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DNA methylation links genetics, fetal
environment, and an unhealthy lifestyle to
the development of type 2 diabetes
Emma Nilsson* and Charlotte Ling

Abstract

Type 2 diabetes is a complex trait with both environmental and hereditary factors contributing to the overall
pathogenesis. One link between genes, environment, and disease is epigenetics influencing gene transcription and,
consequently, organ function. Genome-wide studies have shown altered DNA methylation in tissues important for
glucose homeostasis including pancreas, liver, skeletal muscle, and adipose tissue from subjects with type 2 diabetes
compared with nondiabetic controls. Factors predisposing for type 2 diabetes including an adverse intrauterine
environment, increasing age, overweight, physical inactivity, a family history of the disease, and an unhealthy diet have
all shown to affect the DNA methylation pattern in target tissues for insulin resistance in humans. Epigenetics including
DNA methylation may therefore improve our understanding of the type 2 diabetes pathogenesis, contribute to
development of novel treatments, and be a useful tool to identify individuals at risk for developing the disease.

Keywords: Epigenetics, DNA methylation, Type 2 diabetes, Insulin resistance, Aging, Obesity, Intrauterine environment,
Genetics

Background
Type 2 diabetes is one of the most common chronic
metabolic diseases in developed countries [1]. This form
of diabetes is a consequence of the target tissues becom-
ing resistant to the effects of insulin and the failure of
pancreatic β-cells to produce enough insulin. It is shown
that type 2 diabetes develops with age, physical inactiv-
ity, and obesity in subjects with a genetic predisposition
and/or in subjects who have experienced an adverse
intrauterine environment. It is a complex multifactorial
disease whose development is dependent on interactions
in and between the predisposing factors.
One link between genes, environmental exposure, and

disease development is epigenetics. It provides a molecu-
lar mechanism to explain how interactions between
genetic and environmental factors may be involved in a
disease process. The term epigenetics is typically de-
scribed as heritable changes in gene function that occur
without a change in the nucleotide sequence [2].

Epigenetic regulation includes DNA methylation, histone
modifications, and non-coding RNA. DNA methylation
is the most studied epigenetic mark so far and occurs
mainly at the fifth position of the cytosine ring in CpG
dinucleotides. DNA methylation is required to maintain
cell-specific gene expression, plays an important role
during embryonic development, and contributes to the
establishment of imprinting and X-chromosome inacti-
vation [3–5]. DNA methylation in promoter regions has
been associated with transcriptional silencing. However,
emerging data show that the effect of DNA methylation
depends on the genomic location, and it may also affect
alternative splicing, genomic stability, transcriptional
elongation, and transcription of non-coding RNAs [3]. It
may thereby also be associated with increased gene
expression. The establishment and maintenance of epi-
genetic modifications are susceptible to environmental
factors including dietary factors and changes in metabol-
ism [6]. This, in addition to the fact that epigenetic
changes accumulate in the living individual [7], led to
the hypothesis that epigenetic modifications could be in-
volved in age and lifestyle-related metabolic diseases
such as type 2 diabetes. Indeed, we and others have
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shown altered epigenetic states in tissues important for
glucose homeostasis including pancreas, liver, skeletal
muscle, and adipose tissue from subjects with type 2 dia-
betes compared with nondiabetic controls [8–14]. These
studies include differential DNA methylation of candi-
date genes that affect insulin secretion from pancreatic
beta cells and thereby could play an important role in
the pathogenesis of type 2 diabetes [8, 14].
The aim of this review is to summarize studies support-

ing epigenetics as a link between genetics, the fetal environ-
ment, an unhealthy lifestyle and the development of type 2
diabetes. In particular, this review will focus on risk factors
for type 2 diabetes and their impact on DNA methylation
in target tissues for insulin resistance in humans, including
skeletal muscle, liver and adipose tissue (Fig. 1).

DNA methylation and risk factors for type 2
diabetes
Intrauterine environment
Fetal programming describes the process by which dif-
ferent environmental conditions during development
can have long lasting effects on metabolic pathways in-
fluencing disease susceptibility. The first evidence for
the importance of the intrauterine environment in rela-
tion to type 2 diabetes came in the early 1990s [15, 16].
Since then, numerous studies have reported a relation-
ship between low or high birth weight and risk of devel-
oping type 2 diabetes later in life [17–20]. Already young
adult individuals born with low birth weight show signs
of metabolic impairment related to insulin resistance in-
cluding an altered fat distribution, increased lipolysis,
and reduced expression of key insulin signaling proteins
in insulin target tissues [21–24]. The increased risk of
insulin resistance and type 2 diabetes in these individuals
has long been speculated to originate at the epigenetic
level, since epigenetic marks are thought to respond to

the surrounding environment. Prenatal factors including
mode of conception, maternal smoking, and maternal
diet have indeed shown to effect the DNA methylation
pattern [25–27]. Differential methylation of IGF2, as well
as other type 2 diabetes-related genes, have been found
in children born to mothers experiencing famine, further
pointing to epigenetics as a mechanism connecting pre-
natal nutrition and the onset of type 2 diabetes later in
life [28–30]. Also, periconceptual folic acid supplemen-
tation has been shown to alter the methylation in IGF2
in children from the folic acid-supplemented mothers
[31]. Godfrey et al. reported that epigenetic marks mea-
sured in umbilical cord tissue at birth can predict
phenotypic outcomes such as obesity in later childhood
[32]. We have shown that young men who had a low
birth weight have differential DNA methylation in their
adipose tissue compared with men born with a normal
birth weight [33]. A recent study also suggests that al-
tered epigenetic and transcriptional regulation of
adipose-derived stem cells could play a role in program-
ming adipose tissue dysfunction in individuals born with
low birth weight [34].
The phenotypic effects of epigenetic modifications

during development may not manifest until later in life
in response to environmental challenges such as energy
dense diets. As an example of this, we found that 5 days
high-fat overfeeding unmasked a decreased plasticity in
subjects born with low birth weight compared with sub-
jects born with normal birth weight at the DNA methy-
lation level in the skeletal muscle [35, 36]. Also, fasting
induces DNA methylation changes in LEP and ADIPOQ
promoters in adipose tissue among normal birth weight
but not among low birth weight subjects. The altered
epigenetic flexibility in low birth weight subjects might
contribute to their differential response to fasting and
increased risk of metabolic disease [37].

Genes
The genetic contribution to type 2 diabetes has been
demonstrated with linkage analyses and twin and adop-
tion studies [38]. However, our knowledge about the
impact of environmental factors is so far greater than
the understanding of the underlying genetic factors [39].
Association studies have until now identified > 120 gen-
omic loci influencing type 2 diabetes susceptibility [40].
A large number of the identified single nucleotide poly-
morphisms (SNPs) are located in intergenic regions, in
introns, and/or are not predicted to result in functional
changes at the protein level. The molecular mechanisms
through which these SNPs influence gene function and
disease pathology are largely unknown but may include
epigenetic mechanisms. The introduction or removal of
a CpG site may be a molecular mechanism through
which some of the type 2 diabetes SNPs affect gene

Fig. 1 A suggested model of type 2 diabetes development and
focus of this review article. Risk factors for type 2 diabetes affect
expression of genes involved in glucose homeostasis regulation via
epigenetic modifications including DNA methylation
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function. Indeed, a study investigated the 40 SNPs asso-
ciated with type 2 diabetes at that time and found that
19 of 40 (48%) SNPs introduce or remove a CpG site
[41]. In adipose tissue, the degree of methylation seems
to mediate the impact of SNPs on metabolic traits, in-
cluding insulin sensitivity [42]. In the skeletal muscle, we
further showed that interactions between genetic (SNP),
epigenetic (DNA methylation), and non-genetic (age)
factors influence gene expression and metabolism [43].
We have observed differential DNA methylation in the

skeletal muscle from individuals with a family history of
type 2 diabetes compared with individuals without such
family history [11]. Although the epigenetic differences
we find between these individuals may be due to genetic
factors, they could of course also be due to a shared en-
vironment within families. However, based on heritabil-
ity estimates in twin and family studies, several studies
have found that DNA methylation levels are under gen-
etic control [12, 44–47]. We also found support for a
genetic impact on DNA methylation in a study where
we found a stronger correlation of genome-wide adipose
tissue DNA methylation levels in monozygotic twin pairs
compared with same-sex dizygotic twins or unrelated
subjects [9].

Diet
Methyl groups for all biological methylation reactions
are primarily supplied from dietary methyl donors and
co-factors such as folate, choline, methionine, vitamin
B2, vitamin B6, and vitamin B12. These dietary compo-
nents can affect the one-carbon metabolism that deter-
mines the amount of S-adenosylmethionine (SAM),
which is the methyl donor for DNA and histone
proteins. The reliance on dietary sources of methyl do-
nors for DNA methylation reactions has led to the sug-
gestion that nutrients may affect both the establishment
and maintenance of DNA methylation patterns. Subjects
with type 2 diabetes seem to have reduced folate levels
in serum compared with healthy controls [10]. Interest-
ingly, at the same time, the subjects with type 2 diabetes
also had reduced DNA methylation of the majority
(94%) of differentially methylated CpG sites in a
genome-wide analysis in the human liver [10]. Folate
levels correlated negatively with fasting glucose levels
already in nondiabetic subjects, suggesting that reduced
circulating folate levels may contribute to the develop-
ment of type 2 diabetes.
Energy-dense food high in calories and fat is an im-

portant risk factor for obesity and type 2 diabetes [48]. A
study investigating the effect of a short-term (5 days)
high-fat overfeeding diet on the genome-wide DNA
methylation pattern in the skeletal muscle from healthy
young men found widespread DNA methylation changes
affecting almost half of the investigated genes [49]. Due

to the cross-over design of the overfeeding study, the
reversibility of the induced DNA methylations could
be investigated. The overfeeding-induced methylation
changes were only partly reversed 6–8 weeks after
returning to the control diet. The slow reversibility
could have implications for build-up of CpG methyla-
tion over time. In a recent randomized control study,
we investigated the impact of 7 weeks of saturated or
polyunsaturated fat overfeeding on the DNA methyla-
tion pattern in human adipose tissue and observed dis-
tinct epigenetic changes induced by the two different
overfeeding diets [50]. Both diets resulted in a similar
weight gain and an increased mean degree of methyla-
tion in adipose tissue. However, the saturated fat diet
resulted in elevated liver and visceral fat accumula-
tions. Also, these data suggest that DNA methylation
at baseline can predict weight gain in response to over-
feeding. In addition, DNA methylation in adipose tis-
sue seems to be able to predict weight loss in response
to a low caloric diet as well [51, 52].

Obesity
Increased body fat stores resulting from an imbalance
between energy intake and energy expenditure
characterize obesity. The prevalence of overweight and
obese individuals has increased dramatically in the last
decades. Obesity constitutes a major risk factor for sev-
eral serious diseases including type 2 diabetes. Studies
focusing on epigenetic patterns in obesity have found al-
tered DNA methylation levels in genes related to meta-
bolic processes, for example, circadian clock system
genes [53]. Because obese people are at increased risk of
many age-related diseases, it is a possible hypothesis that
obesity increases the biological age of some tissues.
Horvath et al. reported a strong correlation between
high body mass index (BMI) and the epigenetic age of
liver tissue, suggesting that the accelerated epigenetic
aging may play a role in liver-related comorbidities of
obesity, such as insulin resistance [54]. BMI was related
to DNA methylation in whole blood cells from 479 indi-
viduals and identified CpG sites annotated to HIF3A
with increased DNA methylation associated with in-
creased BMI. The association was further validated in
adipose tissue from 635 females [55]. It has been pro-
posed that the HIF system could play a role in mecha-
nisms involved in adipose tissue inflammation, insulin
resistance, and the etiology of obesity-related diseases
[56, 57]. We analyzed the genome-wide DNA methyla-
tion pattern in human adipose tissue from 96 males and
94 females and found that DNA methylation of ~ 5000
CpG sites was associated to BMI [58]. The strong effect
of increased BMI on the degree of DNA methylation in
human adipose tissue indeed propose that obesity can
mediate some of its effects via altering the epigenome.
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Interestingly, a large number of these CpG sites do also
show differential DNA methylation in adipose tissue
from subjects with type 2 diabetes compared with con-
trols [9], suggesting that BMI-associated changes in
DNA methylation may predispose to type 2 diabetes.
We could also link BMI-associated DNA methylation to
differential expression of almost 3000 genes [58].
Another epigenome-wide study showed that BMI is as-
sociated with widespread changes in DNA methylation
in blood and that these changes correlated to methyla-
tion patterns in other tissues including subcutaneous
and omental fat, liver, and muscle. They demonstrated
that the DNA methylation alterations are a consequence
rather than a cause of obesity. The methylation changes
occurred in genes involved in lipid metabolism and in-
flammation and predicted future development of type 2
diabetes [59]. DNA methylation and gene expression
patterns in adipose tissue have also been shown to differ
significantly within young adult monozygotic BMI-
discordant twin pairs [60]. We have in a recent study
identified abnormal epigenetic changes during differenti-
ation of skeletal muscle stem cells from obese compared
with non-obese humans, proposing an altered epigenetic
memory in muscle stem cells due to obesity [61]. Inter-
estingly, there were many genes involved in epigenetic
regulation and metabolic diseases among genes showing
differential methylation and expression during differenti-
ation in obese subjects only.

Inactivity
Physical inactivity contributes to lifestyle-related dis-
eases, including obesity and type 2 diabetes. We have
previously shown that 9 days of bed rest induce DNA
methylation changes in PGC1α that are not totally re-
versed after a retraining period of 4 weeks in the skeletal
muscle of healthy young men [62]. PGC1α is the master
regulator of mitochondrial biogenesis, and PGC1α
mRNA expression is reduced in the skeletal muscle from
subjects with type 2 diabetes [63]. Interestingly, it has
been shown that DNA methylation regulation of PGC1α
in the skeletal muscle may explain interindividual vari-
ation in response to exercise training [64]. Although the
benefits of regular exercise are well known, the under-
lying regulatory mechanisms are still not completely
understood but may include epigenetics. Methylation
changes in insulin target tissues have been reported after
both acute and long-term physical exercise [11, 65–68].
A few years ago, it was shown that DNA methylation
might be involved in muscle adaptation to regular exer-
cise training in men with or without a family history of
type 2 diabetes [11]. A 6-month exercise intervention
changed both DNA methylation and mRNA expression
of a number of genes involved in skeletal muscle metab-
olism. A study of fat biopsies from the same individuals

showed that exercise induces genome-wide changes in
DNA methylation also in human adipose tissue [66].
Here, a general global increase in DNA methylation in
addition to changes in DNA methylation of 17,975 indi-
vidual CpG sites including several genes associated with
type 2 diabetes and obesity was observed. Two genes
with differential methylation and expression in response
to exercise, Hdac4 and Ncor2, were silenced in 3T3-L1
adipocytes which resulted in increased lipogenesis both
in the basal and insulin-stimulated state. The epigenetic
changes induced by bed rest or exercise may hence
affect tissue function and predispose to or protect
against disease risk (Table 1).

Aging
Aging is a complex multifactorial process affecting all
living beings. It is associated with a progressive decline
in physiological functions and an increased incidence of
chronic metabolic diseases including type 2 diabetes.
One possible explanation may be that aging causes
epigenetic changes that effect expression of genes im-
portant for glucose homeostasis. A study of young and
elderly monozygotic twin pairs showed that the young
twin pairs exhibit a similar epigenetic pattern, whereas
intrapair differences were substantial in elderly twin
pairs, supporting the idea that epigenetic changes accu-
mulate during life [7]. Studying the skeletal muscle from
young and elderly twins, we could show age-related
DNA methylation and expression changes of genes
encoding proteins involved in the respiratory chain, i.e.,
NDUFB6 and COX7A1 [43, 69]. A prospective study has
further shown that DNA methylation changes over time
[45]. Epigenetic drift is suggested to be caused by envir-
onmental factors or spontaneous stochastic errors in the
process of transmission of DNA methylation and leads
to unpredictable differences in the methylome among
aging individuals. The imperfect maintenance of epigen-
etic marks during the process of replication may be
accentuated during aging as levels of DNA methyltrans-
ferase 1 (DNMT1), the maintenance DNMT, has been
reported to decline in aging cells [70]. Several studies
have investigated DNA methylation changes with age in
target tissues for insulin resistance [58, 71–75]. Al-
though many age-related changes depend on cell type
[72], several studies from our group and others have
shown that some DNA methylation changes occur at
specific sites during aging in a highly reproducible way,
independently of tissue type, sex, or disease state [58, 71,
76–80]. A study analyzing ~ 8000 samples representing
51 healthy human tissues and cell types identified that
DNA methylation at 353 CpGs accurately predicted age
[73]. Another study investigated the rate of DNA methy-
lation change by building a predictive model of the aging
methylome from the blood of individuals aged 19–
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101 years [81]. This study identified a set of 71 CpGs
that have a high accuracy of age prediction and nearly
all markers occur within or near genes associated with
aging. Interestingly, a number of the blood-based epi-
genetic markers of age can also be found in tissues rele-
vant for glucose homeostasis [58, 71, 76]. These include
differential methylation of ELOVL2, KLF14, and FHL2
(Fig. 2). Although these studies clearly demonstrate that
age affects the DNA methylation pattern, future studies
need to address the mechanisms behind these specific
age-related epigenetic changes taking place in multiple
tissues.

Conclusions
The prevalence of type 2 diabetes is rapidly increasing
worldwide. This disorder causes suffering, deaths, and
costs and is becoming a more and more severe problem
for our society. It is important to better understand the
underlying mechanisms in order to improve prediction,
prevention, and treatment of the disease. As suggested

in this review, type 2 diabetes develops due to an inter-
play between epigenetics, genetics, fetal environment,
and lifestyle. Studies presented in this review show that
DNA methylation is highly dynamic and responsive to
the environment. Despite the facts that most of the find-
ings in the reviewed papers are correlative and that most
studies investigate only a small number of the existing
CpG sites, these findings will be valuable for hypothesis
development of future studies. Future work should focus
on finding the optimal lifestyle (for example, type of diet
and type/duration of exercise) for hindering the develop-
ment of epigenetic-based diseases and how all these
could be affected by genetic background. Epigenetics can
either provide a biological mechanism for disease devel-
opment, be targeted for therapy, or serve as a biomarker
of disease or disease risk even if not directly involved in
causing the disease. The epigenetic studies summarized
in this review may improve our understanding of disease
pathogenesis, contribute to development of novel ther-
apies, and improve prediction of type 2 diabetes.
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Table 1 Summary of some studies that have investigated the impact of physical inactivity and/or activity on DNA methylation in
human skeletal muscle and adipose tissue

Intervention Tissue Key findings Reference

9 days of bed rest Muscle Increased methylation of PGC1α [62]. AC Alibegovic et al., American journal
of physiology Endocrinology and metabolism
2010;299:E752-763

Acute exercise Muscle Response to exercise based on changed
methylation of PGC1α

[64]. S Bajpeyi et al., Endocrinology
2017;158:2190-2199

6 months exercise intervention Muscle 2051 genes (i.e. MEF2A, RUNX1, NDUFC2,
and THADA) with decreased and 766
genes with increased methylation

[11]. MD Nitert et al., Diabetes
2012;61:3322-3332

Acute exercise Muscle Decreased methylation of PGC1α,
PDK4, and PPARδ

[65]. R Barres et al., Cell metabolism
2012;15:405-411

3 months supervised exercise Muscle Methylation changes at 4919 sites
across the genome in trained leg

[67]. ME Lindholm et al., Epigenetics
2014;9:1557-1569

6 months exercise intervention Adipose tissue 17,975 individual CpG sites in 7663
unique genes (i.e. HDAC4 and NCOR2)
showed altered methylation

[66]. T Ronn et al., PLoS genetics
2013;9:e1003572

16 weeks of either endurance
or resistance training

Muscle Endurance and resistant training
induced different epigenetic changes

[68]. DS Rowlands et al., Physiol Genomics
2014;46:747-765

Fig. 2 A summary of some tissues and genes that are affected by
age by altered DNA methylation
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