REVIEW

Toll-like receptors in health and disease

Kunyu Wang^{1,#} Hanyao Huang^{2,#} Oi Zhan¹ Haoran Ding¹ Yi Li^{1,*} O

¹Department of Head and Neck Oncology Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China

²Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China

*Correspondence

Yi Li, Department of Head and Neck Oncology Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Number 14, Unit 3, Renmin Nan Road, Chengdu, Sichuan 610041, China.

Email: Liyi1012@163.com

Funding information

Research and Develop Program, West China Hospital of Stomatology Sichuan University, Grant/Award Number: RD-02-202107; Sichuan Postdoctoral Science Foundation, Grant/Award Number: TB2022005: Sichuan Province Science and Technology Support Program, Grant/Award Number: 2022NSFSC0371; National Natural Science Foundation of China, Grant/Award Numbers: 82301148, 81972546

Abstract

Toll-like receptors (TLRs) are inflammatory triggers and belong to a family of pattern recognition receptors (PRRs) that are central to the regulation of host protective adaptive immune responses. Activation of TLRs in innate immune myeloid cells directs lymphocytes to produce the most appropriate effector responses to eliminate infection and maintain homeostasis of the body's internal environment. Inappropriate TLR stimulation can lead to the development of general autoimmune diseases as well as chronic and acute inflammation, and even cancer. Therefore, TLRs are expected to be targets for therapeutic treatment of inflammation-related diseases, autoimmune diseases, microbial infections, and human cancers. This review summarizes the recent discoveries in the molecular and structural biology of TLRs. The role of different TLR signaling pathways in inflammatory diseases, autoimmune diseases such as diabetes, cardiovascular diseases, respiratory diseases, digestive diseases, and even cancers (oral, gastric, breast, colorectal) is highlighted and summarizes new drugs and related clinical treatments in clinical trials, providing an overview of the potential and prospects of TLRs for the treatment of TLR-related diseases.

KEYWORDS

cancer, clinical treatment, disease, innate immunity, toll-like receptors

INTRODUCTION

Once thought to be a general immune response, innate immunity serves as the human being's first line of protection against microbial invasion. On the other hand, the identification of Toll-like receptors (TLRs) brought about the first awareness that innate immunity is pathogen-specific.¹ The innate immune system uses germline-encoded pattern recognition receptors (PRRs) as its first line of defense against microorganisms.2 Pathogen-associated molecular patterns (PAMPs), which are chemicals specific to microbes, and damage-associated

^{*}Kunyu Wang and Hanyao Huang contributed equally to this work.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

^{© 2024} The Authors. MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

molecular patterns (DAMPs), which are molecules derived from injured or dying cells, are recognized by TLRs, which are PRRs. Innate immune responses are induced when TLRs trigger downstream signaling pathways by generating type I interferons (IFNs), inflammation-inducing cytokines, and other agents. These mechanisms not only set off an immediate defensive reaction from the host, but they also initiate and orchestrate an adaptive immune response specific to an antigen.³

TLRs are an essential part of the adaptive immune response. When stimulated, TLRs trigger downstream signaling pathways that maintain host microecological homeostasis and remove dead or mutated cells. General autoimmune diseases and both chronic and acute inflammatory conditions can result from inappropriate TLR stimulation. Moreover, an increasing body of research suggests that endogenous chemicals generated by dying cells or in specific pathogenic settings activate TLRs, which can cause or hasten the onset of autoimmune disorders and inflammation. There are several ways in which the inflammatory response can encourage the development of cancer, such as nuclear factor-κΒ's (NF-κΒ's) antiapoptotic action, which damages DNA oxidatively and triggers a healing response in the tissue.^{4–8} The pathophysiology of various malignancies has been linked to deregulation of NF-κB, which activates through a pathway dependent on myeloid differentiation primary-response protein 88(MyD88), causing inflammation and encouraging the conversion of precancerous cells into malignant cells.9

This article reviews the recent discoveries in the molecular and structural biology of TLRs; focuses on the roles of different TLR signaling pathways in inflammatory diseases, autoimmune diseases, and even cancers; and summarizes new drugs and related clinical treatments in clinical experiment, giving a general summary of TLRs' potential and future possibilities for treating disorders linked to TLRs.

2 | TLR AND LIGAND-RECOGNITION MECHANISMS

TLR is a type I transmembrane protein that consists of three main structural regions. It is characterized by an Leucine-rich repeat(LRR) in the outer domain, a membrane-spanning structural domain, and homology domain in the cytoplasmic Toll/IL-1R (TIR). So far, 10 functional TLRs have been identified in humans (TLR1–10), and 12 have been identified in mice (TLR1–9 and TLR11–13). Both nonimmune and immune-related innate cells, such as fibroblasts and epithelial cells (ECs), as well as macrophages, lymphocytes, granulocytes, and dendritic cells (DCs), express them. Owing to retroviral insertion,

TLR10 is not functional in mice, whereas TLR11, TLR12, and TLR13 are absent from the human DNA.

TLRs on the cell surface, including as TLR1, TLR2, TLR4, TLR5, TLR6, and TLR10, are mainly responsible for identifying lipids, lipoproteins, and proteins found in microbial membranes. Mammals' TLR2 forms homodimers or heterodimers with TLR1, TLR4, TLR6, and TLR10 to recognize various ligands, 12-14 which together can sense a variety of PAMPs derived from a variety of pathogens, including bacteria, fungi, parasites, and viruses. TLR2 also recognizes a variety of DAMPs generated by necrotic cells, inflammatory processes, and tissue injury.¹⁵ DCs and macrophages produce a range of proinflammatory cytokines in response to these endogenous ligands of TLRs. Cell surface lipopolysaccharide (LPS) and myeloid differentiation factor 2 (MD2) are recognized by TLR4, which results in the formation of a spatially symmetric M-type TLR4-MD2-LPS dimer. Gram-negative bacteria's outer membrane contains a significant amount of LPS, a strong immunostimulatory chemical that can lead to infectious shock.¹⁶ Apart from LPS, TLR4 is able to identify multiple pathogenic components that activate typical pathways to produce cytokines that promote inflammation and/or IFNs via alternative pathways. For example, the capsid proteins of the virus that causes respiratory infections and the pneumococcal virulent proteins are recognized by TLR4. 17,18 TLR5 is capable of identifying the continuous structural domain of flagellin. 19 It is strongly expressed in DCs of the lamina propria of the small intestine, where it detects flagellin from flagellated bacteria, inducing the production of inflammatory factors and thereby modulating innate and adaptive responses to intestinal bacteria (Figure 1).²⁰

Inside of cells, regions such as lysosomes, endosomes, and extracellular reticulum (ER) express TLRs, which include TLR3, TLR7, TLR8, and TLR9. They can distinguish between nucleic acids produced by bacteria and viruses as well as self-nucleic acids found in illnesses like autoimmunity.^{21,22} Additionally, TLRs produce IFNs and inflammation-related cytokines to trigger antiviral innate immune responses.

TLR3 can identify RNA originating from injured cells, viral double-stranded RNA (dsRNA), and small interfering RNAs.²³ When TLR3 is activated, NF-κB is also activated, which results in the synthesis of IFNs and proinflammatory cytokines.^{24,25} Primarily expressed in plasmacytoid DCs (pDCs), TLR7 identifies single-stranded (ss) RNA found in viruses and acts as a small purine analog (imidazoquinoline); moreover, it identifies RNA from Streptococcus B bacteria in conventional DCs (cDCs), inducing type I IFN and proinflammatory cytokine production.^{26–28} Human TLR8 is responsive to viral and bacterial RNA, and TLR8 is most similar phylogenetically to TLR7. TLR8 is

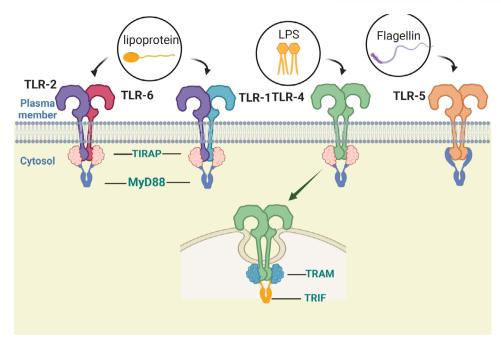


FIGURE 1 Cell surface TLRs and associated ligands. TLR1, TLR2, TLR4, TLR5, and TLR6 are mainly located on the cell surface. TLR2 usually forms a heterodimer with TLR1 or TLR6 and is involved in the recognition of a variety of PAMPs derived from bacteria, fungi, parasites, and viruses, such as lipopeptides from bacteria. In addition to primarily recognizing LPS on the cell surface, TLR4 can be internalized and retained in the endosome. TLR5 detects flagellin (a component of bacterial flagella).

expressed in a variety of tissues, is most highly expressed in monocytes, and is upregulated following bacterial or viral RNA stimulation, as well as inducing IFNs and inflammation-related cytokine generation. ²⁹ TLR9 is able to identify DNA from bacteria and viruses that are rich in unmethylated CpG-DNA motifs. In pDCs, TLR9 plays a major role in the generation of IFN- α following infection by viruses containing DNA like Herpes simplex virus 1(HSV-1) and HSV-2 (Figure 2).^{30,31}

The biological roles and ligand recognition of human TLRs 1—9 are well understood. TLR10, on the other hand, is one of the more obscure components within this group, the main limiting factor of which is the lack of suitable mouse models for study, asretroviral insertion into wild-type (WT) mice does not result in the expression of functional TLR10.³² Although TLRs are commonly thought to upregulate proinflammatory cytokine production, recent studies have shown that TLR10 is the only known member of the TLR family that can induce anti-inflammatory effects.^{33,34} Researchers have suggested that its molecular mechanism of anti-inflammatory activity may involve competing with other TLRs for ligands or activating the production of the anti-inflammatory cytokine.³⁵

TLR11, 12, and 13 are present in mice but not in humans and are still poorly understood among researchers. TLR11 exists inside the endolysosome and is capable of identifying filamentous protein-like molecules originating from *Toxoplasma gondii* as well as flagellin or other unknown

protein components of UPEC.³⁶ Similar to TLR11, TLR12 appears primarily in bone marrow cells and is capable of identifying filamentous proteins from *T. gondii*.³⁶ TLR13 is capable of identifying bacterial 23S rRNA and regulates the innate immune response.^{37–39}

3 | TLR-RELATED SIGNALING PATHWAYS

Every TLR that is produced by host cells is made in the ER, moved to the Golgi complex, and then translocated to the intracellular spaces or the cell membrane. UNC93B1 (Unc-93 homolog B1) is a multichannel transmembrane protein that controls and regulates the translocation of intracellular TLRs (i.e., TLR3, TLR7, TLR8, and TLR9) to endosomes. All NA-sensing TLRs require the 12-fold transmembrane protein UNC93B1 to leave the endoplasmic reticulum and travel to endosomes. TLR4-associated protein (PRAT4A) is an additional Erresident protein that regulates TLR1, TLR2, TLR4, TLR7, and TLR9 translocation from the ER to the endosomes and plasma membrane. Sp96 (a member of the heat shock protein [Hsp]90 family) in the ER is a universal chaperone for most TLRs.

After recognition of the corresponding ligand through interaction with the LRR, a single TLR recruits members of a group of adapters containing TIR domains

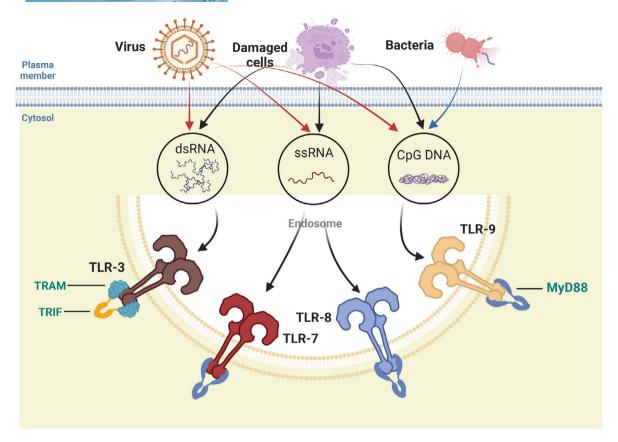


FIGURE 2 Intracellular TLRs and related ligands. At steady state, TLR3, TLR7, TLR8, and TLR9 are primarily localized to the endoplasmic reticulum and transported to endolysosomes, where they bind their ligands. TLR3 recognizes dsRNA from viruses or damaged cells. TLR7 recognizes ssRNA from ssRNA viruses or damaged cells, and TLR9 recognizes DNA from DNA viruses and bacteria or damaged cells.

in a differential manner and triggers different signaling cascades. The MyD88-dependent pathway and the TIR domain-containing adapter-inducing interferon β (TRIF)-dependent pathway are the two main categories into which the TLR signaling pathways can be separated. ^{47–50}

3.1 | MyD88-dependent pathway

With the exception of TLR3, all TLRs influence inflammatory responses by driving NF- κ B and mitogen-activaaated protein kinases(MAPK) activation via MyD88. In addition to the TIR domain, MyD88 also has a death domain (DD). ^{48,51} Moreover, IL-1R-associated kinase (IRAK) 4 and MyD88 interact. ^{52,53} The defining kinase in the TIR signaling pathway, IRAK4, is a serine/threonine kinase with an N-terminal DD. It is also the first enzyme to be recruited to the Myddosome complex via TRIF/TRIF-related adaptor molecule(TRAM) or MyD88/TIR domain-containing adaptor protein(TIRAP). ^{53,54} To cause fast and prolonged activation of NF- κ B, respectively, IRAK4 is first activated, followed by the sequential activation of IRAK1 and IRAK2. ^{55,56} Furthermore, TRAF receptor-associated factor 6 (TRAF6), a protein belonging to the TRAF fam-

ily that is known to stimulate the NF- κ B pathway, has been demonstrated to interact with IRAK1. ^{57,58} TRAF proteins primarily mediate inflammatory responses on the cell surface and through intracellular PRR signaling pathways and specifically drive type I IFN responses. ⁵⁹ It has been demonstrated that TRAF6 is downstream of the NF- κ B, p38 MAPK, and JUN N-terminal kinase (JNK) signaling pathways. The kinase cascades, bridging proteins, and ubiquitination reactions involved in these signaling pathways are now well described. With the exception of TLR3, which only uses the TRIF-dependent pathway to promote the production of proinflammatory cytokines, all TLRs, including TLR7, TLR8, and TLR9, rely on the MyD88-dependent pathway. ⁶⁰

3.2 | TRIF-dependent pathway

TLR3 recruits TRIF, another adaptor protein, in response to dsRNA stimulation. This activation of interferon regulatory factor 3(IRF3) and NF-κB transcription factors results in the expression of genes encoding IFNs and cytokines that cause inflammation.⁶¹ TLR4 and another adapter, TRAM, are required to activate TRIF, and TRAM-TRIF

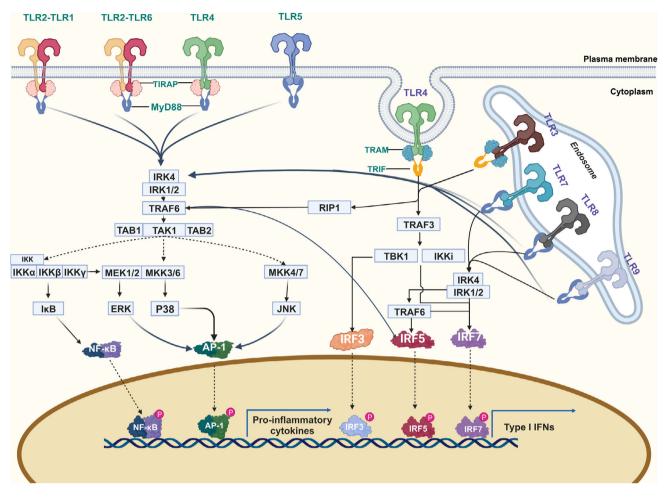


FIGURE 3 TLR signaling pathways. TLRs signaling can be divided into MyD88-dependent and MyD88-independent (TRIF-dependent) signaling pathways. TLRs are located at the plasma membrane or endosomal membrane and are activated by binding to their ligands, leading to receptor dimerization and recruitment of adaptor proteins such as MyD88, TIRAP, TRIF, and TRAM. IRAK and TRAF6 stimulate TAK1 to activate the IKK γ complex, which further releases NF- κ B into the nucleus. Activated TAK1 also promotes MAPK activation, which in turn stimulates nuclear translocation of AP-1. Both pathways support proinflammatory cytokine transcription. The MyD88-independent pathway is activated by TLR3 and TLR4. The TIR domain of TLR recruits TRIF to form complexes containing TRAF3, TBK1, and IKK, which promote nuclear translocation of IRF3 or initiate late NF- κ B through interaction with RIP1 and subsequent TRAF6 activation. Both signal transduction stimulates type I interferon production.

triggers the production of proinflammatory cytokines and IFN.⁴⁷ Through a TRAF-binding motif located in its N-terminal region, TRIF binds to TRAF3 and TRAF6, initiating alternate pathways that lead to IRF3, NF- κ B, and MAPK.⁶²⁻⁶⁵ In addition, TRIF contains the C-terminal receptor-interacting protein (RIP) homotypic interaction motif, and TRIF also interacts with TRAF6 and RIP1, which is responsible for the activation of NF- κ B (Figure 3).^{66,67}

4 | TLR-MEDIATED ADAPTIVE IMMUNE STIMULATION

TLR activation in innate immune myeloid cells guides lymphocytes to produce the most suitable effector response to

eradicate the infection and offers information about the type of invasive pathogen being identified.⁶⁸ The development of DCs is essential for the start of an adaptive immune response.⁶⁹ TLR activation increases the surface expression of costimulatory markers like CD80 and CD86 as well as major histocompatibility complex II(MHCII), which causes DCs to develop into potent antigenpresenting cells (APCs).^{70,71} For instance, when endosomal TLR3 identifies cells contaminated with viruses that have been swallowed, DC expression responds to the viruses by producing IFNs and interleukin-12(IL-12).⁷²

TLRs expressed on DCs identify bacteria or virus particles, which are subsequently taken up by the pathogen and phagocytosed or endocytosed. MHC molecules are then used to present the microbial antigen to T cells. This expression takes place in the backdrop of many TLR-

induced signals necessary for the activation of naïve T cells. 73,74 TLR can also have a direct impact on T and B lymphocyte function. When T lymphocytes are directly stimulated by TLR2 in the absence of APC, regulatory T cells proliferate. 75,76 In addition, B cell responses and antibody production are also regulated by TLRs.77 The production of natural immunoglobulinM(IgM) antibodies and canonical and noncanonical NF-kB signaling are induced by intrinsic B cell TLR activation, which also promotes B-cell proliferation. These processes are crucial for defending against bacteria and viruses like influenza.77,78 Similarly, KIR3DL2 helps TLR recognize PAMP in NK cells, which in turn triggers a powerful immune response that eliminates the infection. NK cells eliminated infections by overexpressing NKp46, NKp30, and NKG2D on NK cells when TLR2 was activated. 79-81

Not surprisingly, the TLR signaling pathway is tightly controlled, with multiple negative regulators of TLR signal transduction present at different levels to ensure that immune homeostasis is maintained.⁸² IRAK-M, Tollinteracting protein, and cytokine signal transduction Inhibitor 1 (SOCS-1) are examples of interacting TLR signaling pathway inhibitors.^{83–86}

5 | TLR-RELATED DISEASES

TLR activation triggers an inflammatory response, which is a defensive response. TLRs play a crucial function in mammalian defense against infections caused by bacteria, they are also engaged in tissue regeneration and repair. 87,88 However, due to the failure of the regulatory mechanism of TLR signaling, improper activation of TLR signaling may disrupt homeostasis by forming a feedback loop of inflammatory cytokine secretion, inducing the development of inflammation-associated and autoimmune disorders, 89 and creating a favorable microenvironment to promote carcinogenesis. 90 Persistent inflammation creates a favorable microenvironment that contains macrophages, DCs, natural killer cells, T lymphocytes, and B lymphocytes in addition to the surrounding substrate. Such many cells interact with one another directly or through the release of cytokines and chemokines, which affects the development and progression of tumors (Figure 4). 91,92

5.1 | Respiratory diseases

Due to its continuous gas exchange function, the lungs are easy target organs for airborne pathogens, allergens, and other toxic substances that cause lung infection or inflammation. The intensity and duration of exposure to harmful substances vary, and lung injury may be acute

or chronic.⁹³ During the course of the Corona Virus Disease 2019(COVID-19) study, TLRs were discovered to potentially be important in the illness.^{94–96}

Zheng et al. 97 analyzed TLR expression as well as downstream bridging protein expression in COVID-19 patients with varying stages of the disease. Subsequently, the authors constructed an in vivo infection model and reported that the administration of TLR2 inhibitors after infection modestly improved survival in mice and significantly reduced the release of proinflammatory cytokines such as IL-6, tumor necrosis factor(TNF), and IFNs, indicating that TLR2-mediated inflammation is pathogenic in severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) infection.^{97–99} In a mouse model of coronavirus infection, the TLR3 pathway is induced to stimulate the production of IFN- β in macrophages and thus impede the development of infection.¹⁰⁰ In monocyte macrophages and DCs, additional TLR7/8 recognize ssRNA fragments in the SARS-CoV-2 genome, inducing a strong proinflammatory response leading to acute lung injury and even death. 101,102 TLR4 plays a pathogenic role in persistent pulmonary fibrosis under the stimulation of DAMPs. Smallmolecule materials can selectively target MD2/TLR4, destroy the MD4/TLR2 complex, inhibit TLR4 signaling in fibroblasts, and prevent the continuous development of fibrosis. Therefore, appropriate use of TLR inhibitors can effectively prevent and reverse the occurrence and development of lung-related diseases. 103-105

5.2 | Cardiovascular diseases

Chronic inflammation of the vascular system is triggered by endothelial dysfunction accompanied by the involvement of multiple risk factors. 106 TLRs are associated with the atherosclerotic process. 106-112 In a vascular injury model, knockout of TLR2 repressed the release of inflammatory cytokines and reactive oxygen species (ROS) in damaged vessels and reduced the formation of neointima, indicating that TLR2 has a crucial role in regulating vascular inflammation and neointima formation following vessel damage. One possible treatment target that shows promise is TLR2 inhibition. 113-115 Poly(I:C) (a TLR3 agonist) activated yes-associated protein 1(YAP1) through PP1A-mediated inhibition of MOB1 and large tumor suppressor 1(LATS1) and inactivation of AMPK. Activated YAP1 increased the expression of miR-152, which inhibited the expression of P27 Kip1 and DNMT1 and caused the growth of neonatal cardiomyocytes. Furthermore, TLR3 activation can also protect the vascular wall. 116,117 TLR4 is expressed at low levels by endothelial cells in normal vessel walls but is increased in atherosclerotic plaques. The most well-characterized TLR in the

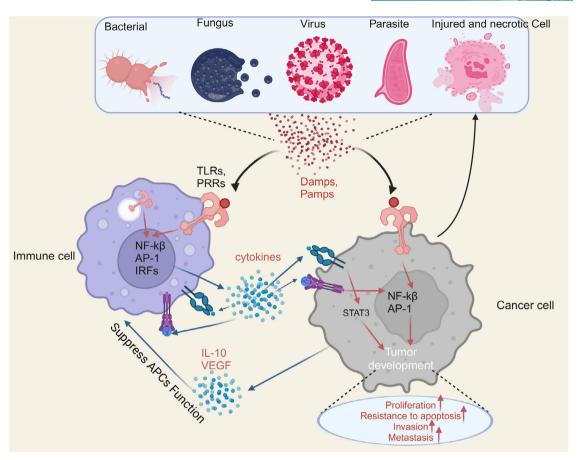


FIGURE 4 Interactions of TLRs with inflammation and tumor. TLRs are expressed on a variety of cells, including tumor cells and immune cells. TLRs signaling is involved in the carcinogenesis of the tumor microenvironment. TLRs expressed on immune cells and tumor cells are subjected to activation by pamps, damps from microorganisms, viruses, parasites, injured and necrotic cancer cells. The release of cytokines and chemokines by these activated cells is an important part of the tumor microenvironment. Moreover, cytokine-activated infiltrating immune cells can subsequently induce additional cytokines that impair the function of APCs, leading to tumor immune tolerance.

etiology of hypertension is TLR4, which is also important in myocardial inflammation. 118-121 To improve myocardial cell survival, TLR4 inhibitors disrupt TLR4-related TAK-242/MyD88/NF-κ B signal transduction, produce proinflammatory cytokines, and decrease inflammatory corpuscle NLRP3 activation. 122 Activation of TLR4-MyD88 signaling by LPS enhanced mesenchymal stem cell proliferation and prevented cardiomyocyte apoptosis in vitro. LPS pretreatment prior to infusion of mesenchymal stem cells(MSCs) into the heart helps restore in vitro cardiac function.¹²³ The flagellin-TLR5-Nox4 axis triggers vascular smooth muscle cell migration and the formation of atherosclerotic plaques. 107 Activation of TLR9 accelerates the transition of macrophages to foam cells through the NF-κB and IRF7 pathways. 124 Researchers have used angiotensin II (Ang II) to increase human plasma cfDNA and found that cell-free DNA (cfDNA)-TLR9 signaling stimulates macrophage proinflammatory activation and promotes the progression of vascular inflammation as well as atherosclerosis. 106,125 These findings suggest that TLRs

are strong inducers of oxidative stress and endothelial dysfunction, and that TLR-specific inhibition may have an effect on the management of many illnesses.

5.3 | Digestive diseases

Hepatic steatosis, which is the initial stage of nonalcoholic fatty liver disease, is followed by inflammatory nonalcoholic steatohepatitis (NASH) and end-stage liver disease. The disease advances gradually along this spectrum. 126,127 Compared with those in the control group, patients with simple steatosis exhibited low expression of TLR9 on T cells, which affected intrahepatic CD4+ T cells and peripheral CD4+ and CD8+ T cells and decreased production of proinflammatory factors by T cells. Researchers speculate that there may be adaptive protection against hepatocellular injury, as patients with NASH exhibit similar expression of TLR9 and increased expression of proinflammatory factors (IFN- γ). 128

TLRs are widely expressed in intestinal ECs (IECs), DCs, and Møs, 129 and these cells recognize relevant molecular patterns through TLRs to maintain mucosal immune homeostasis in the intestine.¹³⁰ Ulcerative colitis (UC) is a chronic and recurrent inflammatory disease of the intestine.¹³¹ According to research by Ruan et al., 132 intestinal Roseburia intestinalis flagellin stimulated TLR5-mediated immune responses and encouraged the production of anti-inflammatory molecules in IECs, while also lowering TLR5 expression in colitisstricken animals. Moreover, R. intestinalis' butyrate synthesis boosted TLR5 gene expression and reduced colitis. Emodin was employed by other researchers to inhibit the TLR5/NF-κB signaling pathway, thereby shielding animals against colitis caused by DSS. 132,133 UC patients severity of inflammation and the correlation between the intestinal TLR9 expression, TLR9 agonists cobitolimod use, reduced the number of Th17 cells, and increased IL10 Tregs, thus correcting the imbalance of Th17/Treg, may induce macrophages into "M2" phenotype, Change the balance of intestinal cytokine on disorders. 134

Necrotizing small bowel colitis (NEC) results from excessive intestinal epithelial signaling due to TLR4 activation, which is more common in preterm infant bowels than in term infant bowels. Activation of TLR4 by LPS in the lumen leads to intestinal mucosal destruction, and TLR4 activation in the endothelium leads to vasoconstriction and intestinal ischemia, which are characteristic of NEC. Sodhi et al. 135 used direct inhibition of TLR4 by HMOs (a class of indigestible carbohydrates present in breast milk) to prevent NEC.

Acute pancreatitis (AP) is a pancreatic inflammatory condition marked by asepsis that ultimately results in alveolar cell necrosis. TLR9 is expressed in pancreatic ductal and endothelial cells and resident immune cells (mainly macrophages). Early in the experimental AP process, host genomic DNA is significantly elevated in the blood, and TLR9 protein expression is subsequently upregulated following AP. Moreover, the use of CpG-ODN1826 (a TLR9 agonist) exacerbates pancreatic injury in rats and increases TNF- α expression. ¹³⁶ Inhibiting TLR9 expression may provide protection against pancreatic injury and hepatocyte injury after AP. However, appropriate use of TLR agonists can alter the imbalance in the intestinal cytokine balance in patients with colitis. TLR inhibition has an important role in the treatment of sepsis and improving the survival rate of septic patients.

5.4 | Endocrine diseases

Diabetes mellitus (DM) is a widespread metabolic illness syndrome that is becoming more and more common every-

where in the world. The incidence of complications unique to diabetes has significantly increased along with the number of individuals with diabetes and the length of time they have had the disease. 137 Low-grade systemic inflammation and immune system disorders are common features of diabetes and related complications. 138 In patients with diabetes, TLR2, TLR4, and TLR7 expression levels are four to six times higher. 139-141 Guo et al. 139 showed that TLR2, through activation of NADPH oxidse2(NOX2), can increase endothelial nitric oxide synthases(eNOS) uncoupling and total superoxide production in a ortic endothelial cells, leading to impaired NO bioavailability and insufficient endothelium-dependent vascular relaxation in type 2 diabetes mellitus (T2DM) patients and that knockdown of TLR2 can correct these pathological responses. Targeted TLR2, therefore, may be a new strategy to treat T2DM and cardiovascular complications. In the absence of Tlr7, B cells express PD-L1 levels and inhibit the CD4 T cells. It prevents diabetes from developing and restricts the growth of CD8 T lymphocytes that are specific to antigens. 140 Liu and others¹⁴² have confirmed that Tlr9-/- NOD mice to promote development and beta islet cell differentiation, result in impaired glucose tolerance, insulin sensitivity, prevent type 1 diabetes.

Many TLRs are involved in the complications associated with diabetes. Upregulation of TLR7 is one of the risk factors for the progression of diabetic retinopathy (DR) and consistent with the above findings, TLR7 deletion reduces the release of proinflammatory cytokines. Researchers have used TLR inhibitors to reduce inflammation-induced retinal damage. 143,144 Blocking the TLR signaling pathway in advance seems to have excellent therapeutic effects on the occurrence and development of diabetes.

5.5 | Sepsis

Sepsis, which is characterized by significant systemic inflammation and coagulation activation, is an infection-induced dysregulation of the host's inflammatory response that results in multiple organ damage and failure, as well as eventual death. Because of its high stability, remarkable repeatability, and broad applicability, the cecum ligation and puncture (CLP) sepsis model is widely regarded as the gold standard for research on sepsis. 148

Adult patients may be at risk for sepsis if they have the TLR2 genotype. 149,150 Researchers examined the expression of chemokines and inflammatory cytokines in the spleen of WT and TLR2-deficient mice used in a CLP model. Compared with WT mice, TLR2-/- mice showed lower IL-10 levels and decreased cysteine asparaginase 3 activation. Additionally, TLR2 had a substantial immunosuppressive effect on the spleen due to sepsis. 151 Further-

more, in patients with acute myeloid leukemia, mRNA expression of TLR2 and TLR4 was found to be considerably higher in those with sepsis than in those without symptoms of sepsis prior to induction chemotherapy.¹⁵²

The severity of the sepsis disease, inflammatory cytokines, and 28-day mortality were all positively connected with TLR3 expression. Anti-TLR3 antibodies were employed by researchers to reduce the release of inflammatory chemokines. Anti-TLR3 antibodies considerably decreased sepsis-induced mortality in animals and mitigated tissue damage brought on by intestinal ischemia. The results demonstrated that the CLP surgery group had considerably higher levels of TLR2, 4, and 9 mRNA and protein expression than the sham surgery group. Moreover, the activation of these TLRs increased the production of cytokines and the mortality rate of CLP-induced ALI animals. 155,156

HDCA (TLR4 antagonist), which controls systemic inflammation, lessens organ damage, and increases survival in septic mice, inhibits the formation of the LPS/TLR4/MD2 ternary complex and prevents the activation of the TLR4 downstream signaling pathway in macrophages. 157 Chlorthalidomide mitigates sepsisinduced oxidative stress, mitochondrial structural damage and dysfunction, and cardiomyocyte apoptosis by controlling macrophage polarization via TLR4/NF-κB/MAPK signaling.¹⁵⁸ RKH binds to TLR4 directly and inhibits TLR4 activation in immune cells, preventing organ damage and death brought on by sepsis. It considerably lowers sepsis-induced inflammatory cell activation and overproduction of proinflammatory factors, and it protects against sepsis-induced death and organ damage. 159 In LPS-treated rats, ferrostatin-1 ameliorates sepsis-induced cardiac dysfunction and dramatically lowers TLR4, NF-κB, and $I\kappa B\alpha$ levels. 160

Through the activation of TLR5, flagellin reduces the production of IL-1RN, so reducing the severity of sepsis, increasing bacterial clearance, decreasing organ inflammation and injury, and reducing immune cell apoptosis following experimental sepsis. 161 Sepsis is caused by microbial infections that generate PAMP and/or DAMP. These molecules communicate through platelet-TLR7, participate in downstream platelet activation, and help form platelet-leukocyte aggregates, which in turn cause thrombocytopenia in sepsis patients. 162 Mice lacking TLR7 have reduced systemic cytokine production, lower acute kidney injury and bacterial load, and higher survival rates following a range of microbial illnesses when compared with WT mice. Compared with WT mice, mice lacking TLR7 have lower levels of systemic cytokine production, acute renal injury, and bacterial load. They also have higher survival rates following infection with a range of pathogens. 163 The TLR9 rs187084 and rs352162 polymorphisms can be utilized

to assess the risk of sepsis and multiple organ failure in people who have had severe trauma. ¹⁶⁴ When compared with the normal group, the sepsis group's serum TLR9 levels were statistically lower. ¹⁶⁵ Inhibitory CpG sequences that block TLR9 aggression were injected into WT mice to protect them from CLP, ¹⁶⁶ and blocking the TLR9–ER stress signaling pathway lessened the damage that neutrophil extracellular trap (NET)-induced intestinal EC death caused. ¹⁶⁷

5.6 | Relationships between TLRs and carcinogenesis

Tumors express a variety of functional TLRs, and the significance that TLR signaling plays in carcinogenesis varies according on the kind of cancer cell. Consequently, the following describes the expression and functions of several TLRs in various malignancies (Table 1).

5.6.1 | TLR2

Oral squamous cell carcinoma (OSCC) is an aggressive tumor originating from the oral mucosal epithelium with varying degrees of differentiation. The incidence of OSCC varies by country/region, and most of these cancers are associated with risky lifestyle habits, including smoking, excessive alcohol consumption, and betel nut chewing. 168,169 TLR2 is expressed on keratin-forming cells of dysplastic epithelia and squamous carcinoma, whereas TLR2 expression in malignant keratinized cells may be associated with apoptosis resistance. In OSCC cells, TLR2 activation led to the production of miR-146a-5p and the subsequent suppression of CARD10, which promoted proliferation and protected the cells from apoptosis and cisplatin-induced cell death. TLR2 stimulates extracellular signal-regulated kinases 1/2 to enhance the development of human squamous carcinoma cells. 170-173 Additionally, blocking TLR2 inhibited tumor growth.¹⁷⁴

One of the most common malignant tumors to be discovered, breast cancer (BC) is the primary cause of cancer-related deaths for women globally. TLR2 is more expressed in BC tissues than in normal tissues in people with BC. High expression of serum amyloid A in BC induces neutrophil immunosuppression by stimulating the TLR2/MyD88-mediated PI3K/NF-κB signaling pathway. It also triggers p38 MAPK pathway-related apoptosis resistance and promotes the development of BC. In addition, Secli et al. Peopreted that morgana (a cochaperone of HSP90) released from cancer cells coexisted with and bound to HSP90, inducing cancer cell migration via TLR2. Therefore, some researchers have shown that

TABLE 1 The role of different TLRs in different diseases.

TLR2 SARS-CoV-2 1 Proinflammatory cytokines (II-6, TNF-α, III-1β, II-6, and MCP-1) and ROS ¹³⁻¹³⁵ Vascular damage 1 Proinflammatory cytokines (TNF-α, III-1β, II-6, and MCP-1) and ROS ¹³⁻¹³⁵ According to the properties of t	TLRs	Disease type	Mechanisms
Paragram	TLR2	SARS-CoV-2	†Proinflammatory cytokines (IL-6, TNF- α , and IFN- γ) $^{97-99}$
President cancer Neutrophil immunosuppression 1 Tumor cell apoptosis 1 Tumor cell migration and invasion 1 Tumor cell apoptosis 1 Tumor cell migration and invasion 1 Tumor cell aconcer 1 Tumor cell migration and invasion 1 Tumor cell center 1 Tumor ce		Vascular damage	†Proinflammatory cytokines (TNF- α , IL-1 β , IL-6, and MCP-1) and ROS ¹¹³⁻¹¹⁵
Tumor cell apoptosis Tumor cell apoptosi		Oral squamous cell carcinoma	↑Tumor cell growth through extracellular signal-regulated kinase 1/2 ^{170–173}
Colorectal cancer Trumor cell apoptosis Trumor cell apoptosis Colorectal cancer Trumor cell apoptosis Colorectal cancer Trumor cell migration and invasion Colorectal cancer Trumor cell death through UNC93B1-IFN-β-33 Colorectal cancer Trumor cell death through UNC93B1-IFN-β-33 Colorectal cancer Trumor cell death through UNC93B1-IFN-β-33 Colorectal cancer Trumor cell migration through epithelial-mesenchymal transition Colorectal cancer Trumor cell adhesion, spread, invasion, and potential growth Colorectal cancer Trumor cell adhesion, spread, invasion, and potential growth Colorectal cancer Trumor cell adhesion Colorectal cancer Trumor cell proliferation through the p-PAK1/p-β-catenin S675 cascade Colorectal cancer Trumor cell proliferation through the p-PAK1/p-β-catenin S675 cascade Colorectal cancer Trumor cell and migration Colorectal Co		Breast cancer	= ==
Colorectal cancer Tumor cell apoptosis 192 Table Table Tumor cell migration and invasion 198 Table Table Table Tumor cell migration and invasion 198 Table Table Table Table Tumor cell migration and invasion 198 Table Tabl		Breast cancer	↑Cancer cell migration ¹⁸⁰
Tumor cell migration and invasion Tumor cell acancer Tumor cell death through UNC93Bi-IFN-β ²¹³		Colorectal cancer	↑Proinflammatory cytokines and ROS ¹⁹⁰
T2DM †Decoupling of eNOS and total superoxide ¹³⁹ TLR3 Oral squamous cell carcinoma †Tumor cell migration and invasion ²⁰² Colorectal cancer †Tumor cell death through UNC93B1-IFN-β ²¹³ TLR4 Colorectal cancer †IFN-γ †Cytotoxic immune cells (NK + T cells) ²¹⁴ TLR4 Oral squamous cell carcinoma †Tumor cell migration through epithelial-mesenchymal transition ^{200,223} Breast cancer †Tumor cell adhesion, spread, invasion, and potential growth. ^{176,224-229} Breast cancer †Tumor cell metastasis through P13K/Akt/GSK3β /β-catenin ²²⁸ Gastric cancer †Tumor cell adhesion ²⁴⁵ TLR5 Breast cancer †Tumor cell adhesion ²⁴⁵ TLR5 Breast cancer †Tumor cell proliferation and migration (epithelial-mesenchymal transition) ³⁶⁴⁻²⁶⁶ TLR5 Breast cancer †Tumor cell invasion through migration (epithelial-mesenchymal transition) ³⁶⁴⁻²⁶⁶ Colorectal cancer †Tumor cell malignancy cytokines (TNF-α) ²⁷¹ Gastric cancer †Tumor cell malignancy induction ²⁷⁵ Colitis †Tumor cell apoptosis ²³⁶ TLR7 Oral squamous cell carcinoma †Tumor cell apoptosis ²³⁶ TLR9 Oral squamous cell carcinoma		Colorectal cancer	↑Tumor cell apoptosis ¹⁹²
TLR3 Oral squamous cell carcinoma ↑Tumor cell migration and invasion²00² Colorectal cancer ↑Tumor cell death through UNC93B1-IFN-β²13 TLR4 Colorectal cancer ↑IFN-γ ↑Cytotoxic immune cells (NK + T cells)²14 TLR4 Oral squamous cell carcinoma ↑Tumor cell migration through epithelial-mesenchymal transition²20.223 Breast cancer ↑Tumor cell adhesion, spread, invasion, and potential growth.¹¹6.224-229 Breast cancer ↑Tumor cell metastasis through PI3K/Akt/GSK3β /β-catenin²28 Colorectal cancer ↑Tumor cell adhesion²45 TLR5 Breast cancer ↑Tumor cell adhesion²45 TLR5 Breast cancer ↑Tumor cell proliferation and migration (epithelial-mesenchymal transition)³64-266 TLR5 Breast cancer ↑Tumor cell malignancy induction²75 Gastric cancer ↑Tumor cell malignancy induction²75 Colorectal cancer ↑Tumor cell malignancy induction²75 TLR7 Oral squamous cell carcinoma ↑Tumor cell apoptosis²86 TLR9 Oral squamous cell carcinoma ↑Tumor cell apoptosis²86 TLR9 Oral squamous cell carcinoma ↑Tumor cell proliferation and metastasis³00 Colorectal cancer ↓Tumor cell apoptosis³08 Colorectal cancer ↓Tum		Gastric cancer	↑Tumor cell migration and invasion ¹⁹⁸
Colorectal cancer†Tumor cell death through UNC93B1-IFN- $β$ 213Colorectal cancer†IFN- $γ$ †Cytotoxic immune cells (NK + T cells)214TLR4Oral squamous cell carcinoma†Tumor cell migration through epithelial-mesenchymal transition 220,223Breast cancer†Tumor cell adhesion, spread, invasion, and potential growth. 176,224-229Breast cancer†Tumor cell metastasis through P13K/Akt/GSK3 $β$ / $β$ -catenin 228Colorectal cancer†Tumor cell proliferation through the p-PAKI/p- $β$ -catenin S675 cascade 239Gastric cancer†Tumor cell adhesion 245†Tumor cell proliferation and migration 248TLR5Breast cancer†Tumor cell invasion through migration (epithelial-mesenchymal transition) 264-266Colorectal cancer†Proinflammatory cytokines (TNF- $α$)271Gastric cancer†Tumor cell malignancy induction 275Colitis†Proinflammatory cytokines (*NS- $λ$)33TLR7Oral squamous cell carcinoma†Tumor cell cisplatin resistance 276Colorectal cancer‡Tumor cell apoptosis 286TLR9Oral squamous cell carcinoma†Tumor cell proliferation and metastasis 300Oral squamous cell carcinoma†Tumor cell proliferation and metastasis 300Colorectal cancer‡Tumor cell apoptosis 308Colorectal cancer†Tumor cell apoptosis 308Colorectal cancer†Tumor cell migration and invasion 309,310		T2DM	↑Decoupling of eNOS and total superoxide ¹³⁹
Colorectal cancer↑IFN-γ ↑Cytotoxic immune cells (NK + T cells)214TLR4Oral squamous cell carcinoma↑Tumor cell migration through epithelial-mesenchymal transition220,223Breast cancer↑Tumor cell adhesion, spread, invasion, and potential growth.16,224-229Breast cancer↑Tumor cell metastasis through PI3K/Akt/GSK3 β / β -catenin228Colorectal cancer↑Tumor cell proliferation through the p-PAK1/p- β -catenin S675 cascade239Gastric cancer↑Tumor cell adhesion245↑Immunosuppressive immune cells (M2)246↑Tumor cell proliferation and migration248TLR5Breast cancer↑Tumor cell invasion through migration (epithelial-mesenchymal transition)264-266Colorectal cancer↑Proinflammatory cytokines (TNF- α)271Gastric cancer↑Tumor cell malignancy induction275Colitis↑Proinflammatory cytokines132,133TLR7Oral squamous cell carcinoma↑Tumor cell cisplatin resistance276TLR9Oral squamous cell carcinoma↑Tumor cell apoptosis286TLR9Oral squamous cell carcinoma↑Tumor cell proliferation173,299Oral squamous cell carcinoma↑Tumor cell proliferation and metastasis300Colorectal cancer↓Tumor cell apoptosis308Colorectal cancer↓Tumor cell apoptosis308Colorectal cancer↑Tumor cell migration and invasion309,310	TLR3	Oral squamous cell carcinoma	↑Tumor cell migration and invasion ²⁰²
TCytotoxic immune cells (NK + T cells)214TLR4Oral squamous cell carcinoma†Tumor cell migration through epithelial-mesenchymal transition220,223Breast cancer†Tumor cell adhesion, spread, invasion, and potential growth. 176,224-229Breast cancer†Tumor cell metastasis through P13K/Akt/GSK3 β / β -catenin 228Colorectal cancer†Tumor cell proliferation through the p-PAK1/p- β -catenin S675 cascade239Gastric cancer†Tumor cell adhesion245†Immunosuppressive immune cells (M2)246TLR5Breast cancer†Tumor cell invasion through migration (epithelial-mesenchymal transition)264-266Colorectal cancer†Tumor cell malignancy induction275Colitis†Proinflammatory cytokines (TNF- α)271TLR7Oral squamous cell carcinoma†Tumor cell cisplatin resistance276TLR9Oral squamous cell carcinoma†Tumor cell apoptosis286TLR9Oral squamous cell carcinoma†Tumor cell proliferation 173,299Oral squamous cell carcinoma†Tumor cell proliferation and metastasis300Colorectal cancer↓Tumor cell apoptosis308Colorectal cancer↓Tumor cell apoptosis308Colorectal cancer↓Tumor cell migration and invasion309,310		Colorectal cancer	↑Tumor cell death through UNC93B1–IFN-β ²¹³
Breast cancer↑Tumor cell adhesion, spread, invasion, and potential growth. $^{176,224-229}$ Breast cancer↑Tumor cell metastasis through PI3K/Akt/GSK3 β / β -catenin 228 Colorectal cancer↑Tumor cell proliferation through the p-PAK1/ p - β -catenin S675 cascade 239 Gastric cancer↑Tumor cell adhesion 245 TLR5Breast cancer↑Tumor cell proliferation and migration 248 TLR5Breast cancer↑Tumor cell invasion through migration (epithelial-mesenchymal transition) $^{264-266}$ Colorectal cancer↑Proinflammatory cytokines (TNF- α) 271 Colitis↑Proinflammatory cytokines 132,133 TLR7Oral squamous cell carcinoma↑Tumor cell cisplatin resistance 276 TLR9Oral squamous cell carcinoma↑Tumor cell apoptosis 286 TLR9Oral squamous cell carcinoma↑Tumor cell proliferation 173,299 Oral squamous cell carcinoma↑Tumor cell proliferation and metastasis 300 Colorectal cancer↓Tumor cell apoptosis 208 Colorectal cancer↓Tumor cell apoptosis 308 Colorectal cancer↓Tumor cell migration and invasion 309,310		Colorectal cancer	·
Breast cancer↑Tumor cell metastasis through PI3K/Akt/GSK3 β / β -catenin 228Colorectal cancer↑Tumor cell proliferation through the p-PAK1/p- β -catenin S675 cascade 239Gastric cancer↑Tumor cell adhesion 245↑Immunosuppressive immune cells (M2) 246↑Tumor cell proliferation and migration 248TLR5Breast cancer↑Tumor cell invasion through migration (epithelial-mesenchymal transition) 264-266Colorectal cancer↑Proinflammatory cytokines ($TNF-\alpha$) 271Gastric cancer↑Tumor cell malignancy induction 275Colitis↑Proinflammatory cytokines 132,133TLR7Oral squamous cell carcinoma↑Tumor cell cisplatin resistance 276TLR9Oral squamous cell carcinoma↑Tumor cell apoptosis 286TLR9Oral squamous cell carcinoma↑Tumor cell proliferation 173,299Oral squamous cell carcinoma↑Tumor cell proliferation and metastasis 300Colorectal cancer↓Tumor cell apoptosis 308Colorectal cancer↑Tumor cell migration and invasion 309,310	TLR4	Oral squamous cell carcinoma	↑Tumor cell migration through epithelial–mesenchymal transition ^{220,223}
Colorectal cancer ↑Tumor cell proliferation through the p-PAK1/p-β-catenin S675 cascade ²³⁹ Gastric cancer ↑Tumor cell adhesion ²⁴⁵ ↑Immunosuppressive immune cells (M2) ²⁴⁶ ↑Tumor cell proliferation and migration ²⁴⁸ TLR5 Breast cancer ↑Tumor cell invasion through migration (epithelial–mesenchymal transition) ^{264–266} Colorectal cancer ↑Proinflammatory cytokines (TNF-α) ²⁷¹ Gastric cancer ↑Tumor cell malignancy induction ²⁷⁵ Colitis ↑Proinflammatory cytokines ^{132,133} TLR7 Oral squamous cell carcinoma ↑Tumor cell cisplatin resistance ²⁷⁶ Colorectal cancer ↓Tumor cell apoptosis ²⁸⁶ TLR9 Oral squamous cell carcinoma ↑Tumor cell proliferation and metastasis ³⁰⁰ Colorectal cancer ↓Tumor cell apoptosis ³⁰⁸ Colorectal cancer ↑Tumor cell migration and invasion ^{309,310}		Breast cancer	↑Tumor cell adhesion, spread, invasion, and potential growth. 176,224-229
Tumor cell adhesion²45† Tumor cell adhesion²45† Tumor cell proliferation and migration²48TLR5Breast cancer† Tumor cell invasion through migration (epithelial-mesenchymal transition)²64-266Colorectal cancer† Proinflammatory cytokines (TNF-α)²71Colitis† Proinflammatory cytokines (TNF-α)²71TLR7Oral squamous cell carcinoma† Tumor cell malignancy induction²75TLR7Oral squamous cell carcinoma† Tumor cell cisplatin resistance²76TLR9Oral squamous cell carcinoma† Tumor cell apoptosis²86TLR9Oral squamous cell carcinoma† Tumor cell proliferation¹73,299Oral squamous cell carcinoma† Tumor cell proliferation and metastasis³00Colorectal cancer† Tumor cell apoptosis³08Colorectal cancer† Tumor cell migration and invasion³09,310		Breast cancer	†Tumor cell metastasis through PI3K/Akt/GSK3 β / β -catenin ²²⁸
↑Immunosuppressive immune cells (M2)246↑Tumor cell proliferation and migration 248TLR5Breast cancer↑Tumor cell invasion through migration (epithelial–mesenchymal transition)264-266Colorectal cancer↑Proinflammatory cytokines (TNF-α)271Gastric cancer↑Tumor cell malignancy induction275Colitis↑Proinflammatory cytokines 132,133TLR7Oral squamous cell carcinoma↑Tumor cell cisplatin resistance 276Colorectal cancer↓Tumor cell apoptosis 286TLR9Oral squamous cell carcinoma↑Tumor cell proliferation 173,299Oral squamous cell carcinoma↑Tumor cell proliferation and metastasis 300Colorectal cancer↓Tumor cell apoptosis 308Colorectal cancer↓Tumor cell migration and invasion 309,310		Colorectal cancer	†Tumor cell proliferation through the p-PAK1/p- β -catenin S675 cascade ²³⁹
↑Tumor cell proliferation and migration 248TLR5Breast cancer↑Tumor cell invasion through migration (epithelial-mesenchymal transition)264-266Colorectal cancer↑Proinflammatory cytokines (TNF-α)271Gastric cancer↑Tumor cell malignancy induction275Colitis↑Proinflammatory cytokines132,133TLR7Oral squamous cell carcinoma↑Tumor cell cisplatin resistance276Colorectal cancer↓Tumor cell apoptosis286TLR9Oral squamous cell carcinoma↑Tumor cell proliferation173,299Oral squamous cell carcinoma↑Tumor cell proliferation and metastasis300Colorectal cancer↓Tumor cell apoptosis308Colorectal cancer↓Tumor cell migration and invasion309,310		Gastric cancer	↑Tumor cell adhesion ²⁴⁵
TLR5Breast cancer \uparrow Tumor cell invasion through migration (epithelial–mesenchymal transition) $^{264-266}$ Colorectal cancer \uparrow Proinflammatory cytokines (TNF- α) 271 Gastric cancer \uparrow Tumor cell malignancy induction 275 Colitis \uparrow Proinflammatory cytokines 132,133 TLR7Oral squamous cell carcinoma \uparrow Tumor cell cisplatin resistance 276 Colorectal cancer \downarrow Tumor cell apoptosis 286 TLR9Oral squamous cell carcinoma \uparrow Tumor cell proliferation 173,299 Oral squamous cell carcinoma \uparrow Tumor cell proliferation and metastasis 300 Colorectal cancer \downarrow Tumor cell apoptosis 308 Colorectal cancer \uparrow Tumor cell migration and invasion 309,310			↑Immunosuppressive immune cells (M2) ²⁴⁶
Colorectal cancer \uparrow Proinflammatory cytokines $(TNF-\alpha)^{271}$ Gastric cancer \uparrow Tumor cell malignancy induction \uparrow Colitis \uparrow Proinflammatory cytokines \uparrow Proinflammatory cytokines \uparrow Tumor cell cisplatin resistance \uparrow Colorectal cancer \uparrow Tumor cell cisplatin resistance \uparrow Colorectal cancer \uparrow Tumor cell apoptosis \uparrow Colorectal cancer \uparrow Tumor cell proliferation \uparrow Colorectal cancer \uparrow Tumor cell proliferation and metastasis \uparrow Colorectal cancer \uparrow Tumor cell apoptosis \uparrow Colorectal cancer \uparrow Tumor cell apoptosis \uparrow Colorectal cancer \uparrow Tumor cell migration and invasion \uparrow Tumor cell migration \uparrow Tu			↑Tumor cell proliferation and migration ²⁴⁸
Gastric cancer Tumor cell malignancy induction ²⁷⁵ Colitis ↑Proinflammatory cytokines ^{132,133} TLR7 Oral squamous cell carcinoma ↑Tumor cell cisplatin resistance ²⁷⁶ Colorectal cancer ↓Tumor cell apoptosis ²⁸⁶ TLR9 Oral squamous cell carcinoma ↑Tumor cell proliferation ^{173,299} Oral squamous cell carcinoma ↑Tumor cell proliferation and metastasis ³⁰⁰ Colorectal cancer ↓Tumor cell apoptosis ³⁰⁸ Colorectal cancer ↑Tumor cell migration and invasion ^{309,310}	TLR5	Breast cancer	↑Tumor cell invasion through migration (epithelial–mesenchymal transition) ^{264–266}
Colitis ↑Proinflammatory cytokines ^{132,133} TLR7 Oral squamous cell carcinoma ↑Tumor cell cisplatin resistance ²⁷⁶ Colorectal cancer ↓Tumor cell apoptosis ²⁸⁶ TLR9 Oral squamous cell carcinoma ↑Tumor cell proliferation ^{173,299} Oral squamous cell carcinoma ↑Tumor cell proliferation and metastasis ³⁰⁰ Colorectal cancer ↓Tumor cell apoptosis ³⁰⁸ Colorectal cancer ↑Tumor cell migration and invasion ^{309,310}		Colorectal cancer	\uparrow Proinflammatory cytokines (TNF- α) ²⁷¹
TLR7 Oral squamous cell carcinoma ↑Tumor cell cisplatin resistance ²⁷⁶ Colorectal cancer ↓Tumor cell apoptosis ²⁸⁶ TLR9 Oral squamous cell carcinoma ↑Tumor cell proliferation ^{173,299} Oral squamous cell carcinoma ↑Tumor cell proliferation and metastasis ³⁰⁰ Colorectal cancer ↓Tumor cell apoptosis ³⁰⁸ Colorectal cancer ↑Tumor cell migration and invasion ^{309,310}		Gastric cancer	↑Tumor cell malignancy induction ²⁷⁵
Colorectal cancer \$\text{Tumor cell apoptosis}^{286}\$ TLR9 Oral squamous cell carcinoma \$\text{Tumor cell proliferation}^{173,299}\$ Oral squamous cell carcinoma \$\text{Tumor cell proliferation and metastasis}^{300}\$ Colorectal cancer \$\text{Tumor cell apoptosis}^{308}\$ Colorectal cancer \$\text{Tumor cell migration and invasion}^{309,310}\$		Colitis	†Proinflammatory cytokines ^{132,133}
TLR9 Oral squamous cell carcinoma ↑Tumor cell proliferation ^{173,299} Oral squamous cell carcinoma ↑Tumor cell proliferation and metastasis ³⁰⁰ Colorectal cancer ↓Tumor cell apoptosis ³⁰⁸ Colorectal cancer ↑Tumor cell migration and invasion ^{309,310}	TLR7	Oral squamous cell carcinoma	↑Tumor cell cisplatin resistance ²⁷⁶
Oral squamous cell carcinoma ↑Tumor cell proliferation and metastasis³00 Colorectal cancer ↓Tumor cell apoptosis³08 Colorectal cancer ↑Tumor cell migration and invasion³09,310		Colorectal cancer	↓Tumor cell apoptosis ²⁸⁶
Colorectal cancer ↓Tumor cell apoptosis ³⁰⁸ Colorectal cancer ↑Tumor cell migration and invasion ^{309,310}	TLR9	Oral squamous cell carcinoma	↑Tumor cell proliferation ^{173,299}
Colorectal cancer ↑Tumor cell migration and invasion ^{309,310}		Oral squamous cell carcinoma	↑Tumor cell proliferation and metastasis ³⁰⁰
		Colorectal cancer	↓Tumor cell apoptosis³08
Atherosclerosis ↑Proinflammatory cytokines ^{106,125}		Colorectal cancer	↑Tumor cell migration and invasion ^{309,310}
		Atherosclerosis	†Proinflammatory cytokines ^{106,125}

Abbreviations: eNOS, endothelial nitric oxide synthases; IFN, interferon; MCP, monocyte chemotactic protein-1; NK, natural killer; ROS, reactive oxygen species; T2DM, type 2 diabetes mellitus; TLRs, IL, interleukin; TNF, tumor necrosis factor.

targeting TLR2 receptors has antitumor effects. Via the TLR2/NF- κ B signaling pathway, UV-inactivated oncolytic herpes simplex virus type 2 (UV-oHSV2) activates natural killer cells to release IFNs. ¹⁸¹ When Cordyceps militaris polysaccharide (CMPB90-1) binds to TLR2, it changes immunosuppressive TAMs. This results in the activation of ERK as well as the release of Ca2+, p38, Akt, and NF- κ B. TAMs polarize from the M2 to the M1 as a result of this mechanism, which has anticancer effects. ¹⁸²

The third most common cancer worldwide, colorectal cancer (CRC) affects almost two million individuals annually and has a poor 5-year survival rate because of delayed diagnosis and ineffective treatment. ¹⁸³ It was discovered

that TLR2 expression was much elevated in CRC patients, and this had an impact on patient survival. TLR2 stimulation increased the migration, invasion, and proliferation of CRC cells. ^{184–187} Furthermore, the gut flora contribute significantly to the advancement of CRC, and *Fusobacterium nucleatum* enhances the development of CRC by upregulating the expression of inflammatory mediators via TLR2 signaling. ^{188,189} In order to promote CRC, *Pseudomonas* fluorescens interacts with TLR2/4 on host cells to cause the generation of ROS, boosts cholesterol biosynthesis by controlling sterol-regulatory element binding protein 2 (SREBP2), and activates prooncogenic genes and pathways. ¹⁹⁰ In addition, Meng et al. ¹⁹¹ shown via cellu-

lar and animal studies that TLR2 downregulation impeded the growth of patients with sporadic CRC and colitis-associated cancer, indicating a potential role for TLR2 in the development of CRC. According to Zhou et al., ¹⁹² EPS116/TLR2/MyD88 signaling phosphorylated c-Jun and activated JNK, which in turn increased the overexpression of Fas/Fasl, which in turn induced apoptotic signaling and impeded the growth of CRC.

It was difficult to treat GC patients because they usually did not experience any symptoms in the early stages. Researchers found that TLR2 mRNA and protein expression levels were elevated in mouse gastric cancer models, GC cell lines, and gastric tumors in human GC and that TLR2 overexpression was associated with high histologic grade, microvascular invasion, and cell adhesion and was a poor prognostic factor. 193-197 25-Hydroxycholesterol levels are mediated by increasing TLR2, the NF-κB gene of MMPS expression, which promotes GC cell migration and invasion. 198 Researchers have shown that activation of TLR2 induces GC cell proliferation and promotes the generation of ROS. The natural phenolic 18β-glycyrrhetinic acid regulates TLR2 promoter region methylation and inhibits gastric tumorigenesis, GC cell proliferation, and carcinogenesis induced by TLR2 activation. 195 However, contrary to the above idea that GC induces the depletion of peripheral and tumor-infiltrating CD8+ T cells, the downregulation of TLR2 in CD8+ T cells may lead to CD8+ T-cell immune dysfunction by inhibiting the perforin-granzyme pathway. The use of a TLR2 activator (Pam2Csk8) helps to reestablish CD8+ T-cell activity for the treatment of viral infections and cancer. 199 Targeting TLR2 may be one of the treatment targets for cancer treatment. Many studies on the above topic suggest that activating TLR2 deserves careful evaluation of its application in cancer therapy, enhancing the growth of cancer cells and migration and inhibiting TLR2 may constitute combined effective strategies for cancer treatment. 200,201

5.6.2 | TLR3

TLR3 expression in OSCC was twofold. On the one hand, the TLR3 signal sequentially activated IRF3 and NF- κ B after poly I:C (a TLR3 agonist) stimulation, which resulted in the release of IL-6 and C-C motif chemokine ligand 5(CCL5), as well as the enhancement of cancer cell migration. This suggests that TLR activation encouraged OSCC aggressiveness and invasion. ²⁰² In contrast to the above findings, TLR3 activation induced an increase of inflammatory cytokines that suppressed cell proliferation, directly induced cell death, and reduced migration of cells in OSCC. ^{203–206} The different results of TLR3 agonists in OSCC may be related to differences in cell types or in the

concentrations of the TLR3 agonists used. Therefore, the use of TLR3 agonists in OSCC remains to be evaluated.

Several investigators have shown that stable expression of TLR3 inhibits cell growth in vitro as well as in vivo and negatively regulates the initiation and progression of human BC.207 Furthermore, it was found that reduced TLR3 activation might have the most impact on increasing the risk of BC.²⁰⁸ Therefore, several researchers have expected to achieve antitumor therapeutic effects through the use of TLR3 activators. Bernardo et al., ²⁰⁹ using an imitation of the poly(I:C) drug targeting TLR3, induced IRF3 phosphorylation and caused increased IFN- β in BC cells. This was possibly achieved through an autocrine/paracrine positive feedback loop, which would be advantageous for the activation of TNF-related apoptosis-inducing ligand(TRAIL)-related death and the TRAIL death pathways responsible for induced cell death to eliminate BC cells.²⁰⁹ Huang et al.²¹⁰ loaded hiltonol (a TLR3 agonist) into BC-derived exosomes. These exosomes demonstrated strong antitumor activity in a mouse model and human organoids of BC by stimulating the activation of in situ cDC1s and subsequently improving the tumor-responsive CD8 T-cell response that followed. 210 In combination with poly(I:C)-induced apoptosis, nanomaterials synthesized by Ultimo et al.²¹¹ significantly inhibited suppressed the development and spread of tumors as well as significantly prolonged the longevity of triple-negative BC (TNBC) mouse models.²¹²

When poly I:C is combined with chemotherapy drugs like paclitaxel (PTX) for chemo-immunotherapy, Zhao et al. 213 found that poly I:C preferentially activates the TLR3–UNC93B1–IFN- β signaling axis, which may lead to colon cancer cell death. Conversely, poly I:C and PTX work together to inhibit colon cancer cells from proliferating. 213 Reovirus, a noncoated dsRNA virus, promotes NK cell activation and enhances NK cell cytotoxicity against CRC cells by activating the TLR3 signaling pathway and inducing IFN- γ secretion. 214 The dual effects of TLR3 should be considered in relevant TLR3 clinical trials. TLR3 activation may increase progression in some tumors or in some individuals. However, more study is required to fully understand TLR3's dual function in tumor biology.

5.6.3 | TLR4

In OSCC, in addition to increased TLR4 expression, the distribution of TLR4 likewise increased from the basal hominins to the spiny layer. ^{215,216} In addition, several researchers have suggested that TLR4 overexpression promotes OSCC development and proliferation and is closely associated with poor invasion and metastasis in oral can-

cer patients. ^{217–222} These findings demonstrated a strong correlation between TLR4 and the onset and progression of OSCC. By inducing the NF- κ B signal transduction pathway, the TLR4 receptor activator (LPS) promotes the epithelial–mesenchymal transition (EMT) and increases the migratory ability of OSCC cells. ^{220,223}

TLR4 expression levels were shown to be substantially connected with tumor size, cell migration, local lymphatic metastasis, histopathological grade, and tumor stage, and they were shown to be higher in BC tissues than in normal breast tissues. $^{176,224-229}$ Moreover, the results of Thomas et al. 230 showed that TLR4 was involved in the rapid uptake of fetuin-A by tumor cells, contributing to the rapid adhesion of BC cells, cell spreading, invasion, and underlying growth. In addition, Li et al. 228 stimulated TLR4 activation in human BC cell lines via LPS, triggering β -catenin signaling through PI3K/Akt/GSK3 β and promoting the transcription of downstream β -linker protein target genes, ultimately leading to BC metastasis.

The expression of TLR4 gradually increased at different stages of CRC development. Because TLR4 is overexpressed in colitis, it may be crucial in the development of intestinal tumors brought on by inflammation, as well as in promoting cell division, invasion, and metastasis and shielding cancerous cells from dying. 184,231-236 In vitro and in vivo CRC cell metastasis may be induced by activating the TLR4-dependent NF-κB signaling pathway and LPS.²³⁷ Thrombospondin 2 activation of TLR4 enhances HIF-1α-mediated glycolysis and promotes tumor growth in CRC.²³⁸ However, by focusing on TLR4, some researchers hoped to inhibit the growth of CRC. Invasive F. nucleatum increases the risk of CRC in vivo through the TLR4/p-PAK1/p-β-catenin S675 cascade. On the other hand, F. nucleatum-induced intestinal carcinogenesis and the expression of β -catenin and cyclin D1 were considerably decreased upon the injection of a TLR4 inhibitor.²³⁹ In addition, targeting TLR4 signaling with a TLR4 inhibitor (TAK-242) reduced the number of infiltrating macrophages and decreased the levels of Inflammatory cytokines in the colon, leading to long-term effects on tumor growth, which can be beneficial for CRC patients.²⁴⁰ MiR-6869-5p inhibited CRC cells by directly targeting TLR4-mediated growth and the generation of proinflammatory cytokines.²⁴¹

TLR4 expression gradually increased in normal gastric cardia tissues, cardiac inflammation, and GC cells; TLR4 expression was found to be more abundant in gastric cancer tissues compared with normal control tissues that were adjacent to the cancerous tissues. Furthermore, there was a strong correlation between the expression level of TLR4 and TNM stage, lymph node metastases, and the growth and spread of tumor cells in GC.^{242–244} Sangwan et al.²⁴⁵ reported that activation of TLR4 by

LPS or Gram-negative bacteria (Escherichia coli) significantly increased the adhesion of GC cells to human peritoneal mesothelial cells, and this increase in adhesion could be abolished by inhibiting the TLR4 signaling cascade and the downstream transforming growth factor β activated kinase 1(TAK1) and mitogen-activated protein kinase kinase1/2(MEK1/2) pathways. In the same vein, TLR4 deficiency at metastatic sites decreases tumor cell adhesion, thereby linking the TLR4 signaling cascade response to enhanced metastatic adhesion and peritoneal spread.²⁴⁵ Similarly, Pseudomonas acnes is abundant in GC tissue and promotes GC by promoting M2 polarization of macrophages via TLR4/PI3K/Akt signaling.²⁴⁶ In addition, in GC, Helicobacter pylori infection significantly induces miR-18a-3p and miR-4286 expression through TLR4/NF-κB, which is associated with the progression of gastric cancer.²⁴⁷ Gastric cancer cell-derived exosomes induce autophagy and protumor activation through the HMGB1/TLR4/NF-кВ signaling pathway to enhance the growth and migration of GC cells.²⁴⁸

Similar to those studies mentioned above, TLR4 has been proven by researchers to be a crucial target for the treatment of GC.²⁴⁹⁻²⁵¹ Yamaguchi et al.²⁵² promoted M1 polarization through the TLR4/NF-кВ p65 signaling pathway using PTX. In addition, LPS-mediated activation of TLR4, the NF-κB common mediates miR-18a-3p and the expression of miR-4286, increases cancer cell proliferation and motility, and inhibits the expression of BZRAP1, all of which lead to in vitro tumor progression. Researchers have shown that TAK-242 selectively binds to TLR4, disrupts the interaction between LPS and TLR4, and inhibits downstream signaling pathways, which is effective in treating H. pylori-associated gastric cancer.²⁴⁷ Zhuang et al.²⁵³ expected that targeting TLR4 would convert M2 macrophages to M1 macrophages and alter the tumor microenvironment (TME) to achieve therapeutic effects on tumors. Sophoridine inhibited M2-TAM polarization, increased M1-TAM polarization via the TLR4/IRF3 pathway, inhibited infiltration of TAMs by downregulating chemokine C-Motif receptor 2 expression in the GC microenvironment, and ultimately improved the cytotoxic capabilities of CD8+ T cells while reducing CD8+ T-cell failure. Sophoridine reshaped the immunological milieu of GC and had therapeutic effects on tumors by acting on macrophages and CD8+ T cells.²⁵³ Researchers, through exciting roles and antagonistic effects, can manipulate TLR receptors related to tumor treatment and intervention. Many researchers have chosen to use TLR4 antagonists and found that they significantly inhibit the growth and emergence of tumors.^{240,247} Thus, the conversion of TLR4 activation from antitumor to protumor activity by agonists-which depends on a variety of criteria, including timing, duration, and strengthremains a challenging issue for scientists studying tumor immunotherapy. 220,223,228,245,247

5.6.4 | TLR5

In addition to stimulating reactions of inflammation, TLR5 also activates invasion, migration, and cytokine release in cancerous cells.^{254–256} Omar et al.²⁵⁷ collected OSCC and squamous cell carcinoma of the cervix (CSCC) samples for comparison and found that The OSCC samples have higher levels of TLR5 than the CSCC samples. The clinical outcome of OSCC was more aggressive than that of CSCC, and this difference was speculated to be related to the differential expression of TLR5 in malignant tumors. 257 They further found that TLR5 expression levels were also greater in oral cancers than in skin cancers and concluded that TLR5 is usually activated more endogenously in oral cancers.²⁵⁸ This difference might be related to high levels of bacterial attachment in the oral cavity, 259-261 where flagellin is a component of the bacterial flagellum anchored at one end of the cell membrane.²⁶²

According to a study by Chen et al.,²⁶³ more than 60% of BCs express the TL5 protein. TLR5 overexpression had a positive correlation with lymph node metastasis and a negative correlation with histological grade.²⁶³ Downregulation of TLR5 in TNBC promoted vascular endothelial growth factor receptor expression and angiogenesis, leading to the proliferation of TNBC cells through the TRAF6 and SOX2 pathways to increase tumor aggressiveness and EMT expression.^{264–266}

CRC patients exhibit increased TLR5 expression from normal mucosa to adenoma or adenocarcinoma. ²⁶⁷ Higher TLR5 expression in tumor tissue was linked to a better prognosis for patients with CRC. ^{268,269} Additionally, several CRC patients had different survival rates when single nucleotide polymorphisms in the flagellin receptor TLR5 were discovered by researchers. By lowering the IL-6 levels, rs5744174/F616L may directly promote enhanced CRC survival (Table 1), whereas rs2072493/N592S displayed the reverse pattern. ²⁷⁰ Thagia et al. ²⁷¹ reported that suppressor of cytokine signaling-3 (SOCS3) promoted an increase in TLR5-induced TNF- α , disrupted intestinal epithelial barrier function, exacerbated the inflammatory process, and promoted CRC development.

Kasurinen et al.²⁷² showed that high tissue expression of TLR5 could indicate that gastric cancer patients have a better prognosis. Polymorphisms in TLR5 might favor the development of autoimmune atrophic gastritis and GC and are significantly linked to an elevated risk of GC.^{273,274} Terawaki et al.²⁷⁵ reported that TLR5 signaling pathway activation induces an increase in IRAK-1/4 expression and promotes an increase in leukemia inhibitory factor concen-

tration in plasma, which contributes to the induction of cachexia in gastric cancer cells. In addition, activation of living signaling pathways may also participate in changes in cellular functions, like movement, development.²⁷⁵ The expression and prognosis of TLR5 in different tumor diseases are different, and the use of agonists or antagonists remains to be further explored.

5.6.5 | TLR7

According to research by Mahmoud et al., ²⁷⁶ human OSCC cells have functionally overexpressed TLR7, and TLR7 activation may contribute to the development of cisplatin resistance in these cells. According to studies by Ni et al., ²⁷⁷ patients with high TLR7 expression in OSCC had poor prognosis and poor differentiation. They also discovered that high TLR7 expression in OSCC has a protumorigenic effect. ²⁷⁷

Several researchers have hoped to achieve antitumor therapeutic effects in BC patients through the use of TLR7 agonists. On the one hand, researchers have coincidentally chosen to target tumor macrophages. A small-molecule TLR7 agonist (1V209-Cho-Lip) was designed by Wan et al.²⁷⁸ that stimulated TAMs to transform into M1-like macrophages and to produce memory CD8+ T cells, which in turn produced protective immunological memory and shown enhanced anticancer effects. R848 (a TLR7/8 agonist) was loaded into dendrimers to remodel TME for effective cancer immunotherapy, effectively polarizing M2 macrophages to the M1 phenotype, increasing the maturity and activity of APCs, decreasing the amount of immunosuppressive myeloid cells, and enhancing the infiltration of tumor cytotoxic T cells to significantly stimulate the TME.²⁷⁹ Moreover, Francian et al.²⁸⁰ encapsulated TLR agonists (including R848 and CpG 1826) in C3 liposomes for specific delivery, activated APCs, and induced tumorspecific adaptive immune responses, resulting in reduced tumor growth in BC models. In addition, treating invasive BC models with an intratumoral TLR agonist (PNP-R848) retarded tumor growth and inhibited lung metastasis, and other investigators have further enhanced the antitumor effect by loading imidazoquinolines such as R848 as cyclic dinucleotides in biodegradable hydrogels or by tethering TLR7 agonists to oxaliplatin-based platinum (IV) precursor drugs.^{281–285}

Researchers have recently found that the TLR7 and TLR8 genes and proteins are highly upregulated in CRC and are closely associated with cancer cells, but are rarely identified in leukocytes that have infiltrated stromal tumors. Furthermore, it has been demonstrated by other researchers that the persistent activation of TLR7, which is expressed by multipotent CD133+ colon cancer-

initiating cells and tumor cells from CRC, sustains the inflammatory response, facilitates resistance to apoptosis, and encourages the growth of new tumors.²⁸⁶ Thus, several investigators have hoped to target TLR7 for antitumor effects and found that TLR7 ligands attenuate colitis-associated colon cancer. 287,288 Combining R848 with oxaliplatin, Liu et al. 289 observed a notable rise in M1-like macrophages and more efficient tumor development suppression, indicating that R848 remodels myeloid-derived suppressor cells (MDSCs) and their differentiated phenotype at the tumor site, reversing the immunosuppressive effects of oxaliplatin. The TLR7/8 agonist 3M-011 is a potent adjuvant for CRC treatment and has significant local and systemic antitumor effects. OMC in combination with ionizing radiation had significant antitumor activity. These effects were mediated by NK cells, which are primarily cytotoxic T cells that require DC activation and are the primary target of TLR7/8 agonists.²⁹⁰ In pancreatic ductal adenocarcinoma (PDAC), the use of the R848 amplified the antitumor effect of vaccination by modulating the immunosuppressive TME in PDAC, as seen by an increase in APC maturation, a decrease in regulatory T cells, and an increase in tumor antigen-specific CD8+ T cells.²⁹¹

Patients with GC who had high TLR7 expression had a better prognosis. The mRNA and protein levels of TLR7 in GC tissues were significantly lower than those in neighboring tissues or normal gastric epithelial tissues. 292 TLR7 is essential to the immunological milieu of GC and is implicated in the course and prognosis of GC. TLR7 expression was favorably linked with the infiltration of DCs, macrophages, neutrophils, and T lymphocytes.²⁹³ Furthermore, TLR7 expression was shown to be significantly higher in erosive gastric tissue specimens as compared with controls and to be significantly lower as the disease advanced to gastric cancer, according to Shirafkan et al.²⁹⁴ Acute inflammation was significantly impacted by the early disease phase elevation in TLR7 expression, but not chronic inflammation. TLR7 downregulation may, via many pathways, contribute to the development of GC.294

Wang et al.²⁹⁵ synthesized a GC vaccine by covalently linking a TLR7 agonist to the GC antigen MG7-Ag quadruple epitope, which inhibited gastric tumor growth and immune tolerance. Ma et al.²⁹⁶ constructed a bifunctional small hairpin RNA (shRNA) vector containing a Bcl-2 silencing shRNA and TLR7-stimulated ssRNA, and stimulation with this bifunctional vector in vitro promoted significant apoptosis in mouse gastric cancer cells and inhibited subcutaneous gastric cancer cell growth in vivo by regulating the expression of apoptosis-related proteins and inducing the release of IFNs. The use of TLR agonists to target APCs and activate the induction of adaptive immunity against poorly immunogenic autoanti-

gens is important for improving the efficacy of cancer immunotherapy. 278,279,290

5.6.6 | TLR9

TLR9 is linked to OSCC invasion and may be a major factor in the malignant transformation of the oral mucosa. 173,216,297,298 Activation of TLR9 in OSCC using CpG-ODNs stimulated tumor cell proliferation. 173,299 For the first time, Tuomela et al. 300 demonstrated that host DNA in chemotherapy-killed cancer cells was quickly incorporated into cancer cells that survived, which subsequently continued to induce carcinogenesis or metastasis as invasion-inducing TLR9 ligands.

Compared with those in normal cells, TLR9 in human BC cell lines had the highest intracellular expression, and its aberrant expression in tumor cells might promote tumor growth and invasion. 301,302 While Singh et al. 303 reported increased TLR9 expression in patients treated with neoadjuvant chemotherapy (NACT) according to immunohistochemistry results, an analysis of publicly available datasets revealed that elevated TLR9 expression was associated with increased overall survival in NACT-treated patients. In vitro, triggering TLR9 with a TLR9 agonist (CpG ODN) was found to reduce cell proliferation and alter proinflammatory cytokines, thereby facilitating the inhibition of hormone receptor-positive BC cells (T47D) and triplenegative BC cells (MDA-MB-468).304 Combining a TLR9 agonist (CpG) with a polyspecific integrin-binding peptide (PIP) to generate a tumor-targeting immunomodulator, referred to as PIP-CpG, triggered tumor regression and prolonged the survival of mice with BC tumors. PIP-CpG converts an immunosuppressive TME dominated by MDSCs into a lymphocyte-rich TME that infiltrates activated CD8+ T cells, CD4+ T cells, and B cells and leads to a T-cell-mediated tumor-specific immune response. 305

Gao et al.³⁰⁶ successfully constructed an acute colitischronic colitis-adenoma-adenocarcinoma model by the AOM/DSS induction method and shown that as colorectal lesions were more severe, TLR9 expression levels rose.³⁰⁷ Furthermore, significant correlations were found between high TLR9 expression and poor prognosis, invasion, metastasis, and TNM staging of cancers. Necrotic cancer cells release cfDNA, which increases CRC cell survival by stimulating TLR9 signaling. This results in a decrease in apoptosis and an increase in programmed cell survival.³⁰⁸ Additionally, cfDNA could activate TLR9 to initiate downstream MyD88 signaling to promote CRC cell growth and facilitate cell movement and invasion.^{309,310}

Wang et al.³¹¹ reported that TLR9 plays a key role in LPS-induced NET formation, and a TLR9-deficient human colorectal cell line (HCT116) cultured in LPS-induced neu-

trophil medium exhibited significantly reduced tumor cell proliferation, migration, and invasion. Lindsay et al. coloaded the hydrophobic chemotherapeutic drug doxorubicin (DTX) and Incorporation of cholesterol-modified TLR9 agonist in synthetic high-density lipoprotein cholesterol (HDL) nanodiscs, and found that the use of DTX-sHDL/CpG inhibited tumor growth and prolonged animal life. 312,313

These findings showed that TLR9 mediates gastric cancer inflammation, is abundantly expressed in GC samples, and facilitates the migration of cancer cells. 314,315 In addition, the TLR9 rs5743836 and rs187084 polymorphisms were linked to a significant oncogenic risk of gastric cancer. 316 In GC, *H. pylori* DNA could enhance the growth, migration, and invasion of GC through activation of TLR9. 317 Varga et al. 318 reported that patients living in areas at high risk of gastric cancer expressed significantly greater levels of TLR9 in gastric ECs than patients living in low-risk areas did, and *H. pylori* strains isolated from these patients simultaneously induced greater TLR9 activation.

High TLR9 expression in most human tumors, cancer cell growth, invasion, survival, and metastasis are important factors. 173,297,300–302,308,314,315 However, most studies have shown that TLR9 agonists are promising therapeutic agents for cancer. Even so, their mechanisms of action must be elucidated for maximum therapeutic benefit. 304,305,308 Moreover, researchers have shown that TLR9 agonists are also highly effective and beneficial when combined with traditional cancer treatment (i.e., radiotherapy or chemotherapy). 312,313

6 | CLINICAL THERAPY INVOLVING TLRS

The expression of TLRs is elevated in multiple cancer types, such as those affecting the liver, intestinal tract, and oral cavity. These receptors are essential for the development and spread of malignant tumors as well as the prognosis of cancer.^{170–173,184–187,202,231–236,319,320} TLRs promote carcinogenesis by inducing different cells to release proinflammatory cytokines and antiapoptotic factors, recruiting immune cells, and promoting cell proliferation in TME, thereby creating a tumor-friendly environment. Their therapeutic use is expected as well, considering the important function played by the molecules in the TLR pathway in the innate immune system; however, this is probably because immune cells and/or cancer cells activate distinct TLRs and downstream signaling cascades; alternatively, because of the temporal sequence of TLR activation in cancer cells or immune cells, studies on the role of TLR antagonists and agonists in inflammation and even cancer have been controversial (Table 2). 41,321-323

6.1 | TLR agonists for therapy

The first United States Food and Drug Administration-approved TLR7 agonist, imiquimod, was used to treat superficial basal cell carcinoma. During the epidemic, imiquimod was found to provide satisfactory innate and acquired immune stimulation and to help eliminate SARS-CoV-2 in the early stages of infection but may cause cytokine storms and persistent inflammation as side effects in the later stages of infection. Researchers used imiquimod to reduce angiotensin-converting enzyme 2(ACE2) and increase IFN- β expression to trigger viral resistance mechanisms in human bronchial epithelial cells and subsequently improve viral infection tolerance by reducing the levels of epithelial cytokines induced by viral stimulation involved in severe COVID-19 infection.

The analysis revealed a consistent decline in the quantity of TLR ligand-related clinical trials that were started between May 2012 and May 2014. Several researchers have shown that TLR agonists are cancer treatment drugs that can induce immune suppression, disrupting TLR agonistinduced immune stimulation and thus inhibiting antitumor immune effects. One of the main challenges facing TLR agonists in tumor immunotherapy is the production of immunosuppressive substances. TLR agonists have the ability to destroy cancer cells, but this may not happen unless we suppress negative regulators (including Tregs) or tip the scales in favor of an overpowering proinflammatory response. 327 After many checkpoint inhibitors (CPIs) were approved for the treatment of melanoma patients, 328-331 tumor immunotherapy has sparked a renewed interest among physicians and clinical oncology worldwide.³³² In previously incurable metastatic patients, checkpoint blockers now allow for long-lasting clinical responses, revolutionizing the treatment of oncology.³³³ Notwithstanding the advancements, a sizable portion of patients, regrettably, do not respond to CPI therapy or initially respond to immunotherapy before relapsing and progressing, which is when alternative therapeutic approaches started to emerge. 334,335 Therefore, researchers expect to achieve results in cancer treatment by combining TLR agonists and immune checkpoint inhibitors. 336-339

Rintatolimod, a poly I:C-derived dsRNA molecule, is used in combination with INF α and celecoxib to modulate the serum levels of inflammatory cytokines and chemokines in patients receiving systemic chemokine modulation (CKM).³⁴⁰ A phase I clinical study demonstrated that systemic CKM administration reprogrammed the local TME in patients with advanced TNBC to selectively enhance cytotoxic Tlymphocyte(CTL) inward flow, and a phase 2 trial was intended to assess CKM's potential in conjunction with programmed death 1(PD-1) inhibitors.³⁴¹ Motolimod, a TLR8 agonist, enhances NK

TABLE 2 Clinical trials of TLR agonists and antagonists in disease.

TLR						
agonists	Molecule	Treatment	Application	Phase	Status	NCT Number
TLR1/2	XS15	Combination with vaccine	Advanced solid and hematological malignancies		AVAILABLE	NCT05014607
		Combination with atezolizumab	Fibrolamellar hepatocellular carcinoma	п	RECRUITING	NCT05937295
		Combination with vaccine	Sarcoma	Ι	RECRUITING	NCT06094101
TLR3	Rintatolimod	Combination with durvalumab	Metastatic pancreatic cancer	Ι	NOT_YET_RECRUITING	NCT05927142
	BO-11II	Combination with pembrolizumab	Melanoma	П	ACTIVE_NOT_RECRUITING	NCT04570332
	Poly ICLC	Combination with echopulse standard of care PD-1 therapy	Melanoma	11/1	ACTIVE_NOT_RECRUITING	NCT04116320
		Combination with drug	Low-grade B-cell lymphoma	П	COMPLETED	NCT01976585
		Combination with pembrolizumab	Metastatic colon cancer	11/11	COMPLETED	NCT02834052
		Combination with adjuvant vaccine and surgical resection	Melanoma	Ш	COMPLETED	NCT01079741
		Combination with tremelimumab and durvalumab	Head and neck squamous cell carcinoma	Ш	COMPLETED	NCT02643303
TLR2/4	BCG	Combination with chemotherapy and RFA	Unresectable colorectal liver metastases	Ι	NOT_YET_RECRUITING	NCT04062721
TLR4	GLA-SE	Combination with radiation therapy	Soft tissue sarcoma	I	COMPLETED	NCT02180698
		Combination with vaccine	Skin melanoma	Ι	COMPLETED	NCT02320305
	GSK1795091	Combination with pembrolizumab	Neoplasms	Ι	COMPLETED	NCT03447314
TLR5	MobilanM-VM3	Monotherapy	Prostate cancer	IIII	UNKNOWN	NCT02844699
	Entolimod	Monotherapy	Unspecified adult solid tumor, protocol specific	п	COMPLETED	NCT01527136
		Combination with intensity-modulated radiation therapy Chemotherapy (cisplatin)	Head and neck squamous cell carcinoma	п	WITHDRAWN	NCT01728480
	CBLB50II	Monotherapy	Colorectal cancer	П	UNKNOWN	NCT02715882
TLR7	Imiquimod	Combination with radiation and cyclophosphamide	Breast cancer/metastatic breast cancer/recurrent breast cancer	П	COMPLETED	NCT01421017
		Monotherapy	Breast cancer breast neoplasms	П	COMPLETED	NCT00899574
TLR7/8	BDB018	Combination with pembrolizumab	Tumor, solid	Ι	ACTIVE_NOT_RECRUITING	NCT04840394
	BDB001	Combination with pembrolizumab	Tumor, solid	I	ACTIVE_NOT_RECRUITING	NCT03486301
		Combination with atezolizumab	Tumor, solid	П	ACTIVE_NOT_RECRUITING	NCT04196530
		Combination with pertuzumab	Metastatic breast cancer	II	RECRUITING	NCT05954143
	BDC-1001	Combination with nivolumab	HERII-positive solid tumors	IIII	RECRUITING	NCT04278144
						(Continues)

ntinued)
(Cor
7
LE
m
TA

TLR						
agonists	Molecule	Treatment	Application	Phase	Status	NCT Number
	R848	Combination with drug	Melanoma	П	COMPLETED	NCT00960752
	Resiquimod	Combination with pembrolizumab	Advanced solid tumor	IIII	RECRUITING	NCT04799054
		Combination with pembrolizumab and drug	Head and neck neoplasms	II	RECRUITING	NCT05980598
	RO71199II9	Combination with tocilizumab	Carcinoma, hepatocellular	I	COMPLETED	NCT04338685
	SHRII150	Combination with chemotherapy PD-1 or CD47 antibody	Solid tumor	IIII	UNKNOWN	NCT04588324
	STM-416	Monotherapy	Nonmuscle-invasive bladder cancer	IIII	RECRUITING	NCT05710848
TLR8	VTX-II337	Combination with pegylated liposomal doxorubicin hydrochloride or paclitaxel	Malignant ovarian mixed epithelial tumor	п	COMPLETED	NCT01294293
		Combination with cetuximab	Metastatic squamous neck cancer	I	COMPLETED	NCT01334177
		Combination with cisplatin or carboplatin, 5-FU and cetuximab	Head and neck squamous cell carcinoma	п	COMPLETED	NCT01836029
		Combination with durvalumab and drug	Ovarian cancer	IIII	COMPLETED	NCT02431559
TLR9	MGN1703	Combination with ipilimumab	Advanced cancers	I	ACTIVE_NOT_RECRUITING	NCT02668770
	DVII81	Combination with approved anti-PD-1 inhibitor	Advanced non-small cell lung cancer	I	COMPLETED	NCT03326752
	CPG 7909	Monotherapy	Non-Hodgkin lymphoma	IIII	COMPLETED	NCT00185965
		Combination with drug	Esophageal cancer	IIII	UNKNOWN	NCT00669292
	SD-101	Combination with drug and radiation therapy	Follicular lymphoma	IIII	COMPLETED	NCT02927964
		Combination with drug	Advanced malignant solid neoplasm	I	COMPLETED	NCT03831295
		Combination with drug and radiation therapy	B-cell Non-Hodgkin lymphoma	Ι	ACTIVE_NOT_RECRUITING	NCT03410901
		Combination with nivolumab and radiation therapy	Metastatic pancreatic adenocarcinoma	I	COMPLETED	NCT04050085
		Combination with ipilimumab and radiation therapy	B-cell lymphoma of mucosa-associated lymphoid tissue	IIII	COMPLETED	NCT02254772
		Combination with nivolumab and ipilimumab	Metastatic uveal melanoma in the liver	I	RECRUITING	NCT04935229
						(Continues)

(Continues)

Continued)
7
闰
TABL

TLR						
agonists	Molecule	Treatment	Application	Phase	Status	NCT Number
		Combination with pembrolizumab and nivolumab and ipilimumab	Hepatocellular carcinoma	IIII	RECRUITING	NCT05220722
		Combination with pembrolizumab and drugs and stereotactic body radiation therapy	Prostatic neoplasms	П	ACTIVE_NOT_RECRUITING	NCT03007732
	CMP-001	Combination with nivolumab	Melanoma	П	RECRUITING	NCT04401995
		Combination with radiation therapy and nivolumab and ipilimumab	Colorectal neoplasms malignant/liver metastases	I	COMPLETED	NCT03507699
		Combination with nivolumab	Melanoma	П	ACTIVE_NOT_RECRUITING	NCT03618641
		Combination with nivolumab	Metastatic prostate adenocarcinoma	П	RECRUITING	NCT05445609
		Combination with pembrolizumab surgical procedure	Cutaneous melanoma	II	RECRUITING	NCT04708418
	Tilsotolimod	Combination with ipilimumab and nivolumab	Advanced cancer	I	ACTIVE_NOT_RECRUITING	NCT04270864
Antagonist						
TLR4	TAK-II4II	Monotherapy	Acute-on-chronic liver failure	II	UNKNOWN	NCT04620148
		Monotherapy	Sepsis	III	COMPLETED	NCT00143611
TLR7, 8	M5049	Monotherapy	Dermatomyositis polymyositis	П	RECRUITING	NCT05650567
		Monotherapy	Systemic lupus erythematosus	П	RECRUITING	NCT05162586
TLR7, 8, 9	IMO-8400	Monotherapy	Diffuse large B cell lymphoma	IIII	COMPLETED	NCT02252146

Abbreviations: 5-FU, 5-Fluorouracil; CD47, cluster of differentiation 47; NCT, nationl clinical trial; PD-1, programmed death 1; RFA, radiofrequency ablation; TLR, Toll-like receptor. Clinical trial data sources: clinicaltrials.gov.

cell function and potentiates cetuximab-mediated ADCC, displaying characteristic adverse event (AE) profiles, such as injection site responses, fever, and chills. A phase Ib clinical trial evaluating the safety and antitumor activity of motomod in combination with cetuximab in the treatment of patients with HNSCC revealed that motomod could be safely used in combination with cetuximab and exhibited encouraging antitumor activity. 342 Another phase II clinical trial revealed that a significant benefit was observed in patients with HPV-positive oropharyngeal cancer treated with motolimod and the EXTREME regimen (a combination of standard chemotherapy/cetuximab) in patients.³⁴³ Synthetic oligonucleotide SD-101 has a CpG motif. Its AEs include injection site reaction that is responsive to over-the-counter agents and mild to moderate influenzalike symptoms. SD-101 injected intratumoriously alters the TME in a way that promotes IFNs and CD8+ Tcell infiltration. When combined with pembrolizumab, these modifications may lead to high response rates, especially in individuals who have not had anti-PD-1 therapy before.344

6.2 | TLR antagonists for therapy

TLR activation in inflammatory diseases supports its pathophysiology through abnormal secretion of proinflammatory cytokines and chemokines, which in turn generates an inflammatory feedback loop. Disruption of this feedback loop should suppress inflammation and reestablish an appropriate immune response to the pathogen. Thus, the discovery of TLR inhibitors could result in the creation of potent treatment plans. Several researchers have suggested that TLR antagonists may be a potential way to control COVID-19. The role of anti-inflammatory factors in reducing death caused by persistent inflammation in the lungs of COVID-19 patients has been shown. For example, CD24Fc couplers are used to block TLR activation. ⁵ TLR4 antagonists have anti-inflammatory effects on the lungs of mice with acute respiratory distress syndrome, protecting tissues from inflammation-induced damage.³⁴⁵ However, some researchers hypothesize that using TLR antagonists improperly to treat COVID-19 could lower IFN levels without inhibiting the virus. As a result, more research on TLR antagonist dosage and duration needs to be done at the clinical stage. 94,346

TLR antagonism has been successfully applied in various experimental models of cardiovascular disease(CVD). Animal experiments have shown that inhibiting TLR signaling can be used to treat or prevent atherosclerosis. Drugs that block TLR2- and TLR4-dependent signaling pathways can lessen inflammatory activation pathways in atherosclerosis in mice and humans. Chloro-

quine, hydroxychloroquine, and quinacrine are three TLR-related inhibitors that can be used to treat CVD because they prevent endosomal TLR activation and lower blood pressure and aortic endothelial dysfunction. 347,348 Kitazume et al. 349 reported that ablation of the TLR9-mediated signaling pathway attenuated myocardial ischemia/reperfusion injury and the inflammatory response.

7 | CONCLUSION

Researchers first described TLR4 in 1997, and subsequently there has been a growing interest in the biological functions that TLRs serve in the body's immune system. 350 TLRs activate two distinct signaling pathways—the canonical pathway via MyD88 protein and the noncanonical pathway through the TRIF. These proteins can also activate a variety of inflammatory cytokines or type I IFNs, which play an anti-infection role. However, excessive activation of TLR signaling may cause pathological damage and even induce inflammatory and autoimmune diseases.

TLRs play an important role in inflammatory diseases and even in carcinogenesis. For example, they have been implicated in respiratory diseases associated with viral infections (COVID-19), colitis associated with bacterial infections, and the pathogenesis of autoimmune diseases (T2DM). They have also been implicated in the pathogenesis of several human cancers, including CRC and BC. Since 2005, when researchers discovered that TLRs are expressed alongside tumor cells and help tumors evade immune surveillance, an increasing number of studies have focused on TLRs as new targets for cancer therapy. ³⁵¹

Although research related to TLR therapy has stalled for a while, following the approval of several checkpoint blockers for the treatment of melanoma patients, TLR agonists have re-entered the picture as adjuvant agents for immunotherapy, and researchers hope to treat cancer by combining TLR agonists and immune checkpoint blockers. ^{328–331} Several scholars expected to eliminate the immunosuppression of DCs in the tumor environment by using different TLR agonists to activate DCs and subsequent antitumor immune responses. Recently, after the discovery of the role of TAMs in influencing tumor development, targeting TAMs with TLR agonists to alter polarity, eliminate phagocytic support of tumors and actively promote antitumor immune effects may be a direction for future research. ^{352–356}

However, TLRs still have many unexplored roles in very complex mammalian/human biological systems. Further in-depth TLR-related studies will improve our understanding of TLR signaling pathways, help to elucidate signaling pathways and disease mechanisms, and provide new tar-

gets and approaches for the development of therapies for a variety of infectious and autoimmune diseases and cancers.

AUTHOR CONTRIBUTIONS

Y. L. conceived and designed the structure of this manuscript. K. W. and H. H., Q. Z., and H. D. wrote the paper. Y. L. revised the paper. All authors have read and approved the final manuscript.

ACKNOWLEDGMENTS

This work was supported by the Research and Develop Program, West China Hospital of Stomatology Sichuan University (RD-02-202107), Sichuan Postdoctoral Science Foundation (TB2022005), Sichuan Province Science and Technology Support Program (2022NSFSC0371), and the National Natural Science Foundation of China (82301148). and the National Natural Science Foundation of China (No. 81972546). We would also like to thank BioRender for the application in drawing Figures 1, 2, 3, and 4.

CONFLICT OF INTEREST STATEMENT

The authors declare that they have no conflict of interest.

DATA AVAILABILITY STATEMENT Not applicable.

ETHICS STATEMENT

No ethical approval was required for this study.

ORCID

Kunyu Wang https://orcid.org/0000-0002-0007-4451 *Hanyao Huang* https://orcid.org/0000-0002-6805-0157 *Yi Li* https://orcid.org/0000-0002-6819-2462

REFERENCES

- Janeway CA. Approaching the asymptote—evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 1989;54:1-13.
- Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol. 2014;5:461.
- 3. Li D, Wu M. Pattern recognition receptors in health and diseases. Signal Transduct Target Ther. 2021;6(1):291.
- Pflug KM, Sitcheran R. Targeting NF-kappaB-inducing kinase (NIK) in immunity, inflammation, and cancer. *Int J Mol Sci.* 2020;21(22):8470.
- Kay J, Thadhani E, Samson L, Engelward B. Inflammationinduced DNA damage, mutations and cancer. DNA Repair (Amst). 2019;83:102673.
- 6. Murata M. Inflammation and cancer. *Environ Health Prev Med.* 2018;23(1):50.
- 7. Meira LB, Bugni JM, Green SL, et al. DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice. *J Clin Invest*. 2008;118(7):2516-2525.

- 8. Yu AM, Calvo JA, Muthupalani S, Samson LD. The Mbd4 DNA glycosylase protects mice from inflammation-driven colon cancer and tissue injury. *Oncotarget*. 2016;7(19):28624-28636.
- 9. Yu H, Lin L, Zhang Z, Zhang H, Hu H. Targeting NF-kappaB pathway for the therapy of diseases: mechanism and clinical study. *Signal Transduct Target Ther*. 2020;5(1):209.
- Brennan JJ, Gilmore TD. Evolutionary origins of Toll-like receptor signaling. Mol Biol Evol. 2018;35(7):1576-1587.
- Aluri J, Cooper MA, Schuettpelz LG. Toll-like receptor signaling in the establishment and function of the immune system. *Cells*. 2021;10(6):1374.
- Fitzgerald KA, Kagan JC. Toll-like receptors and the control of immunity. Cell. 2020;180(6):1044-1066.
- Hasan U, Chaffois C, Gaillard C, et al. Human TLR10 is a functional receptor, expressed by B cells and plasmacytoid dendritic cells, which activates gene transcription through MyD88. *J Immunol*. 2005;174(5):2942-2950.
- Francisco S, Billod J-M, Merino J, et al. Induction of TLR4/TLR2 interaction and heterodimer formation by low endotoxic atypical LPS. Front Immunol. 2022;12:748303.
- Zindel J, Kubes P. DAMPs, PAMPs, and LAMPs in immunity and sterile inflammation. Annu Rev Pathol. 2020;15:493-518.
- Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky
 F. Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. *J Biol Chem.* 1999;274(16):10689-10692.
- 17. Zhou R, Liu L, Wang Y. Viral proteins recognized by different TLRs. *J Med Virol*. 2021;93(11):6116-6123.
- Zhang H, Kang L, Yao H, et al. Streptococcus pneumoniaeEndopeptidase O (PepO) elicits a strong innate immune response in mice via TLR2 and TLR4 signaling pathways. Front Cell Infect Microbiol. 2016;6:23.
- Feng S, Zhang C, Chen S, He R, Chao G, Zhang S. TLR5 signaling in the regulation of intestinal mucosal immunity. *J Inflamm Res.* 2023;16:2491-2501.
- Hug H, Mohajeri MH, La Fata G. Toll-like receptors: regulators of the immune response in the human gut. *Nutrients*. 2018;10(2):203.
- Sharma S, Fitzgerald KA, Cancro MP, Marshak-Rothstein A. Nucleic acid-sensing receptors: rheostats of autoimmunity and autoinflammation. *J Immunol.* 2015;195(8):3507-3512.
- Agier J, Zelechowska P, Kozlowska E, Brzezinska-Blaszczyk E. Expression of surface and intracellular Toll-like receptors by mature mast cells. *Cent Eur J Immunol*. 2016;41(4):333-338.
- Tavora B, Mederer T, Wessel KJ, et al. Tumoural activation of TLR3-SLIT2 axis in endothelium drives metastasis. *Nature*. 2020;586(7828):299-304.
- 24. Chen Y, Lin J, Zhao Y, Ma X, Yi H. Toll-like receptor 3 (TLR3) regulation mechanisms and roles in antiviral innate immune responses. *J Zhejiang Univ Sci B*. 2021;22(8):609-632.
- 25. Yong Y-H, Liu S-F, Hua G-H, et al. Goose toll-like receptor 3 (TLR3) mediated IFN-γ and IL-6 in anti-H5N1 avian influenza virus response. *Vet Immunol Immunopathol*. 2018;197:31-38.
- Zhang Z, Ohto U, Shibata T, et al. Structural analysis reveals that toll-like receptor 7 is a dual receptor for guanosine and single-stranded RNA. *Immunity*. 2016;45(4):737-748.
- Apetrei C, Patamawenu AA, Wright NE, et al. Toll-like receptor 7-adapter complex modulates interferon-α production in HIV-stimulated plasmacytoid dendritic cells. *PLoS One*. 2019;14(12):e0225806.

- Shih S-R, Luo Z, Su R, et al. EV71 infection induces neurodegeneration via activating TLR7 signaling and IL-6 production. *PLoS Pathog.* 2019;15(11):e1008142.
- Greulich W, Wagner M, Gaidt MM, et al. TLR8 is a sensor of RNase T2 degradation products. Cell. 2019;179(6):1264-1275. e13.
- Hemmi H, Takeuchi O, Kawai T, et al. A Toll-like receptor recognizes bacterial DNA. Article. *Nature*. 2000;408(6813):740-745.
- Hochrein H, Schlatter B, O'Keeffe M, et al. Herpes simplex virus type-1 induces IFN-α production via Toll-like receptor 9-dependent and -independent pathways. *Proc Natl Acad Sci USA*. 2004;101(31):11416-11421.
- Lee SM-Y, Yip T-F, Yan S, et al. Recognition of double-stranded RNA and regulation of interferon pathway by toll-like receptor 10. Front Immunol. 2018;9:516.
- Su SB, Tao L, Deng ZP, Chen W, Qin SY, Jiang HX. TLR10: insights, controversies and potential utility as a therapeutic target. *Scand J Immunol*. 2021;93(4):e12988.
- Boutens L, Mirea AM, van den Munckhof I, et al. A role for TLR10 in obesity and adipose tissue morphology. *Cytokine*. 2018;108:205-212.
- 35. Fore F, Budipranama M, Destiawan RA. TLR10 and its role in immunity. *Handb Exp Pharmacol*. 2022;276:161-174.
- Mukhopadhyay D, Arranz-Solis D, Saeij JPJ. Toxoplasma GRA15 and GRA24 are important activators of the host innate immune response in the absence of TLR11. *PLoS Pathog*. 2020;16(5):e1008586.
- Liu Y, Yang M, Tang X, et al. Characterization of a novel Toll-like receptor 13 homologue from a marine fish Nibea albiflora, revealing its immunologic function as PRRs. *Dev Comp Immunol*. 2023;139:104563.
- Yu X, Liang Y, Zhou Y, et al. 23S rRNA from Vibrio parahaemolyticus regulates the innate immune response via recognition by TLR13 in orange-spotted grouper (Epinephelus coioides). Dev Comp Immunol. 2021;114:103837.
- Gao F-Y, Pang J-C, Wang M, et al. Structurally diverse genes encode TLR13 in Nile tilapia: the two receptors can recognize Streptococcus 23S RNA and conduct signal transduction through MyD88. Article. *Mol Immunol*. 2021;132:60-78.
- Vijay K. Toll-like receptors in immunity and inflammatory diseases: past, present, and future. *Int Immunopharmacol*. 2018;59:391-412.
- Behzadi P, Garcia-Perdomo HA, Karpinski TM. Toll-like receptors: general molecular and structural biology. *J Immunol Res*. 2021;2021:9914854.
- 42. Tabeta K, Hoebe K, Janssen EM, et al. The *Unc93b1*mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9. *Nat Immunol.* 2006;7(2):156-164.
- 43. Lind NA, Rael VE, Pestal K, Liu B, Barton GM. Regulation of the nucleic acid-sensing Toll-like receptors. *Nat Rev Immunol.* 2022;22(4):224-235.
- Pelka K, Bertheloot D, Reimer E, et al. The chaperone UNC93B1 regulates toll-like receptor stability independently of endosomal TLR transport. *Immunity*. 2018;48(5):911-922. e7.
- 45. Takahashi K, Shibata T, Akashi-Takamura S, et al. A protein associated with Toll-like receptor (TLR) 4 (PRAT4A) is required for TLR-dependent immune responses. *J Exp Med.* 2007;204(12):2963-2976.

- 46. Randow F, Seed B. Endoplasmic reticulum chaperone gp96 is required for innate immunity but not cell viability. Article. *Nat Cell Biol.* 2001;3(10):891-896.
- Yamamoto M, Sato S, Hemmi H, et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. *Science*. 2003;301(5633):640-643.
- Kawai T, Adachi O, Ogawa T, Takeda K, Akira S. Unresponsiveness of MyD88-deficient mice to endotoxin. *Immunity*. 1999;11(1):115-122.
- 49. Yamamoto M, Sato S, Mori K, et al. Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-β promoter in the Toll-like receptor signaling. *J Immunol.* 2002;169(12):6668-6672.
- Takeuchi O, Takeda K, Hoshino K, Adachi O, Ogawa T, Akira S. Cellular responses to bacterial cell wall components are mediated through MyD88-dependent signaling cascades. *Int Immunol.* 2000;12(1):113-117.
- O'Neill LAJ, Bowie AG. The family of five: tIR-domaincontaining adaptors in Toll-like receptor signalling. *Nat Rev Immunol*. 2007;7(5):353-364.
- 52. Motshwene PG, Moncrieffe MC, Grossmann JG, et al. An oligomeric signaling platform formed by the toll-like receptor signal transducers MyD88 and IRAK-4. Article. *J Biol Chem.* 2009;284(37):25404-25411.
- 53. De Nardo D, Balka KR, Cardona Gloria Y, Rao VR, Latz E, Masters SL. Interleukin-1 receptor-associated kinase 4 (IRAK4) plays a dual role in myddosome formation and Toll-like receptor signaling. *J Biol Chem.* 2018;293(39):15195-15207.
- Ferrao R, Zhou H, Shan Y, et al. IRAK4 dimerization and trans

 autophosphorylation are induced by myddosome assembly.

 Mol Cell. 2014;55(6):891-903.
- Lin S-C, Lo Y-C, Wu H. Helical assembly in the MyD88– IRAK4–IRAK2 complex in TLR/IL-1R signalling. *Nature*. 2010;465(7300):885-890.
- Kawagoe T, Sato S, Matsushita K, et al. Sequential control of Toll-like receptor-dependent responses by IRAK1 and IRAK2. Nat Immunol. 2008;9(6):684-691.
- 57. Xia Z-P, Sun L, Chen X, et al. Direct activation of protein kinases by unanchored polyubiquitin chains. *Nature*. 2009;461(7260):114-119.
- Inoue J-I, Gohda J, Akiyama T. Characteristics and biological functions of TRAF6 Adv Exp Med Biol. 2007;597:72-79.
- Wei J, Zang S, Xu M, Zheng Q, Chen X, Qin Q. TRAF6 is a critical factor in fish immune response to virus infection. Fish Shellfish Immunol. 2017;60:6-12.
- 60. Chen L, Zheng L, Chen P, Liang G. Myeloid differentiation primary response protein 88 (MyD88): the central hub of TLR/IL-1R signaling. *J Med Chem.* 2020;63(22):13316-13329.
- Oshiumi H, Matsumoto M, Funami K, Akazawa T, Seya T. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-β induction. *Nat Immunol*. 2003;4(2):161-167.
- Clark K, Takeuchi O, Akira S, Cohen P. The TRAF-associated protein TANK facilitates cross-talk within the IκB kinase family during Toll-like receptor signaling. *Proc Natl Acad Sci USA*. 2011;108(41):17093-17098.
- McWhirter SM, Fitzgerald KA, Rosains J, Rowe DC, Golenbock DT, Maniatis T. IFN-regulatory factor 3-dependent gene

- expression is defective in *Tbk1*-deficient mouse embryonic fibroblasts. Article. *Proc Nat Acad Sci USA*. 2004;101(1):233-238.
- 64. Fitzgerald KA, McWhirter SM, Faia KL, et al. IKKε and TBK1 are essential components of the IRF3 signaling pathway. Article. Nat Immunol. 2003;4(5):491-496.
- 65. Sato S, Sugiyama M, Yamamoto M, et al. Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, nf-κb and ifn-regulatory factor-3, in the toll-like receptor signaling. *J Immunol.* 2003:171(8):4304-4310.
- 66. Ermolaeva MA, Michallet M-C, Papadopoulou N, et al. Function of TRADD in tumor necrosis factor receptor 1 signaling and in TRIF-dependent inflammatory responses. *Nat Immunol.* 2008;9(9):1037-1046.
- Muendlein HI, Connolly WM, Magri Z, et al. ZBP1 promotes LPS-induced cell death and IL-1β release via RHIM-mediated interactions with RIPK1. *Nat Commun*. 2021;12(1):86.
- Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. *Nat Immunol*. 2010;11(5):373-384.
- Nussenzweig MC, Steinman RM. Contribution of dendritic cells to stimulation of the murine syngeneic mixed leukocyte reaction. *J Exp Med.* 1980:151(5):1196-1212.
- Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392(6673):245-252.
- Edwards AD, Diebold SS, Slack EM, et al. Toll-like receptor expression in murine DC subsets: lack of TLR7 expression by CD8 alpha+ DC correlates with unresponsiveness to imidazoquinolines. Eur J Immunol. 2003;33(4):827-833.
- Schulz O, Diebold SS, Chen M, et al. Toll-like receptor 3 promotes cross-priming to virus-infected cells. *Nature*. 2005;433(7028):887-892.
- Jain A, Irizarry-Caro RA, McDaniel MM, et al. T cells instruct myeloid cells to produce inflammasome-independent IL-1beta and cause autoimmunity. *Nat Immunol*. 2020;21(1):65-74.
- Pasare C, Medzhitov R. Toll-dependent control mechanisms of CD4 T cell activation. Article. *Immunity*. 2004;21(5):733-741.
- 75. Kabelitz D. Expression and function of Toll-like receptors in T lymphocytes. *Curr Opin Immunol.* 2007;19(1):39-45.
- Sutmuller RPM, den Brok M, Kramer M, et al. Toll-like receptor 2 controls expansion and function of regulatory T cells. *J Clin Invest*. 2006;116(2):485-494.
- Kreuk LS, Koch MA, Slayden LC, et al. B cell receptor and Toll-like receptor signaling coordinate to control distinct B-1 responses to both self and the microbiota. eLife. 2019;8:e47015.
- 78. Pasare C, Medzhitov R. Control of B-cell responses by Toll-like receptors. Article. *Nature*. 2005;438(7066):364-368.
- Guerra C, Johal K, Morris D, et al. Control of Mycobacterium tuberculosis growth by activated natural killer cells. *Clin Exp Immunol*. 2012;168(1):142-152.
- Lauzon NM, Mian F, MacKenzie R, Ashkar AA. The direct effects of Toll-like receptor ligands on human NK cell cytokine production and cytotoxicity. *Cell Immunol*. 2006;241(2):102-112.
- Chalifour A, Jeannin P, Gauchat JF, et al. Direct bacterial protein PAMP recognition by human NK cells involves TLRs and triggers alpha-defensin production. *Blood*. 2004;104(6):1778-1783.

- Kondo T, Kawai T, Akira S. Dissecting negative regulation of Toll-like receptor signaling. *Trends Immunol*. 2012;33(9):449-458
- Hubbard LLN, Moore BB. IRAK-M regulation and function in host defense and immune homeostasis. *Infect Dis Rep.* 2010;2(1):e9.
- Kobayashi K, Hernandez LD, Galán JE, Janeway CA, Medzhitov R, Flavell RA. IRAK-M is a negative regulator of toll-like receptor signaling. *Cell*. 2002;110(2):191-202.
- 85. Bulut Y, Faure E, Thomas L, Equils O, Arditi M. Cooperation of toll-like receptor 2 and 6 for cellular activation by soluble tuberculosis factor and *Borrelia burgdorferi*outer surface protein A lipoprotein:: Role of Toll-interacting protein and IL-1 receptor signaling molecules in Toll-like receptor 2 signaling. *J Immunol.* 2001;167(2):987-994.
- Zhang G, Ghosh S. Negative regulation of toll-like receptormediated signaling by Tollip. *J Biol Chem.* 2002;277(9):7059-7065
- Larsen PH, Holm TH, Owens T. Toll-like receptors in brain development and homeostasis. Sci STKE. 2007;2007(402):pe47pe47.
- 88. Michelsen KS, Arditi M. Toll-like receptors and innate immunity in gut homeostasis and pathology. *Curr Opin Hematol.* 2007;14(1):48-54.
- Fillatreau S, Manfroi B, Dörner T. Toll-like receptor signalling in B cells during systemic lupus erythematosus. *Nat Rev Rheumatol*. 2020;17(2):98-108.
- Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. *Nat Rev Cancer*. 2013;13(11):759-771.
- 91. Ruffell B, Chang-Strachan D, Chan V, et al. Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. *Cancer Cell*. 2014;26(5):623-637.
- 92. Dumitriu IE, Dunbar DR, Howie SE, Sethi T, Gregory CD. Human dendritic cells produce TGF-β1 under the influence of lung carcinoma cells and prime the differentiation of CD4+CD25+Foxp3+regulatory T cells. *J Immunol*. 2009;182(5):2795-2807.
- 93. Kumar V. Pulmonary innate immune response determines the outcome of inflammation during pneumonia and sepsis-associated acute lung injury. *Front Immunol.* 2020;11:1722.
- Patra R, Chandra Das N, Mukherjee S. Targeting human TLRs to combat COVID-19: a solution? J Med Virol. 2021;93(2):615-617.
- Khanmohammadi S, Rezaei N. Role of Toll-like receptors in the pathogenesis of COVID-19. *J Med Virol*. 2021;93(5):2735-2739.
- Diamond MS, Kanneganti TD. Innate immunity: the first line of defense against SARS-CoV-2. Nat Immunol. 2022;23(2):165-176.
- 97. Zheng M, Karki R, Williams EP, et al. TLR2 senses the SARS-CoV-2 envelope protein to produce inflammatory cytokines. *Nat Immunol.* 2021;22(7):829-838.
- Sariol A, Perlman S. SARS-CoV-2 takes its Toll. *Nat Immunol*. 2021;22(7):801-802.
- Jung S, Potapov I, Chillara S, del Sol A. Leveraging systems biology for predicting modulators of inflammation in patients with COVID-19. Sci Adv. 2021;7(6):eabe5735.

- 100. Mazaleuskaya L, Veltrop R, Ikpeze N, Martin-Garcia J, Navas-Martin S. Protective role of Toll-like receptor 3-induced type i interferon in murine coronavirus infection of macrophages. *Viruses*. 2012;4(5):901-923.
- 101. Moreno-Eutimio MA, Lopez-Macias C, Pastelin-Palacios R. Bioinformatic analysis and identification of single-stranded RNA sequences recognized by TLR7/8 in the SARS-CoV-2, SARS-CoV, and MERS-CoV genomes. *Microbes Infect*. 2020;22(4-5):226-229.
- 102. Veras FP, Pontelli MC, Silva CM, et al. SARS-CoV-2-triggered neutrophil extracellular traps mediate COVID-19 pathology. J Exp Med. 2020;217(12):e20201129.
- 103. Bolourani S, Brenner M, Wang P. The interplay of DAMPs, TLR4, and proinflammatory cytokines in pulmonary fibrosis. J Mol Med (Berl). 2021;99(10):1373-1384.
- Fraser E. Long term respiratory complications of covid-19. BMJ. 2020;370:m3001.
- Bhattacharyya S, Wang W, Qin W, et al. TLR4-dependent fibroblast activation drives persistent organ fibrosis in skin and lung. *JCI Insight*. 2018;3(13):e98850.
- 106. Nishimoto S, Fukuda D, Sata M. Emerging roles of Tolllike receptor 9 in cardiometabolic disorders. *Inflamm Regen*. 2020;40:18.
- Kim J, Yoo JY, Suh JM, et al. The flagellin-TLR5-Nox4 axis promotes the migration of smooth muscle cells in atherosclerosis. *Exp Mol Med*. 2019;51(7):1-13.
- 108. Koushki K, Shahbaz SK, Mashayekhi K, et al. Antiinflammatory action of statins in cardiovascular disease: the role of inflammasome and toll-like receptor pathways. *Clin Rev Allergy Immunol*. 2020;60(2):175-199.
- Kong P, Cui ZY, Huang XF, Zhang DD, Guo RJ, Han M. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention. Signal Transduct Target Ther. 2022;7(1):131.
- 110. Vaez H, Soraya H, Garjani A, Gholikhani T. Toll-like receptor 4 (TLR4) and AMPK relevance in cardiovascular disease. *Adv Pharm Bull*. 2023;13(1):36-47.
- 111. Bayer AL, Alcaide P. MyD88: at the heart of inflammatory signaling and cardiovascular disease. *J Mol Cell Cardiol*. 2021;161:75-85.
- 112. Yu L, Feng Z. The role of Toll-like receptor signaling in the progression of heart failure. *Mediat Inflamm*. 2018;2018:9874109.
- 113. Shishido T, Nozaki N, Takahashi H, et al. Central role of endogenous Toll-like receptor-2 activation in regulating inflammation, reactive oxygen species production, and subsequent neointimal formation after vascular injury. *Biochem Biophys Res Commun*. 2006;345(4):1446-1453.
- 114. Peng T, Ma Y, Zhang X, et al. Toll-like receptor (TLR) 2 and TLR4 differentially regulate doxorubicin induced cardiomyopathy in mice. *PLoS One*. 2012;7(7):e40763.
- 115. Shishido T, Nozaki N, Yamaguchi S, et al. Toll-like receptor-2 modulates ventricular remodeling after myocardial infarction. *Circulation*. 2003;108(23):2905-2910.
- 116. Wang X, Ha T, Kalbfleisch J, Williams D, Li C. TLR3 mediates neonatal heart repair and regeneration through glycolysis-dependent YAP/TAZ mediated miR-152 expression. *Circulation*. 2016;134:966-982.
- 117. Cole JE, Navin TJ, Cross AJ, et al. Unexpected protective role for Toll-like receptor 3 in the arterial wall. *Proc Natl Acad Sci USA*. 2011;108(6):2372-2377.

- 118. Lazaridis A, Gavriilaki E, Douma S, Gkaliagkousi E. Toll-like receptors in the pathogenesis of essential hypertension. A forthcoming immune-driven theory in full effect. *Int J Mol Sci.* 2021;22(7):3451.
- Satoh S, Yada R, Inoue H, et al. Toll-like receptor-4 is upregulated in plaque debris of patients with acute coronary syndrome more than Toll-like receptor-2. *Heart Vessels*. 2016;31(1):1-5.
- 120. Yang Y, Lv J, Jiang S, et al. The emerging role of Toll-like receptor 4 in myocardial inflammation. *Cell Death Dis.* 2016;7(5):e2234.
- Peng ML, Fu Y, Wu CW, Zhang Y, Ren H, Zhou SS. Signaling pathways related to oxidative stress in diabetic cardiomyopathy. Front Endocrinol (Lausanne). 2022;13:907757.
- 122. Su Q, Li L, Sun Y, Yang H, Ye Z, Zhao J. Effects of the TLR4/Myd88/NF-kappa B signaling pathway on NLRP3 inflammasome in coronary microembolization-induced myocardial injury. *Cell Physiol Biochem.* 2018;47(4):1497-1508.
- 123. Chu X, Xu B, Gao H, et al. Lipopolysaccharides improve mesenchymal stem cell-mediated cardioprotection by MyD88 and stat3 signaling in a mouse model of cardiac ischemia/reperfusion injury. *Stem Cells Dev.* 2019;28(9):620-631.
- 124. Lee J-G, Lim E-J, Park D-W, Lee S-H, Kim J-R, Baek S-H. A combination of Lox-1 and Nox1 regulates TLR9-mediated foam cell formation. *Cell Signalling*. 2008;20(12):2266-2275.
- 125. Fukuda D, Nishimoto S, Aini K, et al. Toll-like receptor 9 plays a pivotal role in angiotensin II-induced atherosclerosis. J Am Heart Assoc. 2019;8(7):e010860.
- Baumann A, Nier A, Hernandez-Arriaga A, et al. Toll-like receptor 1 as a possible target in non-alcoholic fatty liver disease. Sci Rep. 2021;11(1):17815.
- 127. Issa D, Alkhouri N. Nonalcoholic fatty liver disease and hepatocellular carcinoma: new insights on presentation and natural history. *Hepatobiliary Surg Nutr.* 2017;6(6):401-403.
- 128. Alegre NS, Garcia CC, Billordo LA, et al. Limited expression of TLR9 on T cells and its functional consequences in patients with nonalcoholic fatty liver disease. *Clin Mol Hepatol*. 2020;26(2):216-226.
- 129. Vijayan A, Rumbo M, Carnoy C, Sirard J-C. Compartmentalized antimicrobial defenses in response to flagellin. *Trends Microbiol.* 2018;26(5):423-435.
- 130. Shen Z, Luo W, Tan B, et al. Roseburia intestinalis stimulates TLR5-dependent intestinal immunity against Crohn's disease. *EBioMedicine*. 2022;85:104285.
- 131. Hoivik ML, Moum B, Solberg IC, et al. Work disability in inflammatory bowel disease patients 10 years after disease onset: results from the IBSEN study. *Gut.* 2013;62(3):368-375.
- 132. Ruan G, Chen M, Chen L, et al. Roseburia intestinalis and its metabolite butyrate inhibit colitis and upregulate TLR5 through the SP3 signaling pathway. *Nutrients*. 2022;14(15):3041.
- Luo S, Deng X, Liu Q, et al. Emodin ameliorates ulcerative colitis by the flagellin-TLR5 dependent pathway in mice. *Int Immunopharmacol*. 2018;59:269-275.
- 134. Schmitt H, Ulmschneider J, Billmeier U, et al. The TLR9 agonist cobitolimod induces IL10-producing wound healing macrophages and regulatory T cells in ulcerative colitis. *J Crohns Colitis*. 2020;14(4):508-524.
- 135. Sodhi CP, Wipf P, Yamaguchi Y, et al. The human milk oligosaccharides 2'-fucosyllactose and 6'-sialyllactose protect

- against the development of necrotizing enterocolitis by inhibiting toll-like receptor 4 signaling. *Pediatr Res.* 2021;89(1):91-101.
- 136. Sun L, Li Y, Luo H, Wang K, Li L, Zeng Y. Effects of Toll-like receptor 9 and CpG oligodeoxynucleotides 1826 on sodium taurocholate-induced acute pancreatitis rats. *Mol Med Rep.* 2018;18(4):3818-3824.
- 137. Harding JL, Pavkov ME, Magliano DJ, Shaw JE, Gregg EW. Global trends in diabetes complications: a review of current evidence. *Diabetologia*. 2018;62(1):3-16.
- 138. Hinder LM, Murdock BJ, Park M, et al. Transcriptional networks of progressive diabetic peripheral neuropathy in the db/db mouse model of type 2 diabetes: an inflammatory story. *Exp Neurol.* 2018;305:33-43.
- 139. Guo Z, Zhang Y, Liu C, Youn JY, Cai H. Toll-like receptor 2 (TLR2) knockout abrogates diabetic and obese phenotypes while restoring endothelial function via inhibition of NOX1. *Diabetes.* 2021;70(9):2107-2119.
- 140. Huang J, Peng J, Pearson JA, et al. Toll-like receptor 7 deficiency suppresses type 1 diabetes development by modulating B-cell differentiation and function. *Cell Mol Immunol*. 2021;18(2):328-338.
- 141. Youssef ME, Abdelrazek HM, Moustafa YM. Cardioprotective role of GTS-21 by attenuating the TLR4/NF-kappa B pathway in streptozotocin-induced diabetic cardiomyopathy in rats. *Naunyn Schmiedebergs Arch Pharmacol*. 2021;394(1):11-31.
- 142. Liu M, Peng J, Tai N, et al. Toll-like receptor 9 negatively regulates pancreatic islet beta cell growth and function in a mouse model of type 1 diabetes. *Diabetologia*. 2018;61(11):2333-2343.
- Liao Y-R, Li Z-J, Zeng P, Lan Y-Q. TLR7 deficiency contributes to attenuated diabetic retinopathy via inhibition of inflammatory response. *Biochem Biophys Res Commun*. 2017;493(2):1136-1142.
- 144. Simo R, Simo-Servat O, Bogdanov P, Hernandez C. Neurovascular unit: a new target for treating early stages of diabetic retinopathy. *Pharmaceutics*. 2021;13(8):1320.
- 145. Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). Article. *JAMA*. 2016;315(8):801-810.
- 146. van der Poll T, van de Veerdonk FL, Scicluna BP, Netea MG. The immunopathology of sepsis and potential therapeutic targets. *Nat Rev Immunol.* 2017;17(7):407-420.
- Gotts JE, Matthay MA. Sepsis: pathophysiology and clinical management. BMJ. 2016;353:1585.
- 148. Deng D, Li X, Liu C, et al. Systematic investigation on the turning point of over-inflammation to immunosuppression in CLP mice model and their characteristics. *Int Immunopharmacol*. 2017;42:49-58.
- 149. Behairy MY, Abdelrahman AA, Toraih EA, et al. Investigation of TLR2 and TLR4 polymorphisms and sepsis susceptibility: computational and experimental approaches. *Int J Mol Sci.* 2022;23(18):10982.
- 150. Wang X, Guo Z, Wang Z, et al. Diagnostic and predictive values of pyroptosis-related genes in sepsis. *Front Immunol.* 2023:14:1105399.
- 151. Wang X, Li D, Qin Y-Y, et al. Toll-like receptor 2 deficiency relieves splenic immunosuppression during sepsis. Article; Early access. *Immunobiology*. 2023;228(3):152374.
- 152. Rybka J, Butrym A, Wrobel T, et al. The expression of Toll-like receptors and development of severe sepsis in patients with

- acute myeloid leukemias after induction chemotherapy. *Med Oncol.* 2014;31(12):319.
- 153. Yang J, Liu W, Xu M, Yu L. Long non-coding RNA CRNDE and toll-like receptor 3 correlate with disease severity, inflammation, and mortality in sepsis. *J Clin Lab Anal*. 2020;34(9):e23360.
- 154. Cavassani KA, Ishii M, Wen H, et al. TLR3 is an endogenous sensor of tissue necrosis during acute inflammatory events. J Exp Med. 2008;205(11):2609-2621.
- 155. Chen X, Wang T, Song L, Liu X. Activation of multiple Toll-like receptors serves different roles in sepsis-induced acute lung injury. Exp Ther Med. 2019;18(1):443-450.
- 156. Williams B, Neder J, Cui P, et al. Toll-like receptors 2 and 7 mediate coagulation activation and coagulopathy in murine sepsis. *J Thromb Haemost*. 2019;17(10):1683-1693.
- 157. Li J, Chen Y, Li R, et al. Gut microbial metabolite hyodeoxycholic acid targets the TLR4/MD2 complex to attenuate inflammation and protect against sepsis. Article; Early Access. *Mol Ther*. 2023;31(4):1017-1032.
- 158. Chen X-S, Wang S-H, Liu C-Y, et al. Losartan attenuates sepsis-induced cardiomyopathy by regulating macrophage polarization via TLR4-mediated NF-κB and MAPK signaling. Pharmacol Res. 2022;185:106473.
- 159. Xie S, Li J, Lyu F, et al. Novel tripeptide RKH derived from Akkermansia muciniphila protects against lethal sepsis. Gut. 2023;73(1):78-91.
- 160. Xiao Z, Kong B, Fang J, et al. Ferrostatin-1 alleviates lipopolysaccharide-induced cardiac dysfunction. Bioengineered. 2021;12(2):9367-9376.
- Yang X, Yin Y, Yan X, Yu Z, Liu Y, Cao J. Flagellin attenuates experimental sepsis in a macrophage-dependent manner. *Crit Care*. 2019;23(1):106.
- 162. Williams B, Zhu J, Zou L, Chao W. Innate immune TLR7 signaling mediates platelet activation and platelet-leukocyte aggregate formation in murine bacterial sepsis. *Platelets*. 2022;33(8):1251-1259.
- 163. Jian W, Gu L, Williams B, Feng Y, Chao W, Zou L. Toll-like receptor 7 contributes to inflammation, organ injury, and mortality in murine sepsis. *Anesthesiology*. 2019;131(1):105-118.
- 164. Chen KH, Zeng L, Gu W, Zhou J, Du DY, Jiang JX. Polymorphisms in the toll-like receptor 9 gene associated with sepsis and multiple organ dysfunction after major blunt trauma. Br J Surg. 2011;98(9):1252-1259.
- Atalan N, Karagedik H, Acar L, et al. Analysis of Toll-like receptor 9 gene polymorphisms in sepsis. *In Vivo*. 2016;30(5):639-643.
- 166. Plitas G, Burt BM, Nguyen HM, Bamboat ZM, DeMatteo RP. Toll-like receptor 9 inhibition reduces mortality in polymicrobial sepsis. *J Exp Med.* 2008;205(6):1277-1283.
- 167. Sun S, Duan Z, Wang X, et al. Neutrophil extracellular traps impair intestinal barrier functions in sepsis by regulating TLR9-mediated endoplasmic reticulum stress pathway. *Cell Death Dis.* 2021;12(6):606.
- 168. Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman JE, Grandis JR. Head and neck squamous cell carcinoma. *Nat Rev Dis Primers*. 2020;6(1):92.
- Chai AWY, Lim KP, Cheong SC. Translational genomics and recent advances in oral squamous cell carcinoma. Semin Cancer Biol. 2020;61:71-83.

- 170. Ng LK, Rich AM, Hussaini HM, et al. Toll-like receptor 2 is present in the microenvironment of oral squamous cell carcinoma. *Br J Cancer*. 2011;104(3):460-463.
- 171. Ikehata N, Takanashi M, Satomi T, et al. Toll-like receptor 2 activation implicated in oral squamous cell carcinoma development. *Biochem Biophys Res Commun*. 2018;495(3):2227-2234.
- 172. Palani CD, Ramanathapuram L, Lam-Ubol A, Kurago ZB. Toll-like receptor 2 induces adenosine receptor A2a and promotes human squamous carcinoma cell growth via extracellular signal regulated kinases. *Oncotarget*. 2018;9(6):6814-6829.
- 173. Makinen LK, Atula T, Hayry V, et al. Predictive role of toll-like receptors 2, 4, and 9 in oral tongue squamous cell carcinoma. *Oral Oncol.* 2015;51(1):96-102.
- 174. Farnebo L, Shahangian A, Lee Y, Shin JH, Scheeren FA, Sunwoo JB. Targeting Toll-like receptor 2 inhibits growth of head and neck squamous cell carcinoma. *Oncotarget*. 2015;6(12):9897-9907.
- 175. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-249.
- 176. El-Kharashy G, Gowily A, Okda T, Houssen M. Association between serum soluble Toll-like receptor 2 and 4 and the risk of breast cancer. *Mol Clin Oncol*. 2021;14(2):38.
- 177. Wang Y, Liu S, Zhang Y, Yang J. Dysregulation of TLR2 serves as a prognostic biomarker in breast cancer and predicts resistance to endocrine therapy in the luminal B subtype. *Front Oncol.* 2020;10:547.
- 178. Lee J, Choi J, Chung S, et al. Genetic predisposition of polymorphisms in HMGB1-related genes to breast cancer prognosis in Korean women. *J Breast Cancer*. 2017;20(1):27-34.
- 179. Niu X, Yin L, Yang X, et al. Serum amyloid A 1 induces suppressive neutrophils through the Toll-like receptor 2-mediated signaling pathway to promote progression of breast cancer. *Cancer Sci.* 2022;113(4):1140-1153.
- 180. Secli L, Avalle L, Poggio P, et al. Targeting the extracellular HSP90 co-chaperone morgana inhibits cancer cell migration and promotes anticancer immunity. *Cancer Res.* 2021;81(18):4794-4807.
- 181. Wang Y, Jin J, Li Y, et al. NK cell tumor therapy modulated by UV-inactivated oncolytic herpes simplex virus type 2 and checkpoint inhibitors. *Transl Res.* 2022;240:64-86.
- 182. Bi S, Huang W, Chen S, et al. Cordyceps militaris polysaccharide converts immunosuppressive macrophages into M1-like phenotype and activates T lymphocytes by inhibiting the PD-L1/PD-1 axis between TAMs and T lymphocytes. *Int J Biol Macromol*. 2020;150:261-280.
- 183. Schreuders EH, Ruco A, Rabeneck L, et al. Colorectal cancer screening: a global overview of existing programmes. *Gut.* 2015;64(10):1637-1649.
- 184. Paarnio K, Vayrynen S, Klintrup K, et al. Divergent expression of bacterial wall sensing toll-like receptors 2 and 4 in colorectal cancer. *World J Gastroenterol*. 2017;23(26):4831-4838.
- 185. Messaritakis I, Stogiannitsi M, Koulouridi A, et al. Evaluation of the detection of Toll-like receptors (TLRs) in cancer development and progression in patients with colorectal cancer. *PLoS One.* 2018;13(6):e0197327.
- 186. Liu YD, Ji CB, Li SB, et al. Toll-like receptor 2 stimulation promotes colorectal cancer cell growth via PI3K/Akt

- and NF-kappaB signaling pathways. *Int Immunopharmacol*. 2018;59:375-383.
- 187. Qin J, Li H, Yu W, Wei L, Wen B. Effect of cold exposure and capsaicin on the expression of histone acetylation and Toll-like receptors in 1,2-dimethylhydrazine-induced colon carcinogenesis. *Environ Sci Pollut Res Int*. 2021;28(43):60981-60992.
- 188. Proenca MA, Biselli JM, Succi M, et al. Relationship between Fusobacterium nucleatum, inflammatory mediators and microRNAs in colorectal carcinogenesis. *World J Gastroenterol*. 2018;24(47):5351-5365.
- 189. Sun CH, Li BB, Wang B, et al. The role of Fusobacterium nucleatum in colorectal cancer: from carcinogenesis to clinical management. Chronic Dis Transl Med. 2019;5(3):178-187.
- 190. Tsoi H, Chu ESH, Zhang X, et al. Peptostreptococcus anaerobius induces intracellular cholesterol biosynthesis in colon cells to induce proliferation and causes dysplasia in mice. *Gastroenterology*. 2017;152(6):1419-1433. e5.
- Meng S, Li Y, Zang X, Jiang Z, Ning H, Li J. Effect of TLR2 on the proliferation of inflammation-related colorectal cancer and sporadic colorectal cancer. *Cancer Cell Int.* 2020;20:95.
- 192. Zhou X, Hong T, Yu Q, et al. Exopolysaccharides from Lactobacillus plantarum NCU116 induce c-Jun dependent Fas/Faslmediated apoptosis via TLR2 in mouse intestinal epithelial cancer cells. Sci Rep. 2017;7(1):14247.
- 193. Liu YD, Yu L, Ying L, et al. Toll-like receptor 2 regulates metabolic reprogramming in gastric cancer via superoxide dismutase 2. *Int J Cancer*. 2019;144(12):3056-3069.
- 194. Lourenco CM, Susi MD, Antunes do Nascimento MC, et al. Characterization and strong risk association of TLR2 del -196 to -174 polymorphism and Helicobacter pylori and their influence on mRNA expression in gastric cancer. World J Gastrointest Oncol. 2020;12(5):535-548.
- 195. Cao D, Wu Y, Jia Z, et al. 18 beta-glycyrrhetinic acid inhibited mitochondrial energy metabolism and gastric carcinogenesis through methylation-regulated TLR2 signaling pathway. *Carcinogenesis*. 2019;40(2):234-245.
- 196. West AC, Tang K, Tye H, et al. Identification of a TLR2regulated gene signature associated with tumor cell growth in gastric cancer. *Oncogene*. 2017;36(36):5134-5144.
- 197. Herrera-Pariente C, Capo-Garcia R, Diaz-Gay M, et al. Identification of new genes involved in germline predisposition to early-onset gastric cancer. *Int J Mol Sci.* 2021;22(3):1310.
- 198. Wang S, Yao Y, Rao C, Zheng G, Chen W. 25-HC decreases the sensitivity of human gastric cancer cells to 5-fluorouracil and promotes cells invasion via the TLR2/NF-kappaB signaling pathway. *Int J Oncol.* 2019;54(3):966-980.
- 199. Xu J, Guo R, Jia J, He Y, He S. Activation of Toll-like receptor 2 enhances peripheral and tumor-infiltrating CD8(+) T cell cytotoxicity in patients with gastric cancer. *BMC Immunol*. 2021;22(1):67.
- 200. Reis SK, Socca EAR, de Souza BR, Genaro SC, Duran N, Favaro WJ. Effects of combined OncoTherad immunotherapy and probiotic supplementation on modulating the chronic inflammatory process in colorectal carcinogenesis. *Tissue Cell*. 2022;75:101747.
- Naciute M, Niemi V, Kemp RA, Hook S. Lipid-encapsulated oral therapeutic peptide vaccines reduce tumour growth in an orthotopic mouse model of colorectal cancer. *Eur J Pharm Biopharm*. 2020;152:183-192.

- 202. Chuang HC, Huang CC, Chien CY, Chuang JH. Toll-like receptor 3-mediated tumor invasion in head and neck cancer. *Oral Oncol.* 2012;48(3):226-232.
- 203. Nomi N, Kodama S, Suzuki M. Toll-like receptor 3 signaling induces apoptosis in human head and neck cancer via survivin associated pathway. *Oncol Rep.* 2010;24(1):225-231.
- Luo Q, Hu S, Yan M, Sun Z, Chen W, Chen F. Activation of Tolllike receptor 3 induces apoptosis of oral squamous carcinoma cells in vitro and in vivo. *Int J Biochem Cell Biol*. 2012;44(8):1266-1275.
- 205. Park J-H, Jeon D-I, Yoon H-E, et al. Poly I:c inhibits cell proliferation and enhances the growth inhibitory effect of paclitaxel in oral sqaumous cell carcinoma. *Acta Odontol Scand*. 2012;70(3):241-245.
- 206. He Z, Huang X, Ni Y, et al. Functional toll-like receptor 3 expressed by oral squamous cell carcinoma induced cell apoptosis and decreased migration. *Oral Surg Oral Med Oral Pathol Oral Radiol*. 2014;118(1):92-100.
- 207. Fan L, Zhou P, Hong Q, et al. Toll-like receptor 3 acts as a suppressor gene in breast cancer initiation and progression: a two-stage association study and functional investigation. *Oncoimmunology*. 2019;8(6):e1593801.
- 208. Fan L, Zhou P, Chen AX, Liu GY, Yu KD, Shao ZM. Toll-like receptor 3 -926T>A increased the risk of breast cancer through decreased transcriptional activity. *Oncoimmunology*. 2019;8(12):e1673126.
- 209. Bernardo AR, Cosgaya JM, Aranda A, Jimenez-Lara AM. Proapoptotic signaling induced by Retinoic acid and dsRNA is under the control of interferon regulatory factor-3 in breast cancer cells. *Apoptosis*. 2017;22(7):920-932.
- 210. Huang L, Rong Y, Tang X, et al. Engineered exosomes as an in situ DC-primed vaccine to boost antitumor immunity in breast cancer. *Mol Cancer*. 2022;21(1):45.
- 211. Ultimo A, de la Torre C, Gimenez C, et al. Nanoparticle-cell-nanoparticle communication by stigmergy to enhance poly(I:c) induced apoptosis in cancer cells. *Chem Commun (Camb)*. 2020;56(53):7273-7276.
- 212. Mu QG, Lin G, Jeon M, et al. Iron oxide nanoparticle targeted chemo-immunotherapy for triple negative breast cancer. *Mater Today (Kidlington)*. 2021;50:149-169.
- 213. Zhao J, Xue Y, Pan Y, et al. Toll-like receptor 3 agonist poly I:c reinforces the potency of cytotoxic chemotherapy via the TLR3-UNC93B1-IFN-beta signaling axis in paclitaxel-resistant colon cancer. *J Cell Physiol*. 2019;234(5):7051-7061.
- 214. Long S, Gu Y, An Y, et al. Reovirus enhances cytotoxicity of natural killer cells against colorectal cancer via TLR3 pathway. *J Transl Med*. 2021;19(1):185.
- 215. Lei K, Ma B, Shi P, et al. Icariin mitigates the growth and invasion ability of human oral squamous cell carcinoma via inhibiting toll-like receptor 4 and phosphorylation of NF-kappaB P65. *Onco Targets Ther.* 2020;13:299-307.
- 216. Kotrashetti VS, Nayak R, Bhat K, Hosmani J, Somannavar P. Immunohistochemical expression of TLR4 and TLR9 in various grades of oral epithelial dysplasia and squamous cell carcinoma, and their roles in tumor progression: a pilot study. *Biotech Histochem*. 2013;88(6):311-322.
- 217. Szczepanski MJ, Czystowska M, Szajnik M, et al. Triggering of Toll-like receptor 4 expressed on human head and neck squamous cell carcinoma promotes tumor development

- and protects the tumor from immune attack. Cancer Res. 2009;69(7):3105-3113.
- 218. Li L, Zhou Z, Mai K, et al. Protein overexpression of toll-like receptor 4 and myeloid differentiation factor 88 in oral squamous cell carcinoma and clinical significance. *Oncol Lett.* 2021;22(5):786.
- 219. Pisani LP, Estadella D, Ribeiro DA. The role of Toll like receptors (TLRs) in oral carcinogenesis. *Anticancer Res.* 2017;37(10):5389-5394.
- He Z, Deng R, Huang X, et al. Lipopolysaccharide enhances OSCC migration by promoting epithelial-mesenchymal transition. J Oral Pathol Med. 2015;44(9):685-692.
- 221. Yang J, Liu D, Khatri KS, et al. Prognostic value of toll-like receptor 4 and nuclear factor-kappaBp65 in oral squamous cell carcinoma patients. *Oral Surg Oral Med Oral Pathol Oral Radiol*. 2016;122(6):753-764. e1.
- 222. Kong Q, Liang Y, He Q, et al. Autophagy inhibits TLR4-mediated invasiveness of oral cancer cells via the NF-kappaB pathway. *Oral Dis.* 2020.
- 223. Al-Hebshi NN, Nasher AT, Maryoud MY, et al. Inflammatory bacteriome featuring Fusobacterium nucleatum and Pseudomonas aeruginosa identified in association with oral squamous cell carcinoma. Sci Rep. 2017;7(1):1834.
- Wang X, Yu X, Wang Q, Lu Y, Chen H. Expression and clinical significance of SATB1 and TLR4 in breast cancer. *Oncol Lett.* 2017;14(3):3611-3615.
- 225. Edwardson DW, Boudreau J, Mapletoft J, Lanner C, Kovala AT, Parissenti AM. Inflammatory cytokine production in tumor cells upon chemotherapy drug exposure or upon selection for drug resistance. *PLoS One*. 2017;12(9):e0183662.
- Wu K, Zhang H, Fu Y, et al. TLR4/MyD88 signaling determines the metastatic potential of breast cancer cells. *Mol Med Rep*. 2018;18(3):3411-3420.
- 227. Long F, Lin H, Zhang X, Zhang J, Xiao H, Wang T. Atractylenolide-I suppresses tumorigenesis of breast cancer by inhibiting Toll-like receptor 4-mediated nuclear factor-kappaB signaling pathway. *Front Pharmacol.* 2020;11:598939.
- 228. Li J, Yin J, Shen W, et al. TLR4 promotes breast cancer metastasis via Akt/GSK3beta/beta-catenin pathway upon LPS stimulation. *Anat Rec (Hoboken)*. 2017;300(7):1219-1229.
- 229. Zhao XL, Lin Y, Jiang J, et al. High-mobility group box 1 released by autophagic cancer-associated fibroblasts maintains the stemness of luminal breast cancer cells. *J Pathol*. 2017;243(3):376-389.
- 230. Thomas PL, Nangami G, Rana T, et al. The rapid endocytic uptake of fetuin-A by adherent tumor cells is mediated by Toll-like receptor 4 (TLR4). *FEBS Open Bio.* 2020;10(12):2722-2732.
- 231. Moaaz M, Youssry S, Moaz A, Abdelrahman M. Study of Toll-like receptor 4 gene polymorphisms in colorectal cancer: correlation with clinicopathological features. *Immunol Invest.* 2020;49(5):571-584.
- 232. Park GB, Kim D. TLR4-mediated galectin-1 production triggers epithelial-mesenchymal transition in colon cancer cells through ADAM10- and ADAM17-associated lactate production. Mol Cell Biochem. 2017;425(1-2):191-202.
- 233. Guo J, Liao M, Wang J. TLR4 signaling in the development of colitis-associated cancer and its possible interplay with microRNA-155. Cell Commun Signal. 2021;19(1):90.

- 234. Huang HC, Cai BH, Suen CS, et al. BGN/TLR4/NF-B mediates epigenetic silencing of immunosuppressive siglec ligands in colon cancer cells. *Cells*. 2020;9(2):397.
- Shi YJ, Zhao QQ, Liu XS, et al. Toll-like receptor 4 regulates spontaneous intestinal tumorigenesis by up-regulating IL-6 and GM-CSF. J Cell Mol Med. 2020;24(1):385-397.
- 236. Eiro N, Gonzalez L, Gonzalez LO, et al. Toll-like receptor-4 expression by stromal fibroblasts is associated with poor prognosis in colorectal cancer. *J Immunother*. 2013;36(6):342-349.
- 237. Ying J, Zhou HY, Liu P, et al. Aspirin inhibited the metastasis of colon cancer cells by inhibiting the expression of toll-like receptor 4. *Cell Biosci.* 2018;8:1.
- 238. Xu C, Gu L, Kuerbanjiang M, Wen S, Xu Q, Xue H. Thrombospondin 2/Toll-like receptor 4 axis contributes to HIF-1alpha-derived glycolysis in colorectal cancer. *Front Oncol.* 2020;10:557730.
- 239. Wu Y, Wu J, Chen T, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis in mice via a Toll-like receptor 4/p21-activated kinase 1 cascade. *Dig Dis Sci.* 2018;63(5):1210-1218
- 240. Pastille E, Fassnacht T, Adamczyk A, Ngo Thi Phuong N, Buer J, Westendorf AM. Inhibition of TLR4 signaling impedes tumor growth in colitis-associated colon cancer. *Front Immunol*. 2021;12:669747.
- 241. Yan S, Liu G, Jin C, et al. MicroRNA-6869-5p acts as a tumor suppressor via targeting TLR4/NF-kappaB signaling pathway in colorectal cancer. *J Cell Physiol.* 2018;233(9):6660-6668.
- 242. Li N, Xu H, Ou Y, et al. LPS-induced CXCR7 expression promotes gastric Cancer proliferation and migration via the TLR4/MD-2 pathway. *Diagn Pathol.* 2019;14(1):3.
- 243. Hu L, Zang MD, Wang HX, et al. Biglycan stimulates VEGF expression in endothelial cells by activating the TLR signaling pathway. *Mol Oncol.* 2016;10(9):1473-1484.
- 244. Chen G, Xu M, Chen J, et al. Clinicopathological features and increased expression of Toll-like receptor 4 of gastric cardia cancer in a high-risk chinese population. *J Immunol Res.* 2018;2018:7132868.
- 245. Sangwan V, Al-Marzouki L, Pal S, et al. Inhibition of LPS-mediated TLR4 activation abrogates gastric adenocarcinoma-associated peritoneal metastasis. Clin Exp Metastasis. 2022;39(2):323-333.
- 246. Li Q, Wu W, Gong D, Shang R, Wang J, Yu H. Propionibacterium acnes overabundance in gastric cancer promote M2 polarization of macrophages via a TLR4/PI3K/Akt signaling. *Gastric Cancer*. 2021;24(6):1242-1253.
- 247. Tsai CC, Chen TY, Tsai KJ, et al. NF-kappaB/miR-18a-3p and miR-4286/BZRAP1 axis may mediate carcinogenesis in Helicobacter pylori-Associated gastric cancer. *Biomed Pharmacother*. 2020;132:110869.
- 248. Zhang X, Shi H, Yuan X, Jiang P, Qian H, Xu W. Tumor-derived exosomes induce N2 polarization of neutrophils to promote gastric cancer cell migration. *Mol Cancer*. 2018;17(1):146.
- 249. Ding L, Jiang Q, Li G, et al. Comprehensive assessment of association between TLR4 gene polymorphisms and cancer risk: a systematic meta-analysis. *Oncotarget*. 2017;8(59):100593-100602.
- 250. Kim TW, Lee S-J, Oh BM, et al. Epigenetic modification of TLR4 promotes activation of NF-kappa B by regulating methyl-

- CpG-binding domain protein 2 and Sp1 in gastric cancer. *Oncotarget*. 2016;7(4):4195-4209.
- Li Z, Gao H, Liu Y, et al. Genetic variants in the regulation region of TLR4 reduce the gastric cancer susceptibility. *Gene*. 2021;767:145181.
- Yamaguchi T, Fushida S, Yamamoto Y, et al. Low-dose paclitaxel suppresses the induction of M2 macrophages in gastric cancer. Oncol Rep. 2017;37(6):3341-3350.
- 253. Zhuang H, Dai X, Zhang X, Mao Z, Huang H. Sophoridine suppresses macrophage-mediated immunosuppression through TLR4/IRF3 pathway and subsequently upregulates CD8(+) T cytotoxic function against gastric cancer. *Biomed Pharmacother*. 2020;121:109636.
- 254. Basith S, Manavalan B, Yoo TH, Kim SG, Choi S. Roles of toll-like receptors in cancer: a double-edged sword for defense and offense. *Arch Pharm Res.* 2012;35(8):1297-1316.
- 255. Park J-H, Yoon H-E, Kim D-J, Kim S-A, Ahn S-G, Yoon J-H. Toll-like receptor 5 activation promotes migration and invasion of salivary gland adenocarcinoma. *J Oral Pathol Med*. 2011;40(2):187-193.
- 256. Park JH, Yoon HE, Jeon DI, Ahn SG, Yoon JH. Activation of TLR2 and TLR5 did not affect tumor progression of an oral squamous cell carcinoma, YD-10B cells. *J Oral Pathol Med*. 2010;39(10):781-785.
- 257. Omar AA, Korvala J, Haglund C, et al. Toll-like receptors -4 and -5 in oral and cutaneous squamous cell carcinomas. *J Oral Pathol Med*. 2015;44(4):258-265.
- Omar AAH, Korvala J, Haglund C, et al. Toll-like receptors-4 and-5 in oral and cutaneous squamous cell carcinomas. *J Oral Pathol Med*. 2015;44(4):258-265.
- Khajuria N, Metgud R. Role of bacteria in oral carcinogenesis. *Indian J Dent*. 2015;6(1):37-43.
- Yang CY, Yeh YM, Yu HY, et al. Oral microbiota community dynamics associated with oral squamous cell carcinoma staging. Front Microbiol. 2018;9:862.
- Bolz J, Dosa E, Schubert J, Eckert AW. Bacterial colonization of microbial biofilms in oral squamous cell carcinoma. *Clin Oral Investig*. 2014;18(2):409-414.
- 262. Bode W. Bacterial flagella and flagellar protein flagellin. *Angew Chem Int Ed Engl.* 1973;12(9):683-693.
- Chen S, Yuan W, Fu Z, et al. Toll-like receptor 5 gene polymorphism is associated with breast cancer susceptibility. Oncotarget. 2017;8(51):88622-88629.
- 264. Jiang W, Han Y, Liang T, Zhang C, Gao F, Hou G. Down-regulation of Toll-like receptor 5 (TLR5) increased VEGFR expression in triple negative breast cancer (TNBC) based on radionuclide imaging. Front Oncol. 2021;11:708047.
- 265. Shi D, Liu W, Zhao S, Zhang C, Liang T, Hou G. TLR5 is a new reporter for triple-negative breast cancer indicated by radioimmunoimaging and fluorescent staining. *J Cell Mol Med*. 2019;23(12):8305-8313.
- 266. Shi D, Zhao S, Jiang W, Zhang C, Liang T, Hou G. TLR5: a prognostic and monitoring indicator for triple-negative breast cancer. *Cell Death Dis.* 2019;10(12):954.
- 267. Pimentel-Nunes P, Goncalves N, Boal-Carvalho I, et al. Decreased Toll-interacting protein and peroxisome proliferator-activated receptor gamma are associated with increased expression of Toll-like receptors in colon carcinogenesis. *J Clin Pathol.* 2012;65(4):302-308.

- 268. Beilmann-Lehtonen I, Hagstrom J, Mustonen H, Koskensalo S, Haglund C, Bockelman C. High tissue TLR5 expression predicts better outcomes in colorectal cancer patients. *Oncology*. 2021:99(9):589-600.
- Beilmann-Lehtonen I, Hagstrom J, Kaprio T, et al. The relationship between the tissue expression of TLR2, TLR4, TLR5, and TLR7 and systemic inflammatory responses in colorectal cancer patients. *Oncology*, 2021;99(12):790-801.
- Klimosch SN, Forsti A, Eckert J, et al. Functional TLR5 genetic variants affect human colorectal cancer survival. *Cancer Res.* 2013;73(24):7232-7242.
- 271. Thagia I, Shaw EJ, Smith E, Else KJ, Rigby RJ. Intestinal epithelial suppressor of cytokine signaling 3 enhances microbial-induced inflammatory tumor necrosis factor-alpha, contributing to epithelial barrier dysfunction. *Am J Physiol Gastrointest Liver Physiol.* 2015;308(1):G25-G31.
- 272. Kasurinen A, Hagstrom J, Laitinen A, Kokkola A, Bockelman C, Haglund C. Evaluation of toll-like receptors as prognostic biomarkers in gastric cancer: high tissue TLR5 predicts a better outcome. Sci Rep. 2019;9(1):12553.
- 273. Xu T, Fu D, Ren Y, et al. Genetic variations of TLR5 gene interacted with Helicobacter pylori infection among carcinogenesis of gastric cancer. *Oncotarget*. 2017;8(19):31016-31022.
- 274. De Re V, Repetto O, De Zorzi M, et al. Polymorphism in Toll-like receptors and Helicobacter pylori motility in autoimmune atrophic gastritis and gastric cancer. *Cancers (Basel)*. 2019;11(5):648.
- 275. Terawaki K, Kashiwase Y, Uzu M, et al. Leukemia inhibitory factor via the Toll-like receptor 5 signaling pathway involves aggravation of cachexia induced by human gastric cancerderived 85As2 cells in rats. *Oncotarget*. 2018;9(78):34748-34764.
- 276. Mahmoud Hashemi A, Mahmoud Hashemi H, Solahaye Kahnamouii S, et al. Activation Toll-like receptor7 (TLR7) responsiveness associated with mitogen- activated protein kinase (MAPK) activation in HIOEC cell line of oral squamous cell carcinoma. *J Dent (Shiraz)*. 2018;19(3):217-224.
- 277. Ni YH, Ding L, Zhang DY, Hou YY, Huang X, Hu Q. Distinct expression patterns of Toll-like receptor 7 in tumour cells and fibroblast-like cells in oral squamous cell carcinoma. *Histopathology*. 2015;67(5):730-739.
- 278. Wan D, Que H, Chen L, et al. Lymph-node-targeted cholesterolized TLR7 agonist liposomes provoke a safe and durable antitumor response. *Nano Lett.* 2021;21(19):7960-7969.
- 279. Wu J-S, Li J-X, Shu N, et al. A polyamidoamine (PAMAM) derivative dendrimer with high loading capacity of TLR7/8 agonist for improved cancer immunotherapy. *Nano Res.* 2021;15(1):510-518.
- 280. Francian A, Widmer A, Olsson T, et al. Delivery of toll-like receptor agonists by complement C3-targeted liposomes activates immune cells and reduces tumour growth. *J Drug Target*. 2021;29(7):754-760.
- Bahmani B, Gong H, Luk BT, et al. Intratumoral immunotherapy using platelet-cloaked nanoparticles enhances antitumor immunity in solid tumors. *Nat Commun.* 2021;12(1):1999.
- 282. Safarzadeh E, Mohammadi A, Mansoori B, et al. STAT3 silencing and TLR7/8 pathway activation repolarize and suppress myeloid-derived suppressor cells from breast cancer patients. Front Immunol. 2020;11:613215.

- 283. Park CG, Hartl CA, Schmid D, Carmona EM, Kim H-J, Goldberg MS. Extended release of perioperative immunotherapy prevents tumor recurrence and eliminates metastases. *Sci Transl Med*, 2018:10(433):eaar1916.
- 284. Zhou P, Qin J, Zhou C, et al. Multifunctional nanoparticles based on a polymeric copper chelator for combination treatment of metastatic breast cancer. *Biomaterials*. 2019;195:86-99.
- Liu Y, Tang L, Gao N, et al. Synthetic MUC1 breast cancer vaccine containing a Toll-like receptor 7 agonist exerts antitumor effects. Oncol Lett. 2020;20(3):2369-2377.
- 286. Grimm M, Kim M, Rosenwald A, et al. Toll-like receptor (TLR) 7 and TLR8 expression on CD133+ cells in colorectal cancer points to a specific role for inflammation-induced TLRs in tumourigenesis and tumour progression. *Eur J Cancer*. 2010;46(15):2849-2857.
- Hong EH, Cho J, Ahn JH, et al. Plasmacytoid dendritic cells regulate colitis-associated tumorigenesis by controlling myeloidderived suppressor cell infiltration. *Cancer Lett.* 2020;493:102-112
- 288. Huis In 't Veld RV, Da Silva CG, Jager MJ, Cruz LJ, Ossendorp F. Combining photodynamic therapy with immunostimulatory nanoparticles elicits effective anti-tumor immune responses in preclinical murine models. *Pharmaceutics*. 2021;13(9):1470.
- Liu Z, Xie Y, Xiong Y, et al. TLR 7/8 agonist reverses oxaliplatin resistance in colorectal cancer via directing the myeloidderived suppressor cells to tumoricidal M1-macrophages. Cancer Lett. 2020;469:173-185.
- Schoelch S, Rauber C, Tietz A, et al. Radiotherapy combined with TLR7/8 activation induces strong immune responses against gastrointestinal tumors. *Oncotarget*. 2015;6(7):4663-4676
- 291. Ye J, Mills BN, Qin SS, et al. Toll-like receptor 7/8 agonist R848 alters the immune tumor microenvironment and enhances SBRT-induced antitumor efficacy in murine models of pancreatic cancer. *J Immunother Cancer*. 2022;10(7):e004784.
- 292. Jiang J, Dong L, Qin B, Shi H, Guo X, Wang Y. Decreased expression of TLR7 in gastric cancer tissues and the effects of TLR7 activation on gastric cancer cells. *Oncol Lett*. 2016;12(1):631-636.
- 293. Yuan Q, Zhou Q, Ren J, et al. WGCNA identification of TLR7 as a novel diagnostic biomarker, progression and prognostic indicator, and immunotherapeutic target for stomach adenocarcinoma. *Cancer Med.* 2021;10(12):4004-4016.
- 294. Shirafkan F, Shokri-Shirvani J, Morakabati P, et al. Expression of TLR1, TLR3 and TLR7 genes remarkably down-regulated from erosion to peptic ulcer and gastric cancer development. *Gene Rep.* 2021;24:101229.
- 295. Wang X, Liu Y, Diao Y, et al. Gastric cancer vaccines synthesized using a TLR7 agonist and their synergistic antitumor effects with 5-fluorouracil. *J Transl Med.* 2018;16(1):120.
- 296. Ma L, Han M, Keyoumu Z, Wang H, Keyoumu S. Immunotherapy of dual-function vector with both immunostimulatory and B-cell lymphoma 2 (Bcl-2)-silencing effects on gastric carcinoma. *Med Sci Monit*. 2017;23:1980-1991.
- 297. Daskalopoulos AG, Avgoustidis D, Chaisuparat R, et al. Assessment of TLR4 and TLR9 signaling and correlation with human papillomavirus status and histopathologic parameters in oral tongue squamous cell carcinoma. *Oral Surg Oral Med Oral Pathol Oral Radiol*. 2020;129(5):493-513.

- 298. Min R, Zun Z, Siyi L, Wenjun Y, Lizheng W, Chenping Z. Increased expression of Toll-like receptor-9 has close relation with tumour cell proliferation in oral squamous cell carcinoma. *Arch Oral Biol.* 2011;56(9):877-884.
- 299. Min R, Siyi L, Wenjun Y, et al. Toll-like receptor-9 agonists increase cyclin D1 expression partly through activation of activator protein-1 in human oral squamous cell carcinoma cells. *Cancer Sci.* 2012;103(11):1938-1945.
- Tuomela J, Sandholm J, Kaakinen M, et al. DNA from dead cancer cells induces TLR9-mediated invasion and inflammation in living cancer cells. Breast Cancer Res Treat. 2013;142(3):477-487.
- 301. Shahriari S, Rezaeifard S, Moghimi HR, Khorramizadeh MR, Faghih Z. Cell membrane and intracellular expression of tolllike receptor 9 (TLR9) in colorectal cancer and breast cancer cell-lines. *Cancer Biomark*. 2017;18(4):375-380.
- 302. Guney Eskiler G, Deveci Ozkan A. The relationship between the efficacy of talazoparib and the functional toll-like receptors 3 and 9 in triple negative breast cancer. *Mol Immunol.* 2022:141:280-286.
- 303. Singh A, Bandyopadhyay A, Mukherjee N, Basu A. Toll-like receptor 9 expression levels in breast carcinoma correlate with improved overall survival in patients treated with neoadjuvant chemotherapy and could serve as a prognostic marker. *Genet Test Mol Biomarkers*. 2021;25(1):12-19.
- 304. Natarajan S, Ranganathan M. Toll-like receptor (TLR) gene expression and immunostimulatory effect of CpG oligonucleotides in hormone receptor positive cell line T47D and triple negative breast cancer cell line MDA-MB-468. *Immunopharmacol Immunotoxicol*. 2020;42(5):408-415.
- 305. Miller CL, Sagiv-Barfi I, Neuhofer P, et al. Systemic delivery of a targeted synthetic immunostimulant transforms the immune landscape for effective tumor regression. *Cell Chem Biol.* 2022;29(3):451-462. e8.
- 306. Gao C, Qiao T, Zhang B, Yuan S, Zhuang X, Luo Y. TLR9 signaling activation at different stages in colorectal cancer and NF-kappaB expression. *OncoTargets and Therapy*. 2018;11:5963-5971.
- 307. Luo Q, Zeng L, Tang C, Zhang Z, Chen Y, Zeng C. TLR9 induces colitis-associated colorectal carcinogenesis by regulating NF-kappa B expression levels. *Oncol Lett.* 2020;20(4):110.
- Anunobi R, Boone BA, Cheh N, et al. Extracellular DNA promotes colorectal tumor cell survival after cytotoxic chemotherapy. J Surg Res. 2018;226:181-191.
- 309. Niu Z, Tang W, Liu T, et al. Cell-free DNA derived from cancer cells facilitates tumor malignancy through Toll-like receptor 9 signaling-triggered interleukin-8 secretion in colorectal cancer. Acta Biochim Biophys Sin (Shanghai). 2018;50(10):1007-1017.
- Shahriari S, Rezaeifard S, Moghimi HR, Khorramizadeh MR, Faghih Z. Cell membrane and intracellular expression of tolllike receptor 9 (TLR9) in colorectal cancer and breast cancer cell-lines. *Cancer Biomarkers*. 2017;18(4):375-380.
- 311. Wang WW, Wu L, Lu W, et al. Lipopolysaccharides increase the risk of colorectal cancer recurrence and metastasis due to the induction of neutrophil extracellular traps after curative resection. *J Cancer Res Clin Oncol*. 2021;147(9):2609-2619.
- 312. Scheetz LM, Yu M, Li D, Castro MG, Moon JJ, Schwendeman A. Synthetic HDL nanoparticles delivering docetaxel and CpG for chemoimmunotherapy of colon adenocarcinoma. *Int J Mol Sci.* 2020;21(5):1777.

- 313. Okada H, Takahashi K, Yaku H, et al. In situ vaccination using unique TLR9 ligand K3-SPG induces long-lasting systemic immune response and synergizes with systemic and local immunotherapy. *Sci Rep.* 2022;12(1):2132.
- 314. Wang TR, Peng JC, Qiao YQ, et al. Helicobacter pylori regulates TLR4 and TLR9 during gastric carcinogenesis. *Int J Clin Exp Pathol.* 2014;7(10):6950-6955.
- 315. Fernandez-Garcia B, Eiro N, Gonzalez-Reyes S, et al. Clinical significance of Toll- like Receptor 3, 4, and 9 in gastric cancer. *J Immunother*. 2014;37(2):77-83.
- 316. Susi MD, Caroline ML, Rasmussen LT, et al. Toll-like receptor 9 polymorphisms and Helicobacter pylori influence gene expression and risk of gastric carcinogenesis in the Brazilian population. World J Gastrointest Oncol. 2019;11(11):998-1010.
- 317. Qin X-R, Wu J, Yao X-Y, Huang J, Wang X-Y. Helicobacter pylori DNA promotes cellular proliferation, migration, and invasion of gastric cancer by activating toll-like receptor 9. Saudi J Gastroenterol. 2019;25(3):181-187.
- 318. Varga MG, Shaffer CL, Sierra JC, et al. Pathogenic Helicobacter pylori strains translocate DNA and activate TLR9 via the cancer-associated cag type IV secretion system. *Oncogene*. 2016;35(48):6262-6269.
- 319. Behzadi P. The role of Toll-like receptor (TLR) polymorphisms in urinary bladder cancer. *Genetic Polymorphism and cancer susceptibility*, 2021:281-317.
- 320. Behzadi P, Toll-like receptor (TLR) polymorphisms in prostate cancer. Genetic Polymorphism and Disease.CRC Press;2022;10:379-399.
- 321. Ebermeyer T, Cognasse F, Berthelot P, Mismetti P, Garraud O, Hamzeh-Cognasse H. Platelet innate immune receptors and TLRs: a double-edged sword. *Int J Mol Sci.* 2021;22(15):7894.
- 322. Liu ZM, Yang MH, Yu K, Lian ZX, Deng SL. Toll-like receptor (TLRs) agonists and antagonists for COVID-19 treatments. *Front Pharmacol.* 2022;13:989664.
- 323. Li W, Wan L, Duan S, Xu J. Bibliometric analysis of toll-like receptor agonists associated with cancer therapy. *Medicine* (*Baltimore*). 2022;101(1):e28520.
- 324. Angelopoulou A, Alexandris N, Konstantinou E, et al. Imiquimod—a toll like receptor 7 agonist—is an ideal option for management of COVID 19. *Environ Res.* 2020;188:109858.
- 325. Florindo HF, Kleiner R, Vaskovich-Koubi D, et al. Immune-mediated approaches against COVID-19. *Nat Nanotechnol*. 2020;15(8):630-645.
- 326. Nieto-Fontarigo JJ, Tillgren S, Cerps S, et al. Imiquimod boosts interferon response, and decreases ACE2 and proinflammatory response of human bronchial epithelium in asthma. *Front Immunol.* 2021;12:743890.
- Lu H. TLR agonists for cancer immunotherapy: tipping the balance between the immune stimulatory and inhibitory effects. Front Immunol. 2014;5:83.
- 328. Galluzzi L, Kroemer G, Eggermont A. Novel immune checkpoint blocker approved for the treatment of advanced melanoma. *Oncoimmunology*. 2014;3(11):e967147.
- 329. Wolchok JD, Kluger H, Callahan MK, et al. Nivolumab plus ipilimumab in advanced melanoma. *N Engl J Med*. 2013;369(2):122-133.
- Robert C, Long GV, Brady B, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372(4):320-330.

- 331. Robert C, Schachter J, Long GV, et al. Pembrolizumab versus ipilimumab in advanced melanoma. *N Engl J Med.* 2015;372(26):2521-2532.
- 332. Xun Y, Yang H, Kaminska B, You H. Toll-like receptors and toll-like receptor-targeted immunotherapy against glioma. *J Hematol Oncol.* 2021;14(1):176.
- 333. Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. *Science*. 2018;359(6382):1350-1355.
- Shin DS, Zaretsky JM, Escuin-Ordinas H, et al. Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. *Cancer Discov.* 2017;7(2):188-201.
- Schachter J, Ribas A, Long GV, et al. Pembrolizumab versus ipilimumab for advanced melanoma: final overall survival results of a multicentre, randomised, open-label phase 3 study (KEYNOTE-006). Lancet North Am Ed. 2017;390(10105):1853-1862.
- Adamus T, Kortylewski M. The revival of CpG oligonucleotidebased cancer immunotherapies. *Contemp Oncol (Pozn)*. 2018:22(1A):56-60.
- 337. Marin-Acevedo JA, Dholaria B, Soyano AE, Knutson KL, Chumsri S, Lou Y. Next generation of immune checkpoint therapy in cancer: new developments and challenges. *J Hematol Oncol.* 2018;11(1):39.
- 338. Takeda Y, Kataoka K, Yamagishi J, Ogawa S, Seya T, Matsumoto M. A TLR3-specific adjuvant relieves innate resistance to PD-L1 blockade without cytokine toxicity in tumor vaccine immunotherapy. *Cell Rep.* 2017;19(9):1874-1887.
- 339. Sato-Kaneko F, Yao S, Ahmadi A, et al. Combination immunotherapy with TLR agonists and checkpoint inhibitors suppresses head and neck cancer. JCI Insight. 2017;2(18): e93397.
- 340. Ramanathan R, Choudry H, Jones H, et al. Phase II trial of adjuvant dendritic cell vaccine in combination with celecoxib, interferon-α, and rintatolimod in patients undergoing cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for peritoneal metastases. *Ann Surg Oncol.* 2021;28(8):4637-4646.
- 341. Gandhi S, Opyrchal M, Grimm MJ, et al. Systemic infusion of TLR3-ligand and IFN-α in patients with breast cancer reprograms local tumor microenvironments for selective CTL influx. *J Immunother Cancer*. 2023;11(11):e007381.
- 342. Chow LQM, Morishima C, Eaton KD, et al. Phase Ib trial of the Toll-like receptor 8 agonist, motolimod (VTX-2337), combined with cetuximab in patients with recurrent or metastatic SCCHN. *Clin Cancer Res.* 2017;23(10):2442-2450.
- 343. Ferris RL, Saba NF, Gitlitz BJ, et al. Effect of adding motolimod to standard combination chemotherapy and cetuximab treatment of patients with squamous cell carcinoma of the head and neck the active8 randomized clinical trial. *JAMA Oncol.* 2018;4(11):1583-1588.

- 344. Ribas A, Medina T, Kummar S, et al. SD-101 in combination with pembrolizumab in advanced melanoma: results of a phase Ib, multicenter study. *Cancer Discov.* 2018;8(10):1250-1257.
- 345. Murck H. Symptomatic protective action of glycyrrhizin (licorice) in COVID-19 infection? *Front Immunol.* 2020;11:1239.
- 346. Patra R, Das NC, Mukherjee S. Toll-like receptors (TLRs) as therapeutic targets for treating SARS-CoV-2: an immunobiological perspective. Adv Exp Med Biol. 2021;1352:87-109.
- 347. Goulopoulou S, McCarthy CG, Webb RC. Toll-like receptors in the vascular system: sensing the dangers within. *Pharmacol Rev.* 2016;68(1):142-167.
- Ishikawa T, Abe K, Takana-Ishikawa M, et al. Chronic inhibition of Toll-like receptor 9 ameliorates pulmonary hypertension in rats. J Am Heart Assoc. 2021;10(7):e019247.
- 349. Kitazume-Taneike R, Taneike M, Omiya S, et al. Ablation of Toll-like receptor 9 attenuates myocardial ischemia/reperfusion injury in mice. *Biochem Biophys Res Commun*. 2019;515(3):442-447.
- 350. Medzhitov R, PrestonHurlburt P, Janeway CA. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. *Nature*. 1997;388(6640):394-397.
- 351. Huang B, Zhao J, Li HX, et al. Toll-like receptors on tumor cells facilitate evasion of immune surveillance (Publication with Expression of Concern. See vol. 79, pg. 4305, 2019). Article; Publication with Expression of Concern. *Cancer Res.* 2005;65(12):5009-5014.
- 352. Rodell CB, Arlauckas SP, Cuccarese MF, et al. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. *Nat Biomed Eng.* 2018;2(8):578.
- Li W, Wang F, Guo R, Bian Z, Song Y. Targeting macrophages in hematological malignancies: recent advances and future directions. *J Hematol Oncol.* 2022;15(1):110.
- 354. Xia H, Qin M, Wang Z, et al. A pH-/enzyme-responsive nanoparticle selectively targets endosomal toll-like receptors to potentiate robust cancer vaccination. Article. *Nano Lett.* 2022;22(7):2978-2987.
- 355. Nuhn L, De Koker S, Van Lint S, et al. Nanoparticle-conjugate TLR7/8 agonist localized immunotherapy provokes safe antitumoral responses. *Adv Mater.* 2018;30(45):e1803397.
- Le Naour J, Kroemer G. Trial watch: Toll-like receptor ligands in cancer therapy. Oncoimmunology. 2023;12(1):2180237.

How to cite this article: Wang K, Huang H, Zhan Q, Ding H, Li Y. Toll-like receptors in health and disease. *MedComm.* 2024;5:e549.

https://doi.org/10.1002/mco2.549