriptional regulatory networks, current methods 
are still under development [79], adding to the uncer
tainty in predicting the downstream functional effects 
of DNAm within these distal regulatory regions. 
Further challenges arise from evidence that many 
genes actually interact with multiple enhancers, and 
that these compounded interactions can result in addi
tive effects on target GE [79].

This study serves to improve understanding of 
the relationships between DNAm and GE across 
the genome and cautions that, in the absence of 
concomitant GE measurements, EWAS should 
interpret DNAm–trait associations with care. 
Overall, these results identified that strong distal 
relationships between DNAm and GE are preva
lent across the genome, highlighting issues with 
restricting DNAm-transcript annotations to small 
genomic intervals only [26,29]. The results from 
this study underscore concerns in predicting the 
biological mechanisms underlying disease from 
DNAm measurements alone and question the 
validity of assuming a cis DNAm–GE pathway 
without considering relevant features of the sur
rounding genomic landscape. EWAS relying on 
a DNAm-mediated transcriptional regulatory 
mechanism to interpret DNAm–trait associations 
may reach inaccurate conclusions about disease 
pathoetiology, as this approach fails to consider 
that the downstream effect of DNAm is likely 

Figure 9. Enrichment for gene regions in trans CpG–transcript relationships. Gene regions were annotated based on the UCSC hg19 
knownGene track. GE-associated CpG sites were depleted in 3’ untranslated regions (PREG), 5’ untranslated regions (AYATS), and in 
promoters (AYATS and PREG). Exons and introns were enriched in PREG and AYATS, respectively (***P < 0.0005; **P < 0.005; 
*P < 0.05).
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context-dependent and may be impacted by the 
attributes of specific CpG sites. While modified 
EWAS that incorporate GE information by per
forming a differential expression analysis (i.e., test
ing GE-disease associations) alongside testing for 
DNAm–disease associations avoid relying on 
assumptions of altered GE, biologically relevant 
information may be lost with this study design 
since a priori assumptions link CpG sites to puta
tive genes and distal DNAm–GE relationships 
remain uninvestigated.

Based on these results, epigenetic research should 
continue moving towards multi-omic approaches 
that integrate DNAm with other levels of data (e.g., 
GE, genotypes, transcription factor binding) to study 
complex traits. Although DNAm-GE relationships 
are highly complex, the integration of DNAm with 
data outlining regional chromatin architecture and 
transcription factor activity may assist in predicting 
the functional impact of altered DNAm [26,80]. 
However, as an emerging and heterogeneous field, 
several obstacles can interfere with the 

implementation and interpretation of multi-omic 
studies [81–84]. Standardized analytical pipelines 
have yet to be developed, leading to difficulties in 
cross-study comparisons and in assessing rigour, 
and it may be some time before multi-omic studies 
generate replicable findings [83]. Even as some of 
these issues are mitigated, determining how to 
meaningfully but accurately decipher results from 
DNAm-only studies remains paramount. EWAS 
have generated a wealth of information outlining 
relationships between DNAm, diseases, and envir
onmental exposures [19]. Researchers should recon
sider how best to interpret these findings moving 
forward, given the emerging understanding of the 
complexity of epigenetic regulatory mechanisms. 
Currently, only a handful of studies have tested 
genome-wide associations between GE and DNAm 
[26,29,41,68,74,85], but variability in the methodol
ogies used has led to difficulties in determining the 
replicability and generalizability of identified rela
tionships. Although cross-study comparisons are 
challenging, several consistent themes have emerged 

Figure 10. Enrichment for additional regulatory annotations in trans CpG–transcript relationships. Sites of transcription factor 
binding, as determined by ENCODE TF ChIP-seq, were significantly enriched in the PREG cohort. Enhancers were enriched across 
cohorts, and insulator regions were depleted in AYATS (*** P < 0.0005; **P < 0.005; *P < 0.05).
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from this modest body of literature. This study repli
cates the overrepresentation of GE-associated CpGs 
within enhancers and at transcription factor binding 
sites, as well as the depletion within islands and 
promoter regions[26]. By further cataloguing speci
fic genome-wide DNAm–GE associations and iden
tifying attributes of GE-associated CpG sites, results 
from this study can be used to inform EWAS design 
and the interpretation of DNAm–trait associations. 
Moving forward, continued examination of DNAm– 
GE relationships in large, diverse cohorts should be 
prioritized to advance our understanding of the role 
of DNAm within the cell and disease biology.

Strengths and Limitations

To our knowledge, this was the first study to assess the 
global relationship between peripheral blood DNAm 

and GE in both a primary and replication sample. 
However, results of this study should be considered 
in the context of the following limitations. First, both 
DNAm and GE were measured by microarray tech
nologies that provided coverage within well- 
characterized locations, but were unable to assay the 
full extent of RNA and CpG sites in the genome [86]. 
GE was measured on a gene-level, rather than tran
script-level, array platform, so that specific transcript 
variants were not analysed individually. Future ana
lyses with more comprehensive measurements, parti
cularly those that utilize technology with transcript- 
level resolution (e.g., RNA-seq), are necessary for con
firming genome-wide trends. Second, only relation
ships of relatively large effect size were detected in this 
study (adjusted R-squared range = 0.23–0.90). 
Especially given that a conservative multiple testing 
correction was applied, it is assumed that many 

Figure 11. Enrichment for ENCODE chromatin states in trans CpG–transcript relationships. The 15-state ChromHMM model was used 
to determine regional chromatin states. Overall, GE-associated CpGs were depleted in repressive states but enriched at enhancers 
and areas flanking actively transcribed genes (***P < 0.0005; **P < 0.005; *P < 0.05). Abbreviations: 1 = Active transcriptional start 
site (TSS), 2 = Flanking active TSS, 3 = Flanking strong transcription, 4 = Strong transcription, 5 = Weak transcription, 6 = Genic 
enhancer, 7 = Active enhancer, 8 = Zinc-finger genes & repeats, 9 = Heterochromatin, 10 = Bivalent/poised TSS, 11 = Flanking 
bivalent TSS, 12 = Bivalent Enhancers, 13 = Polycomb-repressed, 14 = Weak Repressed Polycomb, 15 = Quiescent.
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more DNAm–GE connections exist but were unde
tected in this study, which could influence the 
results of the feature enrichment tests. Third, both 
cohorts were analysed cross-sectionally, a study 
design that is unable to provide evidence for causa
tion or directionality [14,16]. Mechanisms of 
reverse causation, in which changes to DNAm 
occur in response to modified GE, have been 
observed [87]. Therefore, it is unknown whether 
changes to DNAm are actually proceeding changes 
in GE as described in the canonical mechanism. 
Fourth, some annotations were derived from 
experiments conducted on a well-described lym
phoblastoid cell line (GM12787), which was selected 
based on data that supports the genetic and func
tional similarity to mature blood cells (i.e., T cells 
and B cells) [88]. One benefit of using this approach 
is that annotations were kept consistent across the 
different functional enrichment categories (e.g., 
chromatin landscapes, enhancer definitions, etc.). 
It remains important to consider that this study 
focused on the association between DNAm at indi
vidual CpG sites and GE. In actuality, regional 
changes in DNAm may be co-regulating GE in 
some instances, and future studies can examine 
how regions of CpGs work in concert to regulate 
GE [68,89]. Finally, this study only investigated 
DNAm and GE in the peripheral blood and may 
not generalize to other tissues [65]. Future analyses 
with more comprehensive measurements in alter
native tissues will be crucial for characterizing gen
ome-wide trends across cell types.
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