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Diabetes is themost common disease and amajor threat to human health. Type 2 diabetes
(T2D) makes up about 90% of all cases. With the development of high-throughput
sequencing technologies, more and more fundamental pathogenesis of T2D at genetic
and transcriptomic levels has been revealed. The recent single-cell sequencing can further
reveal the cellular heterogenicity of complex diseases in an unprecedented way. With the
expectation on the molecular essence of T2D across multiple cell types, we investigated
the expression profiling of more than 1,600 single cells (949 cells from T2D patients and
651 cells from normal controls) and identified the differential expression profiling and
characteristics at the transcriptomics level that can distinguish such two groups of cells at
the single-cell level. The expression profile was analyzed by several machine learning
algorithms, includingMonte Carlo feature selection, support vector machine, and repeated
incremental pruning to produce error reduction (RIPPER). On one hand, some T2D-
associated genes (MTND4P24, MTND2P28, and LOC100128906) were discovered. On
the other hand, we revealed novel potential pathogenic mechanisms in a rule manner. They
are induced by newly recognized genes and neglected by traditional bulk sequencing
techniques. Particularly, the newly identified T2D genes were shown to follow specific
quantitative rules with diabetes prediction potentials, and such rules further indicated
several potential functional crosstalks involved in T2D.
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1 INTRODUCTION

Diabetes mellitus (DM) turns out to be the general term describing metabolic disorders with high
blood sugar levels as typical symptoms (Tseng et al., 2012; Tao et al., 2015). Due to either lack of
insulin or pathogenic insulin reactive responses, diabetes can be divided into three groups: type 1 DM
with low insulin production, type 2 DM with insulin resistance, and gestational diabetes with high
blood sugar levels induced by diabetes recurrence during pregnancy (American Diabetes
Association, 2014). According to the epidemiologic statistics data in 2015, more than four
hundred million people suffered from diabetes, and about five million people died from such
disease all over the world (Gao et al., 2016; Disease and Injury Incidence and Prevalence
Collaborators, 2017; Global Burden of Disease Cancer Collaboration et al., 2017). Particularly,
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type 2 diabetes (T2D) makes up about 90% of all cases (392
million) and is the primary subtype of diabetes (Disease and
Injury Incidence and Prevalence Collaborators, 2017; Global
Burden of Disease Cancer Collaboration et al., 2017),
indicating such kind of disease is one of the major threats to
human health.

Different from type 1 DM and gestational diabetes, the major
pathogenesis of type 2 DM is insulin resistance and beta-cell
dysfunction accompanied with insufficient insulin secretion
(Pandey et al., 2015), where insulin resistance is generally
defined as dysfunctional insulin-mediated glucose clearance
(Yabe et al., 2015). During the pathogenesis of type 2 DM, the
typical insulin-associated biological processes and action cascade
are usually disturbed by either intracellular signals or extra
interferences, including serine phosphorylation of IRS-1, excess
glucosamine, mitochondria defects, FA (fatty acid)-induced
insulin dysfunction, and alternate fatty acid effects (Taylor,
2013; Eckardt et al., 2014; Pandey et al., 2015). Early in 1997,
Boden (1997) has already demonstrated the significance of fatty
acids in diabetes. Further similarly in the same year, functional
signaling molecules IRS-1 and IRS-2 were confirmed by Zick
(2001), revealing the initial biological foundations for diabetes.
Apart from such complicated pathogenesis associated with
insulin resistance, beta-cell dysfunction has also been widely
identified in type 2 DM patients as the other etiological factor.
Similar to insulin resistance, such pathogenesis also has various
potential mechanisms, including glucose toxicity, beta-cell
exhaustion, impaired proinsulin biosynthesis, and lipo-toxicity
(Ferrannini, 2009). In 2003, Kahn (2003) demonstrated the
specific contribution of both insulin resistance and beta-cell
dysfunction to the pathogenesis of diabetes, laying a
foundation for the basic pathological mechanisms of such
disease. Different from the downstream mechanisms of two
major pathogeneses, such pathogenic mechanisms can be both
attributed to either genetic predisposition or environmental
interferences (Andersen et al., 2016; Stancakova and Laakso,
2016). They would be involved in the progressive dysfunction
of pancreatic islet alpha and beta cells, so that, the pancreatic islet
cells actually have specific roles in the initiation and progression
of type 2 DM.

Traditionally, the studies on the pathogenic characteristics and
contribution of pancreatic islet cells mainly focused on the
abnormal biochemical reactions and physiological processes of
such cell types in type 2 DM (Borg et al., 2001; Donath et al., 2003;
Prentki and Nolan, 2006; Westermark and Westermark, 2008).
According to these studies, there are four major pathogenic
characteristics of pancreatic islet cells, including increased islet
glucose metabolism (Forst et al., 2014), abnormal lipid signaling
(Chakraborty et al., 2014), abnormal GLP-1 secretion (Trujillo
and Nuffer, 2014), and compensatory feedback stimulation on
parasympathetic and sympathetic neurons (Thorens, 2014). With
the development of high-throughput sequencing technologies,
more and more fundamental pathogenesis of type 2 DM at
genetic and transcriptomic levels has been revealed. Apart
from such transcription factors, genes regulating optimal
glucose-responsive insulin secretion, like IAPP, GLUT2,
GAD65, and IA-2, have also been identified to participate in

T2D-associated pathogenesis (Clocquet et al., 2000). Therefore,
the abnormal gene functions of pancreatic islet cells may be one of
the major pathogenic factors for type 2 DM. However, as we all
know, the cellular components of pancreatic islet cells are quite
complicated involving various cell subtypes. Meanwhile,
traditional studies all focused on the biological features (either
at the cellular level or genetic level) of cell population, no matter
pathogenic or not for individual cells. Therefore, these
conventional studies may ignore some potential pathogenic
factors and mistake non-pathogenic features due to normal or
irrelevant cells’ interferences.

Multiple previous studies have focused on single-cell analyses
on pancreatic islets under physical or pathological conditions.
With the development of single-cell techniques, the studies on
pancreatic islets under either pathological or normal conditions
have been extended to the single-cell level. Early in 2016,
Segerstolpe et al. (2016) have identified some typical
biomarkers to distinguish pancreatic islets under healthy and
diabetic conditions. However, as limitations of this study, the
authors only applied differential expression analyses and the
t-SNE method to identify some potential biomarkers to reveal
the heterogeneity (Segerstolpe et al., 2016). Apart from this study,
further in 2017, another study extended to identify the specific
biomarkers for T2D, confirming that genes are differentially
expressed at the transcriptomics level not only between
patients and controls but also among different cell types
(Lawlor et al., 2017). In 2018, another single-cell gene
expression analysis on T2D also tried to identify specific
biomarkers for the prediction of cellular states of beta-cells,
either healthy or T2D beta-cells (Ma and Zheng, 2018). The
shortcomings of these two studies turn out to be a lack of
quantitative standards establishment, making it still quite hard
to predict T2D using single-cell transcriptomics data.

To overcome the limitations of previous studies mentioned
earlier, in this study, for the first time, we used the single-cell
sequencing results from one previous study (Xin et al., 2016) and
tried to extend their analyses at two levels: 1) using multiple
machine learning algorithms for deep analysis; 2) taking the
pancreatic islets as a whole and did not distinguish different
cell subtypes. We extended the classification and prediction of
cellular states from just beta cells to multiple cell types, including
human pancreatic alpha, beta, delta, and PP cells. Also, different
from previous studies, we did not just focus on the pathogenic
effects of T2D on beta cells but tried to reveal the general
comprehensive pathogenic effects on all the cells from the
pancreatic islets. Although most of the previous studies
identified that pancreatic islet B cells are the major
participants in the pathogenesis of T2D, other cells, including
alpha, delta, and PP cells, are also either shown to be correlated
with the pathogenesis of T2D or may act as potential biomarkers
for T2D due to their typical changes during the pathogenesis.
Therefore, it is not only innovative but effective to reveal the
comprehensive effects of T2D on pancreatic islets and identify
more valuable biomarkers for such disease.

All in all, to remove the interferences caused by conventional
bulk sequencing and analysis, we have tried to identify potential
pathogenic factors of T2D from the transcriptomic profiling
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covering multiple cell subtypes at the single-cell level. Relied on
single-cell RNA sequencing techniques and related public
datasets (Xin et al., 2016), we investigated such datasets with
several powerful machine learning algorithms. Different from
previous studies, focusing on identifying biomarkers for
distinguishing a tissue under normal or pathological
conditions but not an entire tissue, which makes hard to
detect biomarkers from a single-cell subtype in clinical
applications, this study tried to identify the common
transcriptomics characteristics across different cell types at the
single-cell level for T2D. Biomarkers identified in this study may
not be affected by the cell composition of the islet tissue that may
vary among different individuals. In addition, our results revealed
novel potential pathogenic mechanisms induced by newly
recognized genes in a rule manner, which are always neglected
by traditional bulk sequencing techniques. On the one hand, these
results deepen our understanding on the etiology and
pathogenesis of T2D. On the other hand, such identified new
biomarkers can be potential candidates for further clinical
application in the diagnosis of T2D using the transcriptomics
information of the entire tissue, with no further cell separation
and preprocessing required.

2 MATERIALS AND METHODS

In this study, we first used a feature selection method to analyze a
RNA sequencing dataset of T2D for ranking the important genes

associated with T2D, and these genes were further optimized for
diabetes using incremental feature selection (IFS) (Liu and Setiono,
1998) with some supervised classifiers. In the end, we applied the
rule learning method to generate interpretable classification rules
for T2D. The whole process is illustrated in Figure 1.

2.1 Datasets
We downloaded the RNA sequencing data of 1,600 human
pancreatic islet cells from the GEO (Transcript Expression
Omnibus) database under the accession number of GSE81608
at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE81608 (Xin et al., 2016). There were 949 pancreatic islet
cells from six T2D patients and 651 pancreatic islet cells from
12 non-diabetic donors. Within the 949 pancreatic islet cells from
T2D patients, there were 569 alpha, 296 beta, 30 delta, and 54 PP
cells. Within in the 651 pancreatic islet cells from non-diabetic
donors, there were 377 alpha, 207 beta, 28 delta, and 39 PP cells.
The expression levels of 39,851 genes were quantified as RPKM
(Reads Per Kilo bases per Million reads). The processed gene
expression profiles of these cells downloaded from https://ftp.
ncbi.nlm.nih.gov/geo/series/GSE81nnn/GSE81608/suppl/
GSE81608_human_islets_rpkm.txt.gz were used. Despite islet
cells containing different cells, this work expects to identify
the common gene signatures for T2D across multiple cell types.

2.2 Feature Selection
In this study, we first used the Monte Carlo feature selection
(MCFS) (Draminski et al., 2008) to evaluate the importance of all

FIGURE 1 | Workflow for key gene identification of type 2 diabetes. The MCFS method was used to evaluate the importance of all features (genes). On the one
hand, the IFS method with SVM/RF/KNN was applied on the feature list yielded by the MCFS method to extract optimal T2D-associated genes and optimal classifiers.
On the other hand, the informative features yielded by theMCFSmethodwere fed into the Johnson reducer and RIPPER algorithms to construct optimal T2D-associated
rules.
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genes, obtaining a feature list and some informative genes
expressed in diabetes. For the feature list, it was fed into the
IFS (Liu and Setiono, 1998) with one classification algorithm to
extract optimal genes that had a strong discriminate ability
between diabetes and non-diabetes samples and construct an
efficient classifier. On the other hand, repeated incremental
pruning to produce error reduction (RIPPER) was employed
to determine interpretable rules on gene expression patterns with
informative features.

2.2.1 Monte Carlo Feature Selection
The investigated data contained 1,600 samples, each of which was
represented by expression levels on lots of genes. Accordingly, the
data can be summarized as a matrix with low row numbers and
high column numbers. MCFS is deemed to be a powerful feature
selection method to deal with such data. Thus, it was employed in
this study. MCFS is a multivariate feature selection method based
on bootstrap samples and decision trees, which focuses on
selecting discriminate features for classification with
robustness. In this feature selection algorithm, it generates
multiple bootstrap sets, and on each bootstrap set, multiple
decision trees are grown on smaller feature subsets randomly
selected from original features. Then, the involvement of each
feature in the decision trees shows a relative importance (RI)
score, which indicates the overall number of splits involving this
feature in all nodes of all constructed trees. The MCFS program
was downloaded from http://www.ipipan.eu/staff/m.draminski/
mcfs.html. For convenience, default parameters were adopted.

The MCFS program was executed on the aforementioned
RNA sequencing data. According to the output of the MCFS
program, we can obtain the RI values of all features. Accordingly,
features can be ranked in a list with the decreasing order of their
RI values. Furthermore, it also provides the informative features,
which are generated by a permutation test on class labels and one-

sided Student’s t-test. These features are always the top-ranking
features in the list. We would adopt these features to construct
classification rules via RIPPER.

2.2.2 Incremental Feature Selection
In this study, we performed IFS on the MCFS-generated feature
list, denoted by F � [f1, f2, . . . , fN] (N was the total number of
features), to screen out a set of optimal features, which can
accurately discriminate between diabetes and non-diabetes
samples. Based on such list, we generated a series of feature
subsets with step 5. Suppose there are m feature subsets
[F1, F2, . . . , Fm], where the ith feature subset contains top 5 × i
features, that is, Fi � [f1, f2, . . . , fi×5]. Then, for a given
classification algorithm, we built one classifier on samples
represented by features from each feature subset and yielded the
10-fold cross-validation performance for evaluating this classifier.
After all constructed feature subsets had been tested, the feature
subset, on which the classifier provided the best performance, can
be obtained. Such a feature subset was called the optimal feature
subset for this classification algorithm, and the features inside were
named as the optimal features. Furthermore, the classifier with the
best performance was termed as the optimal classifier.

2.3 Classification Algorithm
For the IFSmethod, one classification algorithmwas necessary. In
this study, we tried three classic classification algorithms: 1)
support vector machine (SVM) (Cortes and Vapnik, 1995), 2)
K-nearest neighbor (KNN) (Cover and Hart, 1967), and 3)
random forest (RF) (Breiman, 2001). Their brief descriptions
were as follows.

2.3.1 Support Vector Machine
The SVM is a supervised learning model based on statistical
learning theory and is widely used in many biological problems

FIGURE 2 | Performance of KNN integrated in IFS using different numbers of features. The y-axis is F1-measure, and the x-axis is the number of participated
features. k is the parameter of KNN, indicating the number of nearest neighbors that are used tomake prediction. KNN can yield the best F1-measure of 0.886when k = 5
and the top 665 features are used.
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(Pan and Shen, 2009; Mirza et al., 2015; Chen et al., 2017; Jia et al.,
2018; Wei et al., 2018; Zhou et al., 2022a; Zhou et al., 2020b; Liu
et al., 2021; Wang et al., 2021; Zhu et al., 2021; Li X. et al., 2022;
Wu and Chen, 2022). Given a set of training samples, each
training sample is assigned to positives or negatives. The SVM
training algorithm fits a hyperplane that has the maximum
margin between positives and negatives, where the
generalization error becomes smaller when the margin is
larger. The SVM generally is good at handling non-linear data,
since it can first map the data in non-linear space to high-
dimensional linear space by the kernel function and then fit a
linear model in the high-dimensional space.

2.3.2 K-Nearest Neighbor
KNN is one of the simplest schemes for classifying samples.
However, in many cases, it still can yield good performance.
Given a training dataset, KNN directly uses samples in it to make
prediction for any query sample, that is, KNN does not contain a
learning procedure. Generally, it finds k training samples, which
have the nearest distances (e.g., Euclidean distance) to the query
sample. By counting the classes of these k training samples, the
class with most votes is assigned to the query sample.

2.3.3 Random Forest
RF is another classic classification algorithm. In fact, it is an
integrated algorithm, consisting of several decision trees. For
constructing each decision tree, it randomly picks up samples
from the training dataset, with replacement, to constitute the
basic dataset. The tree is extended at each node by selecting an
optimal split on one feature among the randomly selected
features. RF integrates the predictions of all decision trees with
majority voting. RF is deemed as a powerful classification
algorithm and has wide applications in tackling many
biological problems (Kandaswamy et al., 2011; Casanova et al.,
2014;Marques et al., 2016; Jia et al., 2020; Liang et al., 2020; Zhang
et al., 2021b; Chen et al., 2021; Onesime et al., 2021; Chen et al.,
2022; Ding et al., 2022; Yang and Chen, 2022).

To quickly implement the aforementioned three classification
algorithms, we employed the corresponding packages in scikit-
learn (https://scikit-learn.org/stable/). Some main parameters
were tuned for extracting optimal parameters.

2.4 Johnson Reducer and Repeated
Incremental Pruning to Produce Error
Reduction Algorithms
Classification algorithms mentioned in Section 2.3 are powerful
to construct efficient classifiers. However, we cannot understand
their principles because they are black-box algorithms. In this
case, few clues for uncovering essential differences between T2D
patients and non-diabetic donors can be obtained. In view of this,
we further adopted rule learning algorithms to investigate the
RNA sequencing data. Although it is generally weaker than the
aforementioned algorithms, it can provide rules that clearly
indicate special expression patterns on T2D patients, thereby
improving our understanding on T2D. The procedures were
described in the following sections.

Asmentioned in Section 3.2.1, theMCFSmethod can select some
informative features. These features are quite essential to describe
the characteristics of the dataset. Here, we used these features to
construct classification rules via RIPPER algorithm (Cohen, 1995).
Before that, the Johnson reducer algorithm (Johnson, 1974) was
applied on the informative features to select the most important
features, which had the similar classification ability compared to the
original informative features. The selected features were fed into the
RIPPER algorithm. RIPPER, proposed by Cohen (1995), is a rule
learning algorithm which is capable of handling large noisy datasets
effectively. RIPPER is the improved version of IREP (Johannes and
Widmer, 1994) which combines both the separate-and-conquer
technique used first in the relational learner FOIL (Quinlan, 1990)
and the reduced error pruning strategy proposed by Brunk and
Pazzani (1991). In RIPPER, the training set is first split into growing
and pruning sets. Then, repeat the rule grow phase and rule prune
phase until no positive samples are left in the growing set, or the
description length (DL) is 64 bits greater than the smallest DL found
so far, or the error rate is greater than 50%. In the rule grow phase,
one rule is generated by greedily adding conditions to the rule that
achieves the highest FOIL’s information gain. In the rule prune
phase, the rule is pruned using reduced error pruning. Finally, global
optimization strategy is applied to further prune the rule set. The
aforementioned procedures for constructing rules are also
implemented in the MCFS program, that is, the set of rules is
one output of the MCFS program.

2.5 Performance Measurement
In this study, we used six measurements to evaluate the
performance of all classifiers under 10-fold cross-validation
(Kohavi, 1995; Li Z. et al., 2022; Ding et al., 2022; Tang and
Chen, 2022), including sensitivity (SN) (same as recall),
specificity (SP), accuracy (ACC), Matthew correlation
coefficient (MCC), precision, and F1-measure (Matthews,
1975; Zhao et al., 2018; Zhao et al., 2019; Jia et al., 2020;
Liang et al., 2020; Zhang et al., 2021a; Zhang et al., 2021c; Pan
et al., 2021). Their formulations are written as follows:

SN � Recall � TP

TP + FN
, (1)

SP � TN

TN + FP
, (2)

ACC � TP + TN

TP + TN + FP + FN
, (3)

MCC � TP × TN − FP × FN
�������������������������������������(TP + FP)(TP + FN)(TN + FP)(TN + FN)√ , (4)

Precision � TP

TP + FP
, (5)

F1 −measure � 2 × Recall × Precision

Recall + Precision
, (6)

where TP represents the number of truly positive samples, FP
represents the number of false-positive samples, TN represents
the number of truly negative samples, and FN represents the
number of false-negative samples. Among these six
measurements, we selected F1-measure as the key one,
whereas others were provided for reference.
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2.6 Gene Ontology Enrichment Analysis on
Optimal Genes
Some rules can be extracted via the Johnson reducer and RIPPER
algorithms, which involved several features (genes), called rule
genes, in the following text. We performed Gene Ontology (GO)
enrichment analysis using R package topGO (http://
bioconductor.org/packages/release/bioc/html/topGO.html, v.2.
24.0) on these rule genes. The genes of interest were set as
rule genes, and the gene background was set as all the
available genes. The p-value threshold was set at 0.001.

3 RESULTS

T2D is one type of DMandmakes upmost DM cases. In this study,
we investigated potential pathogenic factors of T2D at the single-
cell level by analyzing a single-cell RNA sequencing dataset. Such
dataset contained 1,600 single cells, including 949 cells from T2D

patients and 651 cells from normal controls. It was analyzed by
some powerful machine learning algorithms, including MCFS
(Draminski et al., 2008), SVM (Cortes and Vapnik, 1995), KNN
(Cover and Hart, 1967), RF (Breiman, 2001), and RIPPER (Cohen,
1995). The entire procedure is shown in Figure 1. On one hand, we
obtained some T2D-associated genes, which can be novel
biomarkers of T2D. On the other hand, some interesting rules
were constructed, which can uncover different expression patterns
in T2D patients and normal controls. This section gives the
detailed results of these procedures.

3.1 Results of the Monte Carlo Feature
Selection Method
The MCFS method was directly applied to the RNA sequencing
data to analyze the importance of all features (genes). Each gene
was assigned a RI score. A total of 26,978 genes were assigned RI
scores larger than zero. These genes and their RI scores are

FIGURE 3 | Bar chart to show five measurements of three optimal classifiers based on different classification algorithms.

FIGURE 4 | Performance of RF integrated in IFS using different numbers of features. The y-axis is F1-measure, and the x-axis is the number of participated features.
I is the parameter of RF, indicating the number of decision trees. RF can yield the best F1-measure of 0.907 when I = 100 and the top 305 features are used.
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provided in Supplementary Table S1. Because the RI scores of
the rest genes were zero, meaning their associations for the
identification of T2D samples were very weak, they were
discarded. A feature list was generated by sorting the
remaining 26,978 genes in the decreasing order of their RI
scores, which is also provided in Supplementary Table S1.

In addition to the feature list, the MCFS method can output
some informative features. For investigating RNA sequencing
data, 235 informative features were extracted by the MCFS
method, which were the top 235 genes listed in
Supplementary Table S1.

3.2 Results of the Incremental Feature
Selection Method
To further extract optimal features, the IFS method combined
with one classification algorithm was employed. Here, we tried
three classification algorithms: SVM, KNN, and RF. Some main
parameters of each algorithm were tuned. In detail, for SVM, four
kernels were attempted, including linear, polynomial, RBF, and
sigmoid kernels. The parameter k for KNNwas set to 1, 5, and 10,
and the parameter, number of decision trees (I), for RF was set to
20, 40, 60, 80, and 100. Because the feature list contained a huge
number of features, we only considered the top 5,000 features in
this study to save time. Several feature subsets were constructed
using step 5.

When the classification algorithm was KNN, several KNN
classifiers with a certain parameter k were constructed on all
feature subsets. All these classifiers were evaluated by 10-fold
cross-validation. The obtained six measurements are listed in
Supplementary Table S2. For an easy observation, we plot a
curve for KNN with a certain parameter k, as shown in
Figure 2, in which the F1-measure was set to the y-axis and the
number of features was set to the x-axis. We can see that when k =

1, 5, and 10, the highest F1-measure was 0.885, 0.886, and 0.880,
respectively. Thus, the KNN classifier with k = 5 provided the best
performance. Such classifier used the top 665 features (genes) in the
feature list. These features were the optimal features for KNN. The
other five measurements are illustrated in Figure 3. Except MCC,
all measurements exceeded 0.8, implying the good performance of
such KNN classifiers. Furthermore, it can be observed from
Figure 2 that the IFS curves of KNN with different parameters
k had a common feature. The curve followed a sharp decreasing
trend before about top 600 features were used. The top features in
the list were highly related to class labels (T2D patients and non-
diabetic patients in this study), and a simple scheme based on these
features, as KNN used, can correctly predict the cells of T2D
patients and non-diabetic patients. However, when features with
low ranks, which had low relevance to class labels, were added,
KNN cannot exclude interference information contained in these
features as KNN has no training procedures, inducing the quick
descent of its performance. In this study, the set containing about
top 600 features was a pivotal point for KNN. After this point, the
performance of KNN followed a sharp decreasing trend.

We also tried another classification algorithm, RF. The same
IFS procedure was conducted on this algorithm. The obtained
measurements are listed in Supplementary Table S3. Likewise, a
curve was plotted for RF with a certain number of decision trees,
as shown in Figure 4. It can be observed that when I = 20, 40, 60,
80, and 100, the highest F1-measure was 0.903, 0.904, 0.905,
0.904, and 0.907. The RF classifier with I = 100 provided the
highest performance. The top 305 features in the list were adopted
in this classifier and were termed as optimal features for RF.
Evidently, such an RF classifier was superior to the best KNN
classifiers mentioned earlier. Furthermore, the other five
measurements of this RF classifier are shown in Figure 3. All
measurements were higher than 0.8, suggesting the better
performance of this classifier than the aforementioned KNN
classifier.

FIGURE 5 | Performance of SVM integrated in IFS using different numbers of features. The y-axis is F1-measure, and the x-axis is the number of participated
features. SVM can yield the best F1-measure of 0.936 when the kernel is a linear function and the top 745 features are used.
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Finally, we conducted the same IFS procedure for SVM. The
measurements are listed in Supplementary Table S4. Similarly,
for each SVM with a certain kernel, a curve was plotted, as shown
in Figure 5. With four different kernels, SVM yielded the highest
F1-measure of 0.936, 0.894, 0.909, and 0.687. The SVM with a
linear kernel provided the best performance. Also, such
performances were based on the top 745 features in the list.
Accordingly, they were called the optimal features for SVM.
Furthermore, the performance of this SVM classifier was
better than that of the aforementioned KNN and RF
classifiers. The same conclusion can be obtained according to
the five measurements of such SVM classifiers, illustrated in
Figure 3. Due to the best performance of the SVM with its
optimal 745 genes, these genes were quite important for
investigating T2D at the single-cell level. The top seven genes
are listed in Table 1.

With the earlier IFS results with different classification
algorithms using various parameters, the SVM with linear
kernel and top 745 features provided the best performance of
F1-measure 0.936. The ACC and MCC of such classifier were
0.925 and 0.846, respectively. Other three measurements, SN, SP,
and precision were 0.925, 0.925, and 0.947, respectively. These
measurements suggested the excellent performance of this
classifier, and it can be an efficient tool to identify cells of
T2D patients.

3.3 Classification Rules
Although we can construct efficient classifiers to identify cells of
T2D patients through three classification algorithms, these
classifiers were absolute black-box algorithms, which prevented
us from uncovering the essential differences between cells of T2D
patients and non-diabetic donors. As mentioned in Section 2.4,
rule learning algorithms were employed.

According to the output of the MCFS program, 235 features
were selected as informative features. To test the utility of the
classification rules yielded by Johnson reducer and RIPPER
algorithms, we performed the 10-fold cross-validations three
times, obtaining the F1-measure of 0.910, which was lower
than that of the optimal SVM classifier but higher than that of
the optimal KNN and RF classifiers. The SN was 0.898, SP was
0.891, ACC was 0.895, MCC was 0.784, and precision was
0.923. Although such performance was lower than that of the
optimal SVM classifier, the RIPPER algorithm can construct a
group of rules, which made the classification procedure
completely open and provided more insights. Thus, the
Johnson reducer and RIPPER algorithms were applied to all

samples, producing nine different classification rules, as listed
in Table 2. These rules are able to accurately screen patients
with T2D from non-diabetic population. Although these rules
were mainly for non-diabetes, based on the aforementioned
evaluation results (SP = 0.891), it was believed that these rules
were statistically shown to cover almost all possible non-
diabetes samples. Thus, investigation on these rules can also
figure out the characteristics of T2D patients in an opposite
aspect.

3.4 Comparison of Classifiers With
Informative Features
TheMCFSmethod can directly output some informative features.
These features can capture essential information of the dataset.
Here, as mentioned in Section 3.3, 235 features were selected as
informative features. We can directly use them to construct

TABLE 1 | Top seven genes among the optimal genes for SVM.

Rank Gene ID Gene symbol RI

1 100128906 LOC100128906 0.1140
2 100873254 MTND4P24 0.1046
3 100271063 RPS14P1 0.1032
4 100652939 MTND2P28 0.0979
5 285045 LINC00486 0.0959
6 729898 ZBTB8OSP2 0.0954
7 391524 THRAP3P1 0.0862

TABLE 2 | Nine classification rules for diabetes generated by the RIPPER
algorithm.

Rule Criteria Patient

Rule 1 Gene Id 100128906 (LOC100128906) ≥ 2.7722 Non-diabetes
Gene Id 326307 (RPL3P4) ≤ 15.2306
Gene Id 8781 (PSPHP1) ≥ 0.0965
Gene Id 100873065 (PTCHD1-AS) ≤ 0.1036

Rule 2 Gene Id 100462954 (MICOS10P3) ≥ 2.0984 Non-diabetes
Gene Id 1487 (CTBP1) ≤ 17.3460
Gene Id 326307 (RPL3P4) ≤ 6.2868
Gene Id 100873254 (MTND4P24) ≥ 3.0364

Rule 3 Gene Id 100128906 (LOC100128906) ≥ 49.6340 Non-diabetes
Gene Id 143244 (EIF5AL1) ≥ 1.0987
Gene Id 486 (FXYD2) ≤ 152.8666
Gene Id 326307 (RPL3P4) ≤ 11.3894
Gene Id 6126 (RPL9P7) ≤ 103.5050

Rule 4 Gene Id 100128906 (LOC100128906) ≥ 3.0256 Non-diabetes
Gene Id 326307 (RPL3P4) ≤ 22.4381
Gene Id 100128906 (LOC100128906) ≥ 225.8732
Gene Id 388147 (RPL9P9) ≤ 50.3934
Gene Id 100271332 (RPL36AP21) ≥ 1.7952
Gene Id 222901 (RPL23P8) ≤ 2.6067

Rule 5 Gene Id 100652939 (MTND2P28) ≥ 450.8125 Non-diabetes
Gene Id 4574 (MT-TS1) ≤ 445.4115
Gene Id 1487 (CTBP1) ≤ 37.6438

Rule 6 Gene Id 285045 (LINC00486) ≤ 0.0930 Non-diabetes
Gene Id 100873254 (MTND4P24) ≤ 28.2479
Gene Id 653147 (RPL26P30) ≥ 5.1856
Gene Id 285900 (RPL6P20) ≥ 0.4760
Gene Id 643932 (RPS3AP20) ≥ 5.5063

Rule 7 Gene Id 100128906 (LOC100128906) ≥ 3.0256 Non-diabetes
Gene Id 440737 (RPL35P1) ≥ 4.118
Gene Id 100271003 (RPL34P18) ≥ 9.0166

Rule 8 Gene Id 100128906 (LOC100128906) ≥ 109.2232 Non-diabetes
Gene Id 100873254 (MTND4P24) ≤ 28.3353
Gene Id 644972 (RPS3AP26) ≥ 53.5552
Gene Id 644604 (EEF1A1P12) ≤ 7.9556

Rule 9 Others Diabetes
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classifiers with different classification algorithms. These classifiers
were also evaluated by 10-fold cross-validation. The main
measurement, F1-measure, of these classifiers is listed in
Table 3. For KNN, F1-measure varied between 0.839 and
0.849. The F1-measure of RF changed between 0.889 and
0.897. Also, SVM provided the F1-measure varying between
0.631 and 0.886. Compared with the F1-measure yielded by
the optimal classifier based on the corresponding classification
algorithm, the classifier using informative features generated a
lower F1-measure, suggesting that such a classifier was inferior to
the optimal classifier. The employment of the IFS method can
help us construct more efficient classifiers.

4 DISCUSSION

As we have described earlier, we applied our newly presented
computational framework to the expression profiling data of
more than 1,600 single pancreatic islet cells, constituting 949
diabetic cells and 651 non-diabetic cells (Xin et al., 2016). Based
on such a bioinformatics approach, we not only screened out a
group of discriminative genes that have distinctive expression
patterns in diabetic or non-diabetic cells but also set up a series
of quantitative rules for the recognition of pathogenic cells at
the single-cell level. According to recent literature reports,
several identified genes and established rules could be
validated by existing experimental datasets, indicating the
efficacy and accuracy of our analysis. The detailed functional
analysis and evaluation of each predicted genes with high
informative rank and their optimal rules in the expression
pattern have been summarized and introduced in the
following sections.

4.1 Analysis of Optimal Type
2 Diabetes-Associated Genes
Because the optimal SVM classifier provided the best
performance, which used top 745 features (genes), we focused
on these 745 genes. However, it is impossible to analyze them one

by one. Here, only top seven genes were analyzed, which are listed
in Table 1.

The first predicted gene, WDR45-like pseudogene
(100128906), is the pseudogene of gene WDR45. According to
recent publications, it encodes a functional lncRNA associated
with the regulation of WDR45 (Tsuyuki et al., 2014; Lebovitz
et al., 2015). WDR45 has been functionally related to autophagy
(Lebovitz et al., 2015). Considering that abnormal autophagy has
been well known to contribute to the pathogenesis of T2D (Lee,
2014), it is reasonable to speculate that the expression level of
WDR45 and its upstream regulator (i.e., our predicted gene
LOC100128906) may have quite different expressions in
diabetic pancreatic islets cells compared to normal cells.

The next identified gene isMTND4P24 (100873254), which is
shown to have quite different expression levels in diabetic and
normal tissues containing multiple cell subtypes. As an lncRNA-
encoding pseudogene, the expression level of such a gene is able to
reflect the regulatory ability of lncRNAs on its target gene, MT-
ND4 (Torrell et al., 2013; Mella et al., 2016). Recent publications
also confirmed that the expression level of the target gene MT-
ND4 is functionally related to cellular insulin sensitivity in rat
models (Houstek et al., 2012). Therefore, as one regulator ofMT-
ND4’s expression, the expression pattern of MTND4P24 may
involve in the pathogenic insulin sensitivity decreasing in type 2
diabetic cells. Similarly, a homolog of MTND4P24 and
MTND2P28 (100652939) has also been predicted to have
different expression levels in multiple cell subtypes from
pathogenic or normal pancreatic islets. Considering its similar
regulatory mechanisms and the biological function of MTND2, it
is also quite convincing to regard such a gene as a potential
distinctive standard for diabetic and non-diabetic cells (Mathews
et al., 2005).

The predicted gene, RPS14P1 (100271063), is also a
pseudogene, contributing to the regulation of ribosomal
protein S14’s expression (Aubert et al., 1992). Meanwhile, the
function of ribosomal protein S14 is widely reported to
participate in p53-dependent cell-cycle arrest by interacting
with MDM2 (Zhou et al., 2013), which is abnormally activated
during the pathogenesis of diabetes (Golubnitschaja et al., 2006;
Garufi et al., 2017). Thus, it is a reasonable assumption that
ribosomal protein S14 together with RPS14P1 has different
expression levels in normal and diabetic cells.

Apart from such predicted pseudogenes, we also identified
some functional lncRNAs that may have different expression
patterns in normal and diabetic cells. LINC00486 (285045) is a
predicted lncRNA that contributes to the distinction of normal
and diabetic cells. According to recent publications, various
functional lncRNAs (Liu et al., 2014; Pullen and Rutter, 2014),
including LINC00486, have been confirmed to contribute to
the initiation and progression of T2D (Pullen and Rutter,
2014).

The following predicted gene, named ZBTB8OSP2 (729898), is
a pseudogene and has been reported to contribute to anti-saccade
response and eating disorders (Cornelis et al., 2014; Broer and van
Duijn, 2015). As a transcriptional regulator for ZBTB8, such
genes may indirectly contribute to a specific complication of T2D,
the refractory diabetes insipidus, especially in adolescent male

TABLE 3 | Performance of classifiers using informative features yielded by the
MCFS method.

Classification algorithm F1-measure Decrementa

KNN (k = 1) 0.849 0.036
KNN (k = 5) 0.839 0.047
KNN (k = 10) 0.847 0.033
RF (I = 20) 0.889 0.014
RF (I = 40) 0.891 0.013
RF (I = 60) 0.894 0.011
RF (I = 80) 0.894 0.010
RF (I = 100) 0.897 0.010
SVM (linear kernel) 0.882 0.054
SVM (polynomial kernel) 0.859 0.035
SVM (RBF kernel) 0.886 0.023
SVM (sigmoid kernel) 0.631 0.056

aNumbers listed in this column indicate the difference of F1-measure yielded by the
optimal classifier and that listed in the second column of this table.
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patients (Soto et al., 2014). Therefore, we can infer that such genes
together with their downstream binding targets may have
respective specific expression patterns in normal and
diabetic cells.

The next predicted gene is THRAP3P1 (391524), the
pseudogene of THRAP3. The post-transcriptional regulatory
target of THRAP3 has been confirmed to dock on
phosphoserine 273 of PPAR-gamma and further contribute to
the pathogenic programming of diabetic genes, inducing insulin
resistance (Choi et al., 2014). Therefore, to accomplish the
regulatory role, such gene has a high expression level in
normal cells compared to diabetic cells.

4.2 Specific Role of Pseudogenes in Type
2 Diabetes-Associated Genes
As we have discussed earlier, we identified multiple pseudogenes
associated with T2D. Pseudogenes are nonfunctional segments
with similar or reverse sequences of actual coding genes. The
biological functions of pseudogenes are still unclear. It has only
been speculated that pseudogenes participate in the post-
transcriptional regulation via generating siRNAs, piRNAs,
microRNAs, or other small RNAs (Guo et al., 2009). Although
pseudogenes cannot generate protein products, the regulatory
effects of such group of genes may still be significant under
physical and pathological conditions (Tay et al., 2014). For
transcriptomics analyses, especially for single-cell
transcriptomics analyses, multiple pseudogenes have been
identified as candidate biomarkers for different systematic
diseases in studies specifically focusing on pseudogenes’ effects
(Kalyana-Sundaram et al., 2012; Poliseno et al., 2015). For most
previous studies, the pseudogenes were removed in the data
preprocessing. Therefore, most previous studies have not
identified a lot of pseudogenes as potential candidate
biomarkers for diabetes. In our study, we did not filter out the
pseudogenes and for the first time confirmed that pseudogenes
with potential transcriptomic regulatory effects may further
contribute to the regulation of specific diseases via regulating
the biological functions of their respective recognized protein-
coding genes.

4.3 Comparison With Previously Reported
Type 2 Diabetes Biomarkers
Here, in this study from other perspective of view, we applied
several machine learning algorithms to identify new potential
biomarkers for T2D patients. Multiple previous publications
have already identified a group of T2D biomarkers such as
HbA1c, advanced glycation end-products (AGEs), and pigment
epithelial-derived factor (PEDF) (Lyons and Basu, 2012). Also,
for the publication from which we retrieved the single-cell
sequencing data, unique biomarkers like LINC00486,
ZNF445, and SYBU have also been identified for T2D (Xin
et al., 2016). Compared with these prediction results, first, we
identified a group of confirmed biomarkers like LINC00486,
validating the efficacy and accuracy of our results. Second, we
identified a group of new biomarkers like MTND4P24 and

THRAP3P1. Although such genes have been shown to be
functionally correlated with T2D, previous studies have not
identified such genes as potential biomarkers of T2D. There are
two major advantages of our studies compared to previous
studies, which may lead us to find novel biomarkers:

1) First, compared with previous studies, we used the single-cell
level data with the gene expression profiling of different cells
and not just an averaged comprehensive value for each
patient. Therefore, we can identify potential biomarkers
that are missing due to the averaging procedures.

2) Second, due to the sample size and cell type distribution, it is
not proper to use feature selection and machine learning
models for distinguishing each cell type independently. An
integration of all the cell types may lead to a more reasonable
result with effective biomarkers with clinical application
potentials.

Such advantages explained why we identified novel protein
biomarkers to distinguish T2D patients from normal controls. As
we have discussed earlier, some identified biomarkers have been
functionally correlated with T2D, implying that it is reasonable to
regard such genes/transcripts as potential biomarkers for T2D.

4.4 Analysis of Optimal Type
2 Diabetes-Associated Rules
We also screened out a group of functional quantitative rules of
the gene expression pattern to distinguish non-diabetic cells from
diabetic ones with more interpretability, which are listed in
Table 2. Many qualitative rules can be validated according to
the gene expression level in existing databases and recent reports
on gene expression trends, which support the efficacy and
accuracy of the rules. The detailed analysis of each expression
rule is widely discussed as follows:

The first rule (rule1) involved four genes including
LOC100128906 [(100128906), RPL3P4 (326307), PSPHP1
8781], and PTCHD1 (100873065). As mentioned earlier,
gene LOC100128906 has been reported to have quite
different transcriptomics patterns between normal and
diabetic cells, inhibiting autophagy (Lebovitz et al., 2015).
As the antagonistic gene of diabetes-associated autophagy,
such genes are reasonable to have high expression in normal
cells compared to diabetic cells. As for gene RPL3P4, the
regulatory target of such pseudogene, RPL3 has been
reported to have a quite low expression level in diabetic
cells compared to normal cells (Tsai et al., 1994),
corresponding with this rule. As for PSPHP1 (8781), it has
been shown to be associated with the macrophage-related
inflammation processes (Walker et al., 2015). Considering
that during the initiation and progression of diabetes,
regional and systematic inflammation have been widely
observed (Donath et al., 2003; Lontchi-Yimagou et al.,
2013), it is reasonable to predict such genes as quantitative
parameters for the distinction of non-diabetes and diabetes. As
for PTCHD1, although no direct evidence confirms its
contribution on diabetes, it has been confirmed that such a
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gene is associated with the eye and ear complications of
diabetes (Gambin et al., 2017), consistent with this rule.

As for the second rule (rule2), four genes were involved
including MICOS10P3 (100462954), CTBP1 (1487), RPL3P4
(326307), and MTND4P24 (100873254). Few publications have
reported the biological contribution of MICOS10P3; therefore, it
is hard to interpret such gene’s contribution on T2D. As for gene
CTBP1, it has been reported to participate in the abnormal
phosphorylation processes (Kim et al., 2013) and shows a
quite high expression level in diabetic cells compared to
normal controls. As for gene RPL3P4, the regulatory target of
such a pseudogene, RPL3 has been reported to have a quite low
expression level in diabetic cells compared to normal cells (Tsai
et al., 1994), corresponding with such a rule. MTND4P24 and its
homolog, MTND5P11, have been confirmed to regulate a group
of functional mitochondrial-encoded NADH ubiquinone
oxidoreductase. According to recent publications, during the
pathogenesis of diabetes, MT-ND4 has a quite low-expression
pattern and on the contrary, MT-ND5 has a relevantly higher
expression level, corresponding with the prediction expression
level of their agonists individually (Elango et al., 2014; Urbanova
et al., 2017).

In the third rule (rule3), apart from genes we have discussed
earlier, the gene EIF5AL1 (143244) has also been predicted to
have a higher expression pattern in normal cells but not in
diabetic cells. Considering the abnormal endocrine stress
responses of diabetic cells (Siddiqui et al., 2015), the lower
expression level of EIF5AL1 may also contribute to the
identification of diabetic cells. FXYD2 (486) has been shown
to contribute to the pathogenesis of diabetes (Ding et al., 2019).
Another specific gene in rule3 is the homolog of RPL3P4, RPL9P7,
which may also participate in the regulation of the pathogenesis
of T2D with similar expression patterns to RPL3P4.

From the fourth to eighth rules, most of the involved genes
occurred in the top three rules or were the top T2D-associated
genes just with different combination patterns. Specific genes,
like RPL9P9 (388147) and RPL36AP21 (100271332) for rule4,
MT-TS1 (4574) for rule5, RPL26P30 (653147) and RPL6P20
(285900) for rule6, RPL35P1 (440737) for rule7, and RPS3AP26
(644972) for rule8, have been identified in our quantitative
rules. As we can see from such typical rule associating
biomarkers, most of the genes are ribosome-associated genes
like RPL3P4 (326307) as discussed earlier. Although no direct
evidence confirmed the associations between such genes and
T2D, it is still reasonable to speculate that such genes may play
an irreplaceable role in the identification of T2D. As for MT-
TS1, such genes have already been reported as potential

biomarkers for T2D (Mannino and Sesti, 2012),
corresponding with our prediction.

4.5 Potential Applications of Identified Type
2 Diabetes-Associated Genes and Rules
There are two potential applications for identified T2D-
associated genes: 1) potential biomarkers for T2D diagnosis
and monitoring; 2) potential drug target for T2D therapy.

For the identified T2D-associated genes, considering that
such genes are identified from pancreatic tissues, they can
reflect the original tissue alterations during T2D initiation
and progression. Therefore, such genes can be used as
biomarkers for direct pancreatic islet biopsy examinations.
Apart from that, the candidate genes as potential drug
targets can also be manually regulated to prevent the
initiation and progression of T2D. Using high-throughput
drug screening, antibodies or chemicals specifically targeting
the candidate genes can be identified and developed as potential
target drugs for T2D.

For the quantitative T2D-associated rules, although we have
already identified a group of genes associated with T2D, it is still
quite difficult to diagnose T2D. With specific quantitative rules,
the identification of T2D patients can be more accurate and
efficient. Also, the rules can also be summarized as clinical
guidelines for T2D diagnosis using pancreatic tissue single-cell
sequencing techniques.

4.6 Functional Interpretation of Significant
Rule Genes
As listed in Table 2, we identified quantitative rules associated
with T2D. The GO enrichment analyses on rule genes were
conducted. Table 4 lists the enriched GO terms of these rule
genes. It was indicated that most rules are shown to be associated
with ribosome-associated biological processes. According to
recent publications, ribosome-associated biological processes
have been widely shown to be associated with the
pathogenesis of T2D. In 2019, in a metabolic study on
pancreatic tissues, ribosome-associated genes have been shown
to participate in the ERK/hnRNPK/DDX3X pathway in
pancreatic islet cells and further regulated the initiation and
progression of T2D (Good et al., 2019), consistent with our
results. Apart from that, in 2020, DIMT1, as a regulator of
ribosomal biogenesis has been shown to participate in the
physical biological processes of pancreatic tissue, further
validating our results.

TABLE 4 | Significant Gene Ontology enrichment analysis result on rule genes.

GO ID Term p-value Cluster

GO:1903408 Positive regulation of sodium: potassium-exchanging ATPase activity 5.30E-04 BP
GO:0045901 Positive regulation of translational elongation 7.00E-04 BP
GO:0045905 Positive regulation of translational termination 7.00E-04 BP
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4.7 Limitations of Current Analyses
In this study, for the first time, we adopted several machine
learning algorithms to identify disease-specific biomarkers
using the mixed single-cell sequencing data. Such analyses
may not only identify biomarkers from the single-cell level,
getting rid of the bias generated by the averaged
transcriptomics using the bulk sequencing method, but also
overcome the sample size restriction of traditional single-cell
analysis. Compared with traditional single-cell analysis, we did
not focus on the classification of different cell subtypes but just
the patients and control subjects, improving the analysis
accuracy. However, there still remain three major
limitations of current analyses on pancreatic single-cell
sequencing data:

1) First, the dataset we used is still a relatively small dataset,
with around 20 subjects. A larger single-cell sequencing
dataset may improve the efficacy and accuracy of our
results.

2) Second, the number of cells in each group is not balanced in
the raw dataset. Although in the original publications the
authors have claimed that the sampling procedure does not
affect the distribution of cell subgroups in each subject, a more
balanced dataset may perform better.

3) Single-cell sequencing always misses a lot of genes at low-
expression levels which cannot be detected at the single-cell
level but can be identified in bulk sequencing. Our analyses
may also lose the gene expression profiling and analysis on
such low-expression genes.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. These data
can be found at: https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE81608.

AUTHOR CONTRIBUTIONS

Y-DC designed the study. ZL and XP performed the experiments.
ZL analyzed the results. ZL and XP wrote the manuscript. All
authors contributed to the research and reviewed the manuscript.

FUNDING

This research was funded by the Strategic Priority Research
Program of Chinese Academy of Sciences (XDA26040304 and
XDB38050200), the National Key R&D Program of China
(2018YFC0910403), and the Fund of the Key Laboratory of
Tissue Microenvironment and Tumor of Chinese Academy of
Sciences (202002).

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fbioe.2022.890901/
full#supplementary-material

REFERENCES

American Diabetes Association (2014). Diagnosis and Classification of Diabetes
Mellitus. Diabetes Care 37 (Suppl. 1), S81–S90. doi:10.2337/dc14-S081

Andersen, M. K., Pedersen, C.-E. T., Moltke, I., Hansen, T., Albrechtsen, A., and
Grarup, N. (2016). Genetics of Type 2 Diabetes: the Power of Isolated
Populations. Curr. Diab Rep. 16, 65. doi:10.1007/s11892-016-0757-z

Aubert, D., Bisanz-Seyer, C., and Herzog, M. (1992). Mitochondrial Rps14 Is a
Transcribed and Edited Pseudogene in Arabidopsis thaliana. Plant Mol. Biol.
20, 1169–1174. doi:10.1007/bf00028903

Boden, G. (1997). Role of Fatty Acids in the Pathogenesis of Insulin Resistance and
NIDDM. Diabetes 46, 3–10. doi:10.2337/diabetes.46.1.3

Borg, H., Gottsäter, A., Landin-Olsson, M., Fernlund, P., and Sundkvist, G. (2001).
High Levels of Antigen-specific Islet Antibodies Predict Futureβ -Cell Failure in
Patients with Onset of Diabetes in Adult Age1. J. Clin. Endocrinol. Metabolism
86, 3032–3038. doi:10.1210/jcem.86.7.7658

Breiman, L. (2001). Random Forests. Mach. Learn. 45, 5–32. doi:10.1023/a:
1010933404324

Broer, L., and Van Duijn, C. M. (2015). GWAS and Meta-Analysis in Aging/
Longevity. Adv. Exp. Med. Biol. 847, 107–125. doi:10.1007/978-1-4939-
2404-2_5

Brunk, C. A., and Pazzani, M. J. (1991). “An Investigation of Noise-Tolerant
Relational Concept Learning Algorithms,” in Proceedings of the Eighth
International Conference, Evanston, Illinois, June, 1991, 389–393. doi:10.
1016/b978-1-55860-200-7.50080-5

Casanova, R., Saldana, S., Chew, E. Y., Danis, R. P., Greven, C. M., and Ambrosius,
W. T. (2014). Application of Random Forests Methods to Diabetic Retinopathy
Classification Analyses. PLoS One 9, e98587. doi:10.1371/journal.pone.0098587

Chakraborty, C., Doss, C. G. P., Bandyopadhyay, S., and Agoramoorthy, G. (2014).
Influence of miRNA in Insulin Signaling Pathway and Insulin Resistance:

Micro-molecules with a Major Role in Type-2 Diabetes. WIREs RNA 5,
697–712. doi:10.1002/wrna.1240

Chen, L., Li, Z., Zhang, S., Zhang, Y. H., Huang, T., and Cai, Y. D. (2022).
Predicting RNA 5-methylcytosine Sites by Using Essential Sequence Features
and Distributions. Biomed. Res. Int. 2022, 4035462. doi:10.1155/2022/4035462

Chen, L., Wang, S., Zhang, Y.-H., Li, J., Xing, Z.-H., Yang, J., et al. (2017). Identify
Key Sequence Features to Improve CRISPR sgRNA Efficacy. IEEE Access 5,
26582–26590. doi:10.1109/access.2017.2775703

Chen,W., Chen, L., and Dai, Q. (2021). iMPT-FDNPL: Identification ofMembrane
Protein Types with Functional Domains and a Natural Language Processing
Approach. Comput. Math. Methods Med. 2021, 7681497. doi:10.1155/2021/
7681497

Choi, J. H., Choi, S.-S., Kim, E. S., Jedrychowski, M. P., Yang, Y. R., Jang, H.-J.,
et al. (2014). Thrap3 Docks on Phosphoserine 273 of PPARγ and Controls
Diabetic Gene Programming. Genes Dev. 28, 2361–2369. doi:10.1101/gad.
249367.114

Clocquet, A. R., Egan, J. M., Stoffers, D. A., Muller, D. C., Wideman, L., Chin, G. A.,
et al. (2000). Impaired Insulin Secretion and Increased Insulin Sensitivity in
Familial Maturity-Onset Diabetes of the Young 4 (Insulin Promoter Factor 1
Gene). Diabetes 49, 1856–1864. doi:10.2337/diabetes.49.11.1856

Cohen, W. W. (1995). “Fast Effective Rule Induction,” in Proceedings of the
Twelfth International Conference on Machine Learning, Tahoe City, CA, July
9–July 12, 1995, 115–123. doi:10.1016/b978-1-55860-377-6.50023-2

Cornelis, M. C., Rimm, E. B., Curhan, G. C., Kraft, P., Hunter, D. J., Hu, F. B., et al.
(2014). Obesity Susceptibility Loci and Uncontrolled Eating, Emotional Eating
and Cognitive Restraint Behaviors inMen andWomen.Obesity 22, E135–E141.
doi:10.1002/oby.20592

Cortes, C., and Vapnik, V. (1995). Support-vector Networks. Mach. Learn 20,
273–297. doi:10.1007/bf00994018

Cover, T., and Hart, P. (1967). Nearest Neighbor Pattern Classification. IEEE
Trans. Inf. Theory 13, 21–27. doi:10.1109/tit.1967.1053964

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org June 2022 | Volume 10 | Article 89090112

Li et al. Identification of T2D Biomarkers

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81608
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81608
https://www.frontiersin.org/articles/10.3389/fbioe.2022.890901/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fbioe.2022.890901/full#supplementary-material
https://doi.org/10.2337/dc14-S081
https://doi.org/10.1007/s11892-016-0757-z
https://doi.org/10.1007/bf00028903
https://doi.org/10.2337/diabetes.46.1.3
https://doi.org/10.1210/jcem.86.7.7658
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1007/978-1-4939-2404-2_5
https://doi.org/10.1007/978-1-4939-2404-2_5
https://doi.org/10.1016/b978-1-55860-200-7.50080-5
https://doi.org/10.1016/b978-1-55860-200-7.50080-5
https://doi.org/10.1371/journal.pone.0098587
https://doi.org/10.1002/wrna.1240
https://doi.org/10.1155/2022/4035462
https://doi.org/10.1109/access.2017.2775703
https://doi.org/10.1155/2021/7681497
https://doi.org/10.1155/2021/7681497
https://doi.org/10.1101/gad.249367.114
https://doi.org/10.1101/gad.249367.114
https://doi.org/10.2337/diabetes.49.11.1856
https://doi.org/10.1016/b978-1-55860-377-6.50023-2
https://doi.org/10.1002/oby.20592
https://doi.org/10.1007/bf00994018
https://doi.org/10.1109/tit.1967.1053964
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Ding, L., Fan, L., Xu, X., Fu, J., and Xue, Y. (2019). Identification of Core Genes and
Pathways in Type 2 Diabetes Mellitus by Bioinformatics Analysis. Mol. Med.
Rep. 20, 2597–2608. doi:10.3892/mmr.2019.10522

Ding, S., Wang, D., Zhou, X., Chen, L., Feng, K., Xu, X., et al. (2022). Predicting
Heart Cell Types by Using Transcriptome Profiles and a Machine Learning
Method. Life 12, 228. doi:10.3390/life12020228

Disease and Injury Incidence and Prevalence Collaborators (2017). Global,
Regional, and National Incidence, Prevalence, and Years Lived with
Disability for 328 Diseases and Injuries for 195 Countries, 1990-2016: a
Systematic Analysis for the Global Burden of Disease Study 2016. Lancet
390, 1211–1259. doi:10.1016/S0140-6736(17)32154-2

Donath, M. Y., Størling, J., Maedler, K., and Mandrup-Poulsen, T. (2003).
Inflammatory Mediators and Islet beta-cell Failure: a Link between Type 1
and Type 2 Diabetes. J. Mol. Med. 81, 455–470. doi:10.1007/s00109-003-
0450-y

Draminski, M., Rada-Iglesias, A., Enroth, S., Wadelius, C., Koronacki, J., and
Komorowski, J. (2008). Monte Carlo Feature Selection for Supervised
Classification. Bioinformatics 24, 110–117. doi:10.1093/bioinformatics/btm486

Eckardt, K., Görgens, S. W., Raschke, S., and Eckel, J. (2014). Myokines in Insulin
Resistance and Type 2 Diabetes. Diabetologia 57, 1087–1099. doi:10.1007/
s00125-014-3224-x

Elango, S., Venugopal, S., Thangaraj, K., and Viswanadha, V. P. (2014). Novel
Mutations in ATPase 8, ND1 and ND5 Genes Associated with Peripheral
Neuropathy of Diabetes. Diabetes Res. Clin. Pract. 103, e49–e52. doi:10.1016/j.
diabres.2013.12.015

Ferrannini, E. (2009). Insulin Resistance versus β-cell Dysfunction in the
Pathogenesis of Type 2 Diabetes. Curr. Diab Rep. 9, 188–189. doi:10.1007/
s11892-009-0031-8

Global Burden of Disease Cancer CollaborationFitzmaurice, C., Allen, C., Barber,
R. M., Barregard, L., Bhutta, Z. A., et al. (2017). Global, Regional, and National
Cancer Incidence, Mortality, Years of Life Lost, Years Lived with Disability, and
Disability-Adjusted Life-Years for 32 Cancer Groups, 1990 to 2015: A
Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol.
3, 524–548. doi:10.1001/jamaoncol.2016.5688

Forst, T., Anastassiadis, E., Diessel, S., Löffler, A., and Pfützner, A. (2014). Effect of
Linagliptin Compared with Glimepiride on Postprandial Glucose Metabolism,
Islet Cell Function and Vascular Function Parameters in Patients with Type 2
Diabetes Mellitus Receiving Ongoing Metformin Treatment. Diabetes Metab.
Res. Rev. 30, 582–589. doi:10.1002/dmrr.2525

Gambin, T., Yuan, B., Bi, W., Liu, P., Rosenfeld, J. A., Coban-Akdemir, Z., et al.
(2017). Identification of Novel Candidate Disease Genes from De Novo Exonic
Copy Number Variants. Genome Med. 9, 83. doi:10.1186/s13073-017-0472-7

Gao, H. X., Regier, E. E., and Close, K. L. (2016). International Diabetes Federation
World Diabetes Congress 2015. J. Diabetes 8, 300. doi:10.1111/1753-0407.
12377

Garufi, A., Pistritto, G., Baldari, S., Toietta, G., Cirone, M., and D’Orazi, G. (2017).
p53-Dependent PUMA to DRAM Antagonistic Interplay as a Key Molecular
Switch in Cell-Fate Decision in Normal/high Glucose Conditions. J. Exp. Clin.
Cancer Res. 36, 126. doi:10.1186/s13046-017-0596-z

Golubnitschaja, O., Moenkemann, H., Trog, D. B., Blom, H. J., and De Vriese, A. S.
(2006). Activation of Genes Inducing Cell-Cycle Arrest and of Increased DNA
Repair in the Hearts of Rats with Early Streptozotocin-Induced Diabetes
Mellitus. Med. Sci. Monit. 12, BR68–74.

Good, A. L., Haemmerle, M. W., Oguh, A. U., Doliba, N. M., and Stoffers, D. A.
(2019). Metabolic Stress Activates an ERK/hnRNPK/DDX3X Pathway in
Pancreatic β Cells. Mol. Metab. 26, 45–56. doi:10.1016/j.molmet.2019.
05.009

Guo, X., Zhang, Z., Gerstein, M. B., and Zheng, D. (2009). Small RNAs Originated
from Pseudogenes: Cis- or Trans-acting? PLoS Comput. Biol. 5, e1000449.
doi:10.1371/journal.pcbi.1000449

Houštek, J., Hejzlarová, K., Vrbacký, M., Drahota, Z., Landa, V., Zídek, V., et al.
(2012). Nonsynonymous Variants in Mt-Nd2, Mt-Nd4, and Mt-Nd5 Are
Linked to Effects on Oxidative Phosphorylation and Insulin Sensitivity in
Rat Conplastic Strains. Physiol. Genomics 44, 487–494. doi:10.1152/
physiolgenomics.00156.2011

Jia, C., Zuo, Y., and Zou, Q. (2018). O-GlcNAcPRED-II: an Integrated
Classification Algorithm for Identifying O-GlcNAcylation Sites Based on

Fuzzy Undersampling and a K-Means PCA Oversampling Technique.
Bioinformatics 34, 2029–2036. doi:10.1093/bioinformatics/bty039

Jia, Y., Zhao, R., and Chen, L. (2020). Similarity-Based Machine Learning Model
for Predicting the Metabolic Pathways of Compounds. IEEE Access 8,
130687–130696. doi:10.1109/access.2020.3009439

Johannes, F., and Widmer, G. (1994). “Incremental Reduced Error Pruning,” in
Proceedings of the Eleventh International Conference, Rutgers University, New
Brunswick, NJ, July 10–July 13, 1994, 70–77. doi:10.1016/b978-1-55860-335-6.
50017-9

Johnson, D. S. (1974). Approximation Algorithms for Combinatorial Problems.
J. Comput. Syst. Sci. 9, 256–278. doi:10.1016/s0022-0000(74)80044-9

Kahn, S. E. (2003). The Relative Contributions of Insulin Resistance and Beta-Cell
Dysfunction to the Pathophysiology of Type 2 Diabetes. Diabetologia 46, 3–19.
doi:10.1007/s00125-002-1009-0

Kalyana-Sundaram, S., Kumar-Sinha, C., Shankar, S., Robinson, D. R., Wu, Y.-
M., Cao, X., et al. (2012). Expressed Pseudogenes in the Transcriptional
Landscape of Human Cancers. Cell 149, 1622–1634. doi:10.1016/j.cell.2012.
04.041

Kandaswamy, K. K., Chou, K.-C., Martinetz, T., Möller, S., Suganthan, P. N.,
Sridharan, S., et al. (2011). AFP-pred: A Random Forest Approach for
Predicting Antifreeze Proteins from Sequence-Derived Properties. J. Theor.
Biol. 270, 56–62. doi:10.1016/j.jtbi.2010.10.037

Kim, J.-H., Choi, S.-Y., Kang, B.-H., Lee, S.-M., Park, H. S., Kang, G.-Y., et al.
(2013). AMP-activated Protein Kinase Phosphorylates CtBP1 and Down-
Regulates its Activity. Biochem. Biophysical Res. Commun. 431, 8–13. doi:10.
1016/j.bbrc.2012.12.117

Kohavi, R. (1995). “A Study of Cross-Validation and Bootstrap for Accuracy
Estimation and Model Selection,” in International Joint Conference on
Artificial Intelligence, Montreal Quebec Canada, August 20–August 25, 1995
(Lawrence Erlbaum Associates Ltd), 1137–1145.

Lawlor, N., George, J., Bolisetty, M., Kursawe, R., Sun, L., Sivakamasundari, V., et al.
(2017). Single-cell Transcriptomes Identify Human Islet Cell Signatures and
Reveal Cell-type-specific Expression Changes in Type 2 Diabetes. Genome Res.
27, 208–222. doi:10.1101/gr.212720.116

Lebovitz, C. B., Robertson, A. G., Goya, R., Jones, S. J., Morin, R. D., Marra, M. A.,
et al. (2015). Cross-cancer Profiling of Molecular Alterations within the Human
Autophagy Interaction Network. Autophagy 11, 1668–1687. doi:10.1080/
15548627.2015.1067362

Lee, M.-S. (2014). Role of Islet β Cell Autophagy in the Pathogenesis of Diabetes.
Trends Endocrinol. Metabolism 25, 620–627. doi:10.1016/j.tem.2014.08.005

Li, X., Lu, L., Lu, L., and Chen, L. (2022). Identification of Protein Functions in
Mouse with a Label Space Partition Method. Mbe 19, 3820–3842. doi:10.3934/
mbe.2022176

Li, Z., Wang, D., Liao, H., Zhang, S., Guo, W., Chen, L., et al. (2022). Exploring the
Genomic Patterns in Human and Mouse Cerebellums via Single-Cell
Sequencing and Machine Learning Method. Front. Genet. 13, 857851.
doi:10.3389/fgene.2022.857851

Liang, H., Chen, L., Zhao, X., and Zhang, X. (2020). Prediction of Drug Side Effects
with a Refined Negative Sample Selection Strategy. Comput. Math. Methods
Med. 2020, 1573543. doi:10.1155/2020/1573543

Liu, H., Hu, B., Chen, L., and Lu, L. (2021). Identifying Protein Subcellular Location
with Embedding Features Learned from Networks. Cp 18, 646–660. doi:10.
2174/1570164617999201124142950

Liu, H., and Setiono, R. (1998). Incremental Feature Selection. Appl. Intell. 9,
217–230. doi:10.1023/a:1008363719778

Liu, J.-Y., Yao, J., Li, X.-M., Song, Y.-C., Wang, X.-Q., Li, Y.-J., et al. (2014).
Pathogenic Role of lncRNA-MALAT1 in Endothelial Cell Dysfunction in
Diabetes Mellitus. Cell Death Dis. 5, e1506. doi:10.1038/cddis.2014.466

Lontchi-Yimagou, E., Sobngwi, E., Matsha, T. E., and Kengne, A. P. (2013).
Diabetes Mellitus and Inflammation. Curr. Diab Rep. 13, 435–444. doi:10.
1007/s11892-013-0375-y

Lyons, T. J., and Basu, A. (2012). Biomarkers in Diabetes: Hemoglobin A1c,
Vascular and Tissue Markers. Transl. Res. 159, 303–312. doi:10.1016/j.trsl.2012.
01.009

Ma, L., and Zheng, J. (2018). Single-cell Gene Expression Analysis Reveals β-cell
Dysfunction and Deficit Mechanisms in Type 2 Diabetes. BMC Bioinforma. 19,
515. doi:10.1186/s12859-018-2519-1

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org June 2022 | Volume 10 | Article 89090113

Li et al. Identification of T2D Biomarkers

https://doi.org/10.3892/mmr.2019.10522
https://doi.org/10.3390/life12020228
https://doi.org/10.1016/S0140-6736(17)32154-2
https://doi.org/10.1007/s00109-003-0450-y
https://doi.org/10.1007/s00109-003-0450-y
https://doi.org/10.1093/bioinformatics/btm486
https://doi.org/10.1007/s00125-014-3224-x
https://doi.org/10.1007/s00125-014-3224-x
https://doi.org/10.1016/j.diabres.2013.12.015
https://doi.org/10.1016/j.diabres.2013.12.015
https://doi.org/10.1007/s11892-009-0031-8
https://doi.org/10.1007/s11892-009-0031-8
https://doi.org/10.1001/jamaoncol.2016.5688
https://doi.org/10.1002/dmrr.2525
https://doi.org/10.1186/s13073-017-0472-7
https://doi.org/10.1111/1753-0407.12377
https://doi.org/10.1111/1753-0407.12377
https://doi.org/10.1186/s13046-017-0596-z
https://doi.org/10.1016/j.molmet.2019.05.009
https://doi.org/10.1016/j.molmet.2019.05.009
https://doi.org/10.1371/journal.pcbi.1000449
https://doi.org/10.1152/physiolgenomics.00156.2011
https://doi.org/10.1152/physiolgenomics.00156.2011
https://doi.org/10.1093/bioinformatics/bty039
https://doi.org/10.1109/access.2020.3009439
https://doi.org/10.1016/b978-1-55860-335-6.50017-9
https://doi.org/10.1016/b978-1-55860-335-6.50017-9
https://doi.org/10.1016/s0022-0000(74)80044-9
https://doi.org/10.1007/s00125-002-1009-0
https://doi.org/10.1016/j.cell.2012.04.041
https://doi.org/10.1016/j.cell.2012.04.041
https://doi.org/10.1016/j.jtbi.2010.10.037
https://doi.org/10.1016/j.bbrc.2012.12.117
https://doi.org/10.1016/j.bbrc.2012.12.117
https://doi.org/10.1101/gr.212720.116
https://doi.org/10.1080/15548627.2015.1067362
https://doi.org/10.1080/15548627.2015.1067362
https://doi.org/10.1016/j.tem.2014.08.005
https://doi.org/10.3934/mbe.2022176
https://doi.org/10.3934/mbe.2022176
https://doi.org/10.3389/fgene.2022.857851
https://doi.org/10.1155/2020/1573543
https://doi.org/10.2174/1570164617999201124142950
https://doi.org/10.2174/1570164617999201124142950
https://doi.org/10.1023/a:1008363719778
https://doi.org/10.1038/cddis.2014.466
https://doi.org/10.1007/s11892-013-0375-y
https://doi.org/10.1007/s11892-013-0375-y
https://doi.org/10.1016/j.trsl.2012.01.009
https://doi.org/10.1016/j.trsl.2012.01.009
https://doi.org/10.1186/s12859-018-2519-1
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Mannino, G. C., and Sesti, G. (2012). Individualized Therapy for Type 2 Diabetes:
Clinical Implications Of Pharmacogenetic Data.Mol. Diagn Ther. 16, 285–302.
doi:10.1007/s40291-012-0002-7

Marques, Y. B., De Paiva Oliveira, A., Ribeiro Vasconcelos, A. T., and Cerqueira, F.
R. (2016). Mirnacle: Machine Learning with SMOTE and Random Forest for
Improving Selectivity in Pre-miRNAAb Initio Prediction. BMC Bioinforma. 17,
474. doi:10.1186/s12859-016-1343-8

Mathews, C. E., Leiter, E. H., Spirina, O., Bykhovskaya, Y., Gusdon, A. M.,
Ringquist, S., et al. (2005). mt-Nd2 Allele of the ALR/Lt Mouse Confers
Resistance against Both Chemically Induced and Autoimmune Diabetes.
Diabetologia 48, 261–267. doi:10.1007/s00125-004-1644-8

Matthews, B. W. (1975). Comparison of the Predicted and Observed Secondary
Structure of T4 Phage Lysozyme. Biochimica Biophysica Acta (BBA) - Protein
Struct. 405, 442–451. doi:10.1016/0005-2795(75)90109-9

Mella, M. T., Kohari, K., Jones, R., Peña, J., Ferrara, L., Stone, J., et al. (2016).
Mitochondrial Gene Expression Profiles Are Associated with Intrahepatic
Cholestasis of Pregnancy. Placenta 45, 16–23. doi:10.1016/j.placenta.2016.
07.002

Mirza, A. H., Berthelsen, C. H., Seemann, S. E., Pan, X., Frederiksen, K. S., Vilien,
M., et al. (2015). Transcriptomic Landscape of lncRNAs in Inflammatory Bowel
Disease. Genome Med. 7, 39. doi:10.1186/s13073-015-0162-2

Onesime, M., Yang, Z., and Dai, Q. (2021). Genomic Island Prediction via Chi-
Square Test and Random Forest Algorithm. Comput. Math. Methods Med.
2021, 9969751. doi:10.1155/2021/9969751

Pan, X.-Y., and Shen, H.-B. (2009). Robust Prediction of B-Factor Profile from
Sequence Using Two-Stage SVR Based on Random Forest Feature Selection. Ppl
16, 1447–1454. doi:10.2174/092986609789839250

Pan, X., Li, H., Zeng, T., Li, Z., Chen, L., Huang, T., et al. (2021). Identification of
Protein Subcellular Localization with Network and Functional Embeddings.
Front. Genet. 11, 626500. doi:10.3389/fgene.2020.626500

Pandey, A., Chawla, S., and Guchhait, P. (2015). Type-2 Diabetes: Current
Understanding and Future Perspectives. IUBMB Life 67, 506–513. doi:10.
1002/iub.1396

Poliseno, L., Marranci, A., and Pandolfi, P. P. (2015). Pseudogenes in Human
Cancer. Front. Med. 2, 68. doi:10.3389/fmed.2015.00068

Prentki, M., and Nolan, C. J. (2006). Islet Cell Failure in Type 2 Diabetes. J. Clin.
Investigation 116, 1802–1812. doi:10.1172/jci29103

Pullen, T. J., and Rutter, G. A. (2014). Roles of lncRNAs in Pancreatic Beta Cell
Identity and Diabetes Susceptibility. Front. Genet. 5, 193. doi:10.3389/fgene.
2014.00193

Quinlan, J. R. (1990). Learning Logical Definitions from Relations.Mach. Learn 5,
239–266. doi:10.1007/bf00117105

Segerstolpe, Å., Palasantza, A., Eliasson, P., Andersson, E.-M., Andréasson, A.-C.,
Sun, X., et al. (2016). Single-Cell Transcriptome Profiling of Human Pancreatic
Islets in Health and Type 2 Diabetes. Cell Metab. 24, 593–607. doi:10.1016/j.
cmet.2016.08.020

Siddiqui, A., Madhu, S. V., Sharma, S. B., and Desai, N. G. (2015). Endocrine Stress
Responses and Risk of Type 2 Diabetes Mellitus. Stress 18, 498–506. doi:10.
3109/10253890.2015.1067677

Soto, A. G., Cheruvu, S., Bialo, D., and Quintos, J. B. (2014). Refractory Diabetes
Insipidus Leading to Diagnosis of Type 2 Diabetes Mellitus and Non-ketotic
Hyperglycemia in an Adolescent Male. R. I. Med. J. (2013) 97, 34–35.

Stancakova, A., and Laakso, M. (2016). Genetics of Type 2 Diabetes. Endocr. Dev.
31, 203–220. doi:10.2337/dc10-1013

Tang, S., and Chen, L. (2022). iATC-NFMLP: Identifying Classes of Anatomical
Therapeutic Chemicals Based on Drug Networks, Fingerprints and
Multilayer Perceptron. Curr. Bioinforma. 17. doi:10.2174/
1574893617666220318093000

Tao, Z., Shi, A., and Zhao, J. (2015). Epidemiological Perspectives of Diabetes. Cell
Biochem. Biophys. 73, 181–185. doi:10.1007/s12013-015-0598-4

Tay, Y., Rinn, J., and Pandolfi, P. P. (2014). TheMultilayered Complexity of ceRNA
Crosstalk and Competition. Nature 505, 344–352. doi:10.1038/nature12986

Taylor, R. (2013). Type 2 Diabetes: Etiology And Reversibility. Diabetes Care 36,
1047–1055. doi:10.2337/dc12-1805

Thorens, B. (2014). Neural Regulation of Pancreatic Islet Cell Mass and
Function. Diabetes Obes. Metab. 16 (Suppl. 1), 87–95. doi:10.1111/dom.
12346

Torrell, H., Montaña, E., Abasolo, N., Roig, B., Gaviria, A. M., Vilella, E., et al.
(2013). Mitochondrial DNA (mtDNA) in Brain Samples from Patients with
Major Psychiatric Disorders: Gene Expression Profiles, mtDNA Content and
Presence of the mtDNA Common Deletion. Am. J. Med. Genet. 162, 213–223.
doi:10.1002/ajmg.b.32134

Trujillo, J. M., and Nuffer,W. (2014). GLP-1 Receptor Agonists for Type 2 Diabetes
Mellitus: Recent Developments and Emerging Agents. Pharmacotherapy 34,
1174–1186. doi:10.1002/phar.1507

Tsai, A., Cowan, M. R., Johnson, D. G., and Brannon, P. M. (1994). Regulation of
Pancreatic Amylase and Lipase Gene Expression by Diet and Insulin in Diabetic
Rats. Am. J. Physiology-Gastrointestinal Liver Physiology 267, G575–G583.
doi:10.1152/ajpgi.1994.267.4.g575

Tseng, C. H., Chen, C. J., and Landolph, J. R., Jr. (2012). Diabetes and Cancer:
Epidemiological, Clinical, and Experimental Perspectives. Exp. Diabetes Res.
2012, 101802. doi:10.1155/2012/101802

Tsuyuki, S., Takabayashi, M., Kawazu, M., Kudo, K.,Watanabe, A., Nagata, Y., et al.
(2014). Detection ofWIPI1mRNA as an Indicator of Autophagosome
Formation. Autophagy 10, 497–513. doi:10.4161/auto.27419

Urbanová, M., Mráz, M., Ďurovcová, V., Trachta, P., Kloučková, J., Kaválková, P.,
et al. (2017). The Effect of Very-Low-Calorie Diet on Mitochondrial
Dysfunction in Subcutaneous Adipose Tissue and Peripheral Monocytes of
Obese Subjects with Type 2 Diabetes Mellitus. Physiol. Res. 66, 811–822. doi:10.
33549/physiolres.933469

Walker, W. E., Kurscheid, S., Joshi, S., Lopez, C. A., Goh, G., Choi, M., et al. (2015).
Increased Levels of Macrophage Inflammatory Proteins Result in Resistance to
R5-Tropic HIV-1 in a Subset of Elite Controllers. J. Virol. 89, 5502–5514.
doi:10.1128/jvi.00118-15

Wang, Y., Xu, Y., Yang, Z., Liu, X., and Dai, Q. (2021). Using Recursive Feature
Selection with Random Forest to Improve Protein Structural Class Prediction
for Low-Similarity Sequences. Comput. Math. Methods Med. 2021, 5529389.
doi:10.1155/2021/5529389

Wei, L., Luan, S., Nagai, L. A. E., Su, R., and Zou, Q. (2018). Exploring Sequence-
Based Features for the Improved Prediction of DNAN4-Methylcytosine Sites in
Multiple Species. Bioinformatics 35, 1326–1333. doi:10.1093/bioinformatics/
bty824

Westermark, G. T., and Westermark, P. (2008). Importance of Aggregated Islet
Amyloid Polypeptide for the Progressive Beta-Cell Failure in Type 2 Diabetes
and in Transplanted Human Islets. Exp. Diabetes Res. 2008, 528354. doi:10.
1155/2008/528354

Wu, Z., and Chen, L. (2022). Similarity-based Method with Multiple-Feature
Sampling for Predicting Drug Side Effects. Comput. Math. Methods Med. 2022,
1–13. doi:10.1155/2022/9547317

Xin, Y., Kim, J., Okamoto, H., Ni, M., Wei, Y., Adler, C., et al. (2016). RNA
Sequencing of Single Human Islet Cells Reveals Type 2 Diabetes Genes. Cell
Metab. 24, 608–615. doi:10.1016/j.cmet.2016.08.018

Yabe, D., Seino, Y., Fukushima, M., and Seino, S. (2015). β Cell Dysfunction versus
Insulin Resistance in the Pathogenesis of Type 2 Diabetes in East Asians. Curr.
Diab Rep. 15, 602. doi:10.1007/s11892-015-0602-9

Yang, Y., and Chen, L. (2022). Identification of Drug-Disease Associations by
Using Multiple Drug and Disease Networks. Cbio 17, 48–59. doi:10.2174/
1574893616666210825115406

Zhang, Y.-H., Li, H., Zeng, T., Chen, L., Li, Z., Huang, T., et al. (2021a). Identifying
Transcriptomic Signatures and Rules for SARS-CoV-2 Infection. Front. Cell
Dev. Biol. 8, 627302. doi:10.3389/fcell.2020.627302

Zhang, Y.-H., Li, Z., Zeng, T., Chen, L., Li, H., Huang, T., et al. (2021b).
Detecting the Multiomics Signatures of Factor-specific Inflammatory
Effects on Airway Smooth Muscles. Front. Genet. 11, 599970. doi:10.
3389/fgene.2020.599970

Zhang, Y.-H., Zeng, T., Chen, L., Huang, T., and Cai, Y.-D. (2021c). Determining
Protein-Protein Functional Associations by Functional Rules Based on Gene
Ontology and KEGG Pathway. Biochimica Biophysica Acta (BBA) - Proteins
Proteomics 1869, 140621. doi:10.1016/j.bbapap.2021.140621

Zhao, X., Chen, L., Guo, Z.-H., and Liu, T. (2019). Predicting Drug Side Effects with
Compact Integration of Heterogeneous Networks. Cbio 14, 709–720. doi:10.
2174/1574893614666190220114644

Zhao, X., Chen, L., and Lu, J. (2018). A Similarity-Based Method for Prediction of
Drug Side Effects with Heterogeneous Information.Math. Biosci. 306, 136–144.
doi:10.1016/j.mbs.2018.09.010

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org June 2022 | Volume 10 | Article 89090114

Li et al. Identification of T2D Biomarkers

https://doi.org/10.1007/s40291-012-0002-7
https://doi.org/10.1186/s12859-016-1343-8
https://doi.org/10.1007/s00125-004-1644-8
https://doi.org/10.1016/0005-2795(75)90109-9
https://doi.org/10.1016/j.placenta.2016.07.002
https://doi.org/10.1016/j.placenta.2016.07.002
https://doi.org/10.1186/s13073-015-0162-2
https://doi.org/10.1155/2021/9969751
https://doi.org/10.2174/092986609789839250
https://doi.org/10.3389/fgene.2020.626500
https://doi.org/10.1002/iub.1396
https://doi.org/10.1002/iub.1396
https://doi.org/10.3389/fmed.2015.00068
https://doi.org/10.1172/jci29103
https://doi.org/10.3389/fgene.2014.00193
https://doi.org/10.3389/fgene.2014.00193
https://doi.org/10.1007/bf00117105
https://doi.org/10.1016/j.cmet.2016.08.020
https://doi.org/10.1016/j.cmet.2016.08.020
https://doi.org/10.3109/10253890.2015.1067677
https://doi.org/10.3109/10253890.2015.1067677
https://doi.org/10.2337/dc10-1013
https://doi.org/10.2174/1574893617666220318093000
https://doi.org/10.2174/1574893617666220318093000
https://doi.org/10.1007/s12013-015-0598-4
https://doi.org/10.1038/nature12986
https://doi.org/10.2337/dc12-1805
https://doi.org/10.1111/dom.12346
https://doi.org/10.1111/dom.12346
https://doi.org/10.1002/ajmg.b.32134
https://doi.org/10.1002/phar.1507
https://doi.org/10.1152/ajpgi.1994.267.4.g575
https://doi.org/10.1155/2012/101802
https://doi.org/10.4161/auto.27419
https://doi.org/10.33549/physiolres.933469
https://doi.org/10.33549/physiolres.933469
https://doi.org/10.1128/jvi.00118-15
https://doi.org/10.1155/2021/5529389
https://doi.org/10.1093/bioinformatics/bty824
https://doi.org/10.1093/bioinformatics/bty824
https://doi.org/10.1155/2008/528354
https://doi.org/10.1155/2008/528354
https://doi.org/10.1155/2022/9547317
https://doi.org/10.1016/j.cmet.2016.08.018
https://doi.org/10.1007/s11892-015-0602-9
https://doi.org/10.2174/1574893616666210825115406
https://doi.org/10.2174/1574893616666210825115406
https://doi.org/10.3389/fcell.2020.627302
https://doi.org/10.3389/fgene.2020.599970
https://doi.org/10.3389/fgene.2020.599970
https://doi.org/10.1016/j.bbapap.2021.140621
https://doi.org/10.2174/1574893614666190220114644
https://doi.org/10.2174/1574893614666190220114644
https://doi.org/10.1016/j.mbs.2018.09.010
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Zhou, J.-P., Chen, L., Wang, T., and Liu, M. (2020b). iATC-FRAKEL: a Simple
Multi-Label Web Server for Recognizing Anatomical Therapeutic Chemical
Classes of Drugs with Their Fingerprints Only. Bioinformatics 36, 3568–3569.
doi:10.1093/bioinformatics/btaa166

Zhou, J. P., Chen, L., and Guo, Z. H. (2020a). iATC-NRAKEL: An Efficient
Multi-Label Classifier for Recognizing Anatomical Therapeutic Chemical
Classes of Drugs. Bioinformatics 36, 1391–1396. doi:10.1093/bioinformatics/
btz757

Zhou, X., Hao, Q., Liao, J., Zhang, Q., and Lu, H. (2013). Ribosomal Protein S14
Unties the MDM2-P53 Loop upon Ribosomal Stress. Oncogene 32, 388–396.
doi:10.1038/onc.2012.63

Zhu, Y., Hu, B., Chen, L., and Dai, Q. (2021). iMPTCE-Hnetwork: A Multilabel
Classifier for Identifying Metabolic Pathway Types of Chemicals and Enzymes
with a Heterogeneous Network. Comput. Math. Methods Med. 2021, 6683051.
doi:10.1155/2021/6683051

Zick, Y. (2001). Insulin Resistance: a Phosphorylation-Based Uncoupling of Insulin
Signaling. Trends Cell Biol. 11, 437–441. doi:10.1016/s0962-8924(01)81297-6

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Li, Pan and Cai. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org June 2022 | Volume 10 | Article 89090115

Li et al. Identification of T2D Biomarkers

https://doi.org/10.1093/bioinformatics/btaa166
https://doi.org/10.1093/bioinformatics/btz757
https://doi.org/10.1093/bioinformatics/btz757
https://doi.org/10.1038/onc.2012.63
https://doi.org/10.1155/2021/6683051
https://doi.org/10.1016/s0962-8924(01)81297-6
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

	Identification of Type 2 Diabetes Biomarkers From Mixed Single-Cell Sequencing Data With Feature Selection Methods
	1 Introduction
	2 Materials and Methods
	2.1 Datasets
	2.2 Feature Selection
	2.2.1 Monte Carlo Feature Selection
	2.2.2 Incremental Feature Selection

	2.3 Classification Algorithm
	2.3.1 Support Vector Machine
	2.3.2 K-Nearest Neighbor
	2.3.3 Random Forest

	2.4 Johnson Reducer and Repeated Incremental Pruning to Produce Error Reduction Algorithms
	2.5 Performance Measurement
	2.6 Gene Ontology Enrichment Analysis on Optimal Genes

	3 Results
	3.1 Results of the Monte Carlo Feature Selection Method
	3.2 Results of the Incremental Feature Selection Method
	3.3 Classification Rules
	3.4 Comparison of Classifiers With Informative Features

	4 Discussion
	4.1 Analysis of Optimal Type 2 Diabetes-Associated Genes
	4.2 Specific Role of Pseudogenes in Type 2 Diabetes-Associated Genes
	4.3 Comparison With Previously Reported Type 2 Diabetes Biomarkers
	4.4 Analysis of Optimal Type 2 Diabetes-Associated Rules
	4.5 Potential Applications of Identified Type 2 Diabetes-Associated Genes and Rules
	4.6 Functional Interpretation of Significant Rule Genes
	4.7 Limitations of Current Analyses

	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


