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Purpose: Leber congenital amaurosis (LCA) is one of the most common causes of hereditary blindness in infants. To
date, mutations in 13 known genes and at two other loci have been implicated in LCA causation. An examination of the
known genes highlights several processes which, when defective, cause LCA, including photoreceptor development and
maintenance, phototransduction, vitamin A metabolism, and protein trafficking. In addition, it has been known for some
time that defects in sensory cilia can cause syndromes involving hereditary blindness. More recently evidence has come
to light that non-syndromic LCA can also be a “ciliopathy.”
Methods: Here we present a homozygosity mapping analysis in a consanguineous sibship that led to the identification of
a mutation in the recently discovered LCA5 gene. Homozygosity mapping was done using Affymetrix 10K Xba I Gene
Chip and a 24.5cM region on chromosome 6 (6q12- q16.3) was identified to be significantly homozygous. The LCA5
gene on this region was sequenced and cDNA sequencing also done to characterize the mutation.
Results: A c.955G>A missense mutation in the last base of exon 6 causing disruption of the splice donor site was identified
in both the affected sibs. Since there is a second consensus splice donor sequence 5 bp into the adjacent intron, this mutation
results in a transcript with a 5 bp insertion of intronic sequence, leading to a frameshift and premature truncation.
Conclusions: We report a missense mutation functionally altering the splice donor site and leading to a truncated protein.
This is the second report of LCA5 mutations causing LCA. It may also be significant that one affected child died at eleven
months of age due to asphyxia during sleep. To date the only phenotype unambiguously associated with mutations in this
gene is LCA. However the LCA5 gene is known to be expressed in nasopharynx, trachea and lungs and was originally
identified in the proteome of bronchial epithelium ciliary axonemes. The cause of death in this child may therefore imply
that LCA5 mutations can in fact cause a wider spectrum of phenotypes including respiratory disease.

Retinal dystrophies are a clinically and genetically
heterogeneous group of inherited diseases that cause severe
visual impairment. Estimated worldwide incidence is 1 in
3000 to 5000, and all three modes of Mendelian inheritance
are observed [1]. Leber congenital amaurosis (LCA) is an
autosomal recessive condition that appears at birth or in the
first few months of life. LCA is typically characterized by
nystagmus, sluggish or no pupillary response, and severe
vision loss [1]. It is one of the most common genetic causes
of congenital visual impairment in infants and children. Genes
implicated in LCA causation include retinal guanylate cyclase
(GUCY2D) on chromosome 17p13.1 (LCA1), RPE65 on
chromosome 1p31 (LCA2), RDH12 on chromosome 14q23.3
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(which may account for the LCA3 locus, though this remains
to be clarified), AIPL1 on chromosome 17p13.1 (LCA4),
RPGRIP1 on chromosome 14q11 (LCA6), CRX on
chromosome 19q13.3 (LCA7), CRB1 on chromosome 1q31.3
(LCA8), CEP290 on chromosome 12q21.3 (LCA10), and
IMPDH1 on chromosome 7q32.1 (LCA11) [2]. Mutations in
LRAT (4q32.1) and TULP1 (6p21.31) genes have also been
identified in recessive LCA. LCA9 has been mapped to 1p36,
but a causative gene has not been identified [2]. The location
of LCA5 was mapped to 6q11-q16 [3] and was later confirmed
in an independent pedigree [4]. Recent work has demonstrated
that the LCA5 causative gene is lebercilin, previously known
as C6orf152 [5].

In this study we describe a consanguineous nuclear
pedigree in two sisters who have LCA. In this family we
performed a genome wide screen for homozygosity. A
homozygous region was identified at the LCA5 locus, and a
novel mutation was identified in the LCA5 gene. This is the
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second report of a mutation in the LCA5 gene and the fifth
mutation reported.

METHODS
Clinical examination: The research protocol was approved by
the ethics review board of the Vision Research Foundation,
Sankara Nethralaya. The study procedures were performed in
accordance with institutional guidelines and the Declaration
of Helsinki, and informed consent was obtained from each
participant. The two affected sisters, their unaffected parents
aged 30 (mother) and 36 years (father) and 50 ethnically
matched controls, which included 28 males and 22 females
with an average age of 62.32 (ranging between 38 and 79
years), underwent a detailed ophthalmic examination
including recording of best corrected visual acuity, refraction,
slit lamp examination, and post dilatation binocular indirect
ophthalmoscopy. Additionally electroretinography was done
on patients.
DNA extraction: We drew 10 ml of heparinized blood from
both affected patients and their parents after obtaining
informed consent from both parents. 10 ml of blood was also
drawn from 50 ethnically matched controls after obtaining
informed consent. Genomic DNA was extracted immediately
using QIAamp Blood DNA maxi kit (Qiagen, GmbH,
Germany) according to the manufacturer’s instructions. Also
consent was obtained from the parents on behalf of the patients
because of their underage.
Genotyping: Single nucleotide polymorphism (SNP)
genotyping was performed with the GeneChip Mapping 10K
Xba I Array and Assay Kit (Affymetrix, Santa Clara, CA). All
incubations were done using a GeneAmp PCR system 9700
(Applied Biosystems, Foster City, CA). Internal positive and
negative GeneChip controls were performed in parallel using
the supplied genomic DNA. Xba I (New England Biolabs,
Ipswich, MA) was used to digest 250 ng genomic DNA for 2
h at 37 °C followed by heat inactivation for 20 min at 70 °C.
Digested DNA was then incubated with a 0.25 M Xba I
adaptor (Affymetrix) and DNA ligase (New England Biolabs)
in standard ligation buffer for 2 h at 16 °C followed by heat
inactivation for 20 min at 70 °C. Ligated products were
amplified in quadruplicate using 10 μM generic primer in PCR
buffer II (Applied Biosystems) with 2.5 mM MgCl2/2.5 mM
deoxyribose nucleotide triphosphates (dNTPs)/10 units of
AmpliTaq Gold polymerase (Applied Biosystems) under the
following PCR conditions: 95 °C for 5 min, followed by 35
cycles (95 °C for 20 s, 59 °C for 15 s, and 72 °C for 15 s) and
a final extension at 72 °C for 7 min. Fragments ranging in size
from 250 to 1,000 bp were preferentially amplified under the
conditions [6]. PCR products were purified with Qiagen
MinElute 96 UF PCR Purification Kit and concentrated with
a Qiagen PCR purification column (Qiagen,) according to the
manufacturer's recommendations. A 10K genotyping assay
kit fragmentation reagent (Affymetrix) was used to digest 20
μg of DNA, which was then labeled with 30 U/μL terminal

deoxynucleotidyl transferase and 5 mM DNA labeling reagent
(Affymetrix 10K genotyping assay kit). After undergoing heat
inactivation at 95 °C for 10 min, samples were injected into
microarray cartridges and hybridized overnight. Microarrays
were washed in a fluidics station 450 (Affymetrix), followed
by staining with streptavidin Avidin Phycoerythrin
(Molecular Probes, Eugene, OR), and biotinylated
antistreptavidin (Vector Lab, Burlingame, CA), followed by
a final wash with SSPE buffer. Microarrays were scanned
according to manufacturer’s directions (Affymetrix). The data
was analysed using Exclude AR program (ExcludeAR sheet;
Excel, Microsoft, Redmond, WA) [7].
Sequencing of the LCA5 gene: The seven coding exons of the
LCA5 gene were amplified using 11 sets of primers with exon
7 amplified using five sets of overlapping primers (same
primers used by den Hollander et al. [5]). A 20 ml reaction
was set up containing 10 mM Tris (pH 9.0), 50 mM KCl,
1.5mM MgCl2 and 0.01% gelatin, 1 mM dNTP each (GeNei,
Bangalore, India), 10 mM of each forward and reverse primer,
1U of Taq DNA polymerase (GeNei, Bangalore, India) and 5
mM betaine (Sigma Aldrich, St. Louis, MO). 100 ng of
genomic DNA was amplified with initial denaturation at 94°C
for 5 min followed by 35 cycles of denaturation at 94 °C for
20 s, annealing at (56 °C for exons 1, 2a, 2b, 2c, 5, 6, 7e, 57
°C for exon 7a, 7b, 7c, 60 °C for 7d, and at 65-58/58
touchdown for exon 3 and 4) for 20 s and extension at 72 °C
for 45 s and final extension at 72 °C for 7 min. PCR products
were digested with exonuclease I, E. coli, and shrimp alkaline
phosphatase (Fermentas Life Sciences, Glen Burnie, MD)
sequenced unidirectionally using BigDye Terminator v.3.1 kit
(Applied Biosystems) with specific primers in ABI3100
Avant, (Applied Biosystems). The sequences were analyzed
in Sequence Analysis software v 3.1.1. (Applied Biosystems,
Foster City, CA). Any DNA sequence variations were
confirmed in the reverse direction. Fifty ethnically matched
normal controls were also amplified and sequenced to confirm
the mutation.
In silico splice site prediction: The effect of the single base
substitution identified in the last base position of exon 6 was
evaluated using a splice site prediction algorithm (http://
violin.genet.sickkids.on.ca/~ali/splicesitefinder.html) [8,9].
RNA isolation and cDNA sequencing: RNA was isolated from
the lymphocytes separated from 10-ml heparinized blood
samples of the affected (proband), unaffected parents, and one
unrelated normal control by using Trizol reagent (Sigma-
Aldrich, St. Louis, MO), according to the manufacturer’s
instructions, and dissolved in diethyl pyrocarbonate (DEPC)–
treated water. Total RNA was used to generate a cDNA pool
by RT–PCR using a Qiagen Sensiscript reverse transcriptase
kit (Qiagen, GmbH, Germany) according to the
manufacturer’s instructions (Qiagen). PCR primers [10] for
the GAPDH housekeeping gene were used as the internal
control. For the amplification of the LCA5 gene, exonic
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primers were used spanning exons 5, 6, and 7 (forward
GCTGAAAGGAAAAGGGCATA and reverse
GGCTTGAAGTCTTCCATGGTT). PCR amplification was
performed using 50 ng of cDNA, 10 mM Tris (pH 9.0), 50 mM
KCl, 1.5 mM MgCl2 and 0.01% gelatin, 1 mM dNTP each
(GeNei, Bangalore, India), 10 μM each of forward and reverse
primer, 1U of Taq DNA polymerase (GeNei) and 5 mM
betaine (Sigma Aldrich) at 94 °C for 5 min followed by 35
cycles of 94 °C for 30 s, 57 °C for 45 s, 72 °C for 1 min, and
a final extension of 72 °C for 7 min.

RESULTS
A 7-month-old female of Indian ancestry presented with a
history of not following or fixating on a light source.
Searching nystagmus and oculodigital reflex were present.
Bilateral high hyperopia was observed, with cycloplegic
refraction of +9.50 diopter sphere (DS)-5.00 diopter cylinder
(DC)×180° in the right eye and +7.00DS-3.00DC×180° in the
left eye. While anterior segment evaluation was normal,
fundus examination revealed diffuse, bilateral retinal
pigmentary abnormalities of pepper and salt type, arteriolar
attenuation, and a metallic sheen. Optic discs appeared
normal. A diagnosis of LCA was confirmed when the
photopic and scotopic electroretinogram (ERG) responses
were found to be nonrecordable, implicating the involvement
of both cone and rod photoreceptors. Reexamination of the
child when she was 6 years old revealed similar findings of
high hyperopia, nystagmus, retinal pigmentary alterations,
including white dots in the mid-periphery and an abnormal
sheen in the macula (Figure 1), and an essentially
nonrecordable ERG (Figure 2A), suggestive of LCA.
However, no history of mental retardation, cystic renal
disease, skeletal disorders, hydrocephalus or any other
systemic associations were noted. No systemic complications
were seen on examination.

The proband’s younger sister (younger by 6 years) was
examined at the age of 5 months. She presented to the hospital
with poor vision and rotatory movements of the eyeball. On
examination the child was seen to follow light with poor
fixation. Searching nystagmus was present along with
bilateral high hyperopia. Cycloplegic refraction was
+6.50DS-1.50DC×180° in the right eye and
+8.25DS-1.50DC×170° in the left eye. Anterior segment
evaluation was normal, but as for the proband (old sister),
fundus examination revealed retinal pigmentary alterations of
pepper and salt type, mild arteriolar attenuation and a metallic
sheen. Six months after the examination the younger sister
died due to asphyxia during sleep.

Both parents had a normal visual function and normal
retina. Given that the parents were second cousins, and that
the two sisters presented with similar symptoms, which were
not reported in any other family members, we assigned an
autosomal recessive inheritance of LCA.

DNA from the two affected sisters and the unaffected
parents was hybridized onto GeneChips that were then
scanned. Data analysis using Exclude AR program identified
two significant homozygously shared regions between the two
affected sisters (data not shown). The first was a 24.5 cM
region on chromosome 6 (6q12-q16.3) made up of 139
consecutive SNPs, and the other was a 24.1 cM region on
chromosome 7 (7q21.1-q22.3) that was composed of 83
consecutive SNPs. Given the prior linkage to chromosome 6q
in LCA5 [3,4] we sequenced the LCA5 gene [5] in all four
pedigree members.

Sequence analysis of the LCA5 gene at 6q14.1 revealed
variations in exons 3 and 6. In exon 3 we noted a T>C
polymorphism (c.71T>C, known SNP rs2655655), resulting
in a Lys24Ser substitution, with the affected siblings and
carrier parents all homozygous for the C allele. Also in exon
3, an A>C (c.77A>C, rs34068461) polymorphism, leading to
p.Asp26Ala, was seen in heterozygous form in the father and
as a homozygous change in the remaining three family
members.

In addition, a G>A variation was identified (c.955G>A)
in the last base of exon 6, which would be expected to cause
a p.Ala319Thr missense mutation. This mutation was
homozygous in the affected siblings (Figure 3A) while both
parents were heterozygous carriers (Figure 3B). This change
was not seen in 50 normal controls of a similar ethnic
background. As it affected the last base of exon 6, we used a
splice site prediction algorithm [8,9] to investigate the
possibility this mutation might also lead to aberrant mRNA
splicing. The algorithm calculates scores for potential donor
and acceptor sequences that provide an estimate of the
strength of these sequences as sites for initiation of splicing.
Our analysis of the normal sequence adjacent to the 3' end of
exon 6 predicted two donor sites that turned out to be the wild-
type exon 6 donor-site and a second donor-site 5 bp into the

Figure 1. Color fundus photograph of the right eye. Fundus
photograph of the right eye of the proband showing midperipheral
white dots at the level of the retinal pigment epithelium, arteriolar
attenuation and an abnormal sheen in the macula.
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downstream intron. The algorithm scored these sequences

Figure 2. Full field electroretinogram in patient and parents. Full field
electroretinogram (ERG) of the proband (A), unaffected father (B),
and unaffected mother (C). The ERG is normal for the parents but
severely attenuated for the proband.

equally as potential donor sites (76.3 and 77.7% respectively).
However, when the mutated sequence was tested, the original
donor site was no longer predicted. This analysis suggested
that the mutation might cause exon 6 to be spliced at the
alternative donor site, producing an mRNA with a 5 bp
insertion of the intron, breaking the reading frame and
potentially truncating the protein (Figure 4).

To test this hypothesis, we amplified cDNA spanning
exons 5, 6, and 7 of the LCA5 gene from the affected proband
and sequenced. The results obtained were as predicted. The
proband was found to have a 5 bp insertion of intronic
sequence (Figure 3C), causing a frameshift in the mRNA,
while the control showed the normal sequence (Figure 3D).
The c.955G>A substitution mutation is therefore not a
missense mutation but a nonsense mutation, which will lead
either to insertion of 29 new amino acids sequence before
premature truncation.

DISCUSSION
Recently den Hollander et al. [5] demonstrated that the
defective gene at the LCA5 locus encodes the ciliary protein
lebercilin [3]. They identified one nonsense mutation, two

Figure 3. Mutation analysis of LCA5 gene. A: Sequence
chromatogram of the LCA5 gene showing c.955G>A homozygous
mutation in the genomic DNA of the affected patient. The
homozygous mutation is indicated by the arrow. B: Sequence
chromatogram of the LCA5 gene showing c.955G>A heterozygous
change in the genomic DNA of the unaffected father. The
heterozygous variation is indicated by the arrow. C: cDNA sequence
of the LCA5 gene of the affected proband with the mutated splice
site. The black square box and the arrow indicate the mutated base.
The green dashed box indicates the 5 base insertion of the adjacent
intron due to the donor splice site mutation. D: cDNA sequence of a
normal control showing the wild type base as indicated by the arrow
and the underlined sequence annotation.
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frameshift mutations, and one promoter mutation in
consanguineous LCA families [5]. Here we used
homozygosity mapping in a consanguineous Indian pedigree
to identify a novel LCA5 mutation, c.955G>A, that disrupts
the correct exon 6 splice donor site and leads to splicing at a
cryptic donor consensus sequence 5 bp into the adjacent
intron. This finding further underlines the importance of
homozygosity mapping as a tool for identifying genes and
mutations involved in recessively inherited diseases, and of
nonsense mutations in the LCA5 gene as a cause of LCA. The
mutation identified is interesting as it serves to further
emphasize that defects in splicing, as well as direct alterations
of the protein code, can cause human inherited diseases. A
similar change in the third base of a codon could easily be
overlooked in such analyses since at first glance it is a silent
change in terms of its effect on the mRNA code.

The phenotype of the family described herein is
consistent with a diagnosis of LCA and is similar to the
phenotype described previously in LCA5 patients of the same
age [4]. Despite the fact that LCA is a congenital abnormality,
the previous report suggested some progression of phenotype
with age, with macular staphyloma as a complication of
disease in adulthood. The two patients observed in this report
were both below ten years of age on examination and had no
staphylomatous changes. The relatively consistent LCA5
phenotype, the recessive mode of inheritance, and the growing
list of null mutations all point to the LCA5 phenotype being
the result of a lack of functional lebercilin protein rather than
the presence of a defective protein. It is not yet known whether
truncated proteins are produced in patients or whether the
mutated mRNAs are degraded by nonsense mediated decay
[11]. However the mutated cDNA was readily amplified from
lymphocyte RNA, suggesting that the mutated mRNA is still
present at a significant level.

It may be significant that the second affected sibling died
of respiratory failure. LCA5 is known to be a ciliopathy, a
disease resulting from a defect in formation or function of
cilia. Cilia proteins are essential in the retina because the outer

Figure 4. Schematic representation of the 3' end of the exon 6 of the
LCA5 gene. The figure represents 3' portion of the normal and mutant
sequence of the exon 6 of the LCA5 gene. Nucleotides in uppercase
represent exonic sequence and that in small lower case represent
intronic sequences. The nucleotide in uppercase and in bold represent
the last base of the exon and the site of mutation. The first vertical
bar in the normal sequence represent the real splice donor site and
the second vertical bar represent additional/alternative splice donor
site, which is activated in the event of absence of the real splice donor
site.

segments of rod and cone photoreceptors are highly adapted
cilia. However, most human cells are ciliated and therefore
the majority of these proteins would be expected to serve
similar functions elsewhere in the body. To date all reported
cases of LCA associated with mutations in or linkage to the
LCA5 gene lack other syndromic features. This is surprising
as other ciliopathies affect the kidney and other organs, and
the LCA5 gene is known to be expressed in nasopharynx,
trachea, and lungs and was originally identified in the
proteome of bronchial epithelium ciliary axonemes [5]. If
other LCA5 cases were found to have respiratory defects this
might imply a defect of motor as well as sensory cilia in these
patients.

In summary, this is the second report of LCA5 mutations
in LCA patients, further emphasizing the significance of
mutations in this gene as a cause of LCA. The mutation
identified is novel and causes disease by disrupting an existing
splice donor site so that a cryptic donor site in the adjacent
intron is favored, leading to a frameshift in the resultant
mRNA.
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